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Abstract - Accurate segmentation of brain tumors from medical imaging are essential for diagnosis and treatment planning. 

Deep learning has shown promise in automating this task, but challenges remain in achieving robust results. Several 

conventional models, like ANN, CNN, and fuzzy C-means, are used to segment the regions of the brain. However, most models 

face over-segmentation due to sensitive region data appearing in the MRI brain tumor image slices. The proposed models present 

a novel hybrid deep learning framework by integrating U-Net with DeeplabV3 to achieve better-segmented brain tumour 

segmentation accuracy, advancing the current state of the art. The experiment results showed better improvement than the 

conventional model in terms of accuracy and dice coefficients.  

Keywords - U-net, Deeplab V3, Data Augmentation, Fine tuning.  

1. Introduction  

Brain tumors are abnormal growths of cells in the brain. 

The World Health Organization (WHO) categorizes brain 

tumors (BTs) into four grades (I-IV) based on their level of 

malignancy or benignity. Currently, the standard imaging 

modalities for detecting and analysing BTs are Magnetic 

Resonance Imaging (MRI) and Computed Tomography (CT) 

scans, which provide valuable information for diagnosis and 

treatment planning [8]. There are over 120 types, including 

Gliomas, Meningiomas, Acoustic Neuromas, Pituitary 

Tumors, Medulloblastoma, and Craniopharyngiomas. 

Gliomas, accounting for 70% of all brain tumors, arise from 

glial cells and can be aggressive, like Glioblastoma, or benign, 

like Astrocytoma. The primary obstacles in brain tumor 

segmentation are the variability in tumor shape, size, and 

location throughout the brain, as well as the subtle contrast 

between the tumor and adjacent brain tissue, making it 

difficult to accurately distinguish and isolate the tumor [9].  

Meningiomas, arising from the meninges, are mostly 

benign, while Acoustic Neuromas, developing on the nerve 

between the inner ear and brain, can cause hearing loss and 

balance issues. Pituitary Tumors, occurring in the pituitary 

gland, can affect hormone production, and Medulloblastoma, 

typically found in children, is a malignant tumor in the 

cerebellum. Craniopharyngiomas, benign tumors near the 

pituitary gland, can impact hormone production and vision. 

Detecting, segmenting, and classifying brain tumors using 

MRI images is an active area of development aimed at 

improving diagnosis and treatment [1]. 

Segmenting brain tumors from MRI images is a 

challenging task due to the intricate structure and appearance 

of tumors, whose fuzzy borders often blend with surrounding 

brain tissue, making it difficult to distinguish affected tissue 

from healthy tissue [2]. Brain tumor classification remains a 

formidable task due to the variability in tumor morphology, 

complex appearance in images, and inconsistent illumination 

effects. To support radiologists' diagnoses, effective 

techniques are essential for accurate brain tumor 

classification. Fortunately, new methodologies are being 

developed and refined every year, offering improved 

diagnostic capabilities and enhanced patient outcomes [11]. 

Despite ongoing research, predicting brain tumors and 

patient survival remains an unsolved challenge. However, 

advances in MRI technology have opened up new avenues for 

brain cancer research, including predictive modelling, tumor 

segmentation, and segmentation analysis. Brain tumors can be 

broadly classified into two categories: benign and malignant. 

By leveraging MRI data, it is possible to differentiate and 

categorize specific tumor types, such as gliomas, 

meningiomas, and pituitary tumors. This can aid physicians in 

diagnosis and treatment planning, potentially reducing the 

need for risky histology procedures [2]. Among primary brain 

tumors, meningioma, glioma, and pituitary tumors are 

particularly aggressive and pose significant challenges to early 

detection and effective treatment, making them the most 

critical types of brain tumors to diagnose and manage [14]. 

The proposed method leverages a CapsNet architecture to 

capture rotational invariance and spatial hierarchies in brain 
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features, enabling robust and spatially informed analysis of 

brain characteristics [3]. Techniques like Generative 

Adversarial Networks (GANs) and Variation Auto encoders 

(VAEs) are used to generate realistic brain images with 

tumors. 

Convolutional Neural Networks (CNNs), a type of Deep 

Learning algorithm, are commonly used for visual data 

analysis. Designed to require minimal pre-processing, CNNs 

draws inspiration from the human brain's biological processes, 

mimicking its efficient visual information processing [4]. 

Pituitary brain tumors are benign growths that develop in the 

pituitary gland, a small endocrine gland located at the base of 

the brain, beneath the hypothalamus. This gland is vital in 

producing and regulating essential hormones that govern 

various bodily functions [11]. A computer-aided diagnosis 

(CADx) system is crucial for addressing this challenge. By 

implementing CADx, the workload of radiologists and doctors 

can be significantly reduced, and medical image analysis can 

be facilitated. In recent years, numerous researchers have 

developed various robust and accurate solutions to automate 

the detection and classification of brain tumors, demonstrating 

the potential for improved diagnostic efficiency and accuracy 

[14]. 

Abnormal cells in the body proliferate uncontrollably, 

multiplying rapidly and spreading, which leads to the 

development and growth of tumors [13]. Gliomas, a type of 

brain tumor that arises from glial cells, are the primary focus 

of current research in brain tumor segmentation. These tumors 

are the most common type of brain tumor, and researchers are 

working to develop more accurate and efficient methods for 

segmenting and diagnosing gliomas using imaging techniques 

like MRI [10]. Additionally, segmentation informs radiation 

therapy plans, reducing radiation exposure to healthy brain 

tissue and surgical planning, reducing the risk of 

complications. Diagnosing brain tumors typically involves a 

combination of physical and neurological exams. However, 

the most definitive method is the biopsy, which entails 

surgically removing a tissue sample and examining it under a 

microscope using various histological techniques to confirm 

the diagnosis [5]. 

The DWA mechanism integrates tumor and brain 

centroid information into the model. Experiments on the 

BRATS 2018 dataset demonstrate the model's competitive 

performance, yielding mean Dice scores of 0.9203 (whole 

tumor), 0.9113 (enhancing tumor), and 0.8726 (tumor core). 

Additional quantitative and qualitative results are presented, 

further validating the model's effectiveness [12]. Furthermore, 

we investigate the effect of data augmentation on the model's 

test accuracy and utilize Grad-CAM visualization to gain 

insights into the decision-making process of the optimal 

model. This approach effectively highlights tumor locations 

within brain images, providing valuable information. Our 

results demonstrate that employing EfficientNetB2 as the 

underlying framework yields significant performance 

enhancements, with an overall test accuracy of 99.06%, 

precision of 98.73%, recall of 99.13%, and F1-score of 

98.79% [13]. The cerebellum coordinates balance, posture, 

and movement; tumors in this area can cause coordination and 

balance problems. Segmenting brain tumors is a crucial step 

involving isolating the tumor from surrounding normal tissues 

like cerebrospinal fluid, white matter, and grey matter. While 

manual segmentation is possible, automated software-aided 

segmentation is preferred, as computer analysis is more 

accurate and efficient than human judgment, which can be 

unreliable and time-consuming [6]. 

Certain factors can increase a person's risk of developing 

a brain tumor. Age is a significant risk factor, with most brain 

tumors occurring in people over 55. A family history of brain 

tumors or other cancers also raises the risk. Deep learning 

techniques can facilitate the efficient processing and objective 

evaluation of vast amounts of MRI-based image data. While 

several review papers have addressed traditional methods for 

segmenting brain tumor images from MRI data, deep learning 

approaches offer a promising alternative for improving the 

accuracy and efficiency of this process [10]. 

Consequently, a robust and automatic brain tumor 

segmentation technique will have a profound impact on the 

diagnosis and treatment of brain tumors. Additionally, it may 

also facilitate timely diagnosis and treatment of neurological 

disorders, such as Alzheimer's disease, schizophrenia, and 

dementia. An automatic lesion segmentation technique can 

provide radiologists with crucial information regarding tumor 

volume, localization, and shape, including enhancing tumor 

core and whole tumor regions, thereby enabling more 

effective and informed therapy decisions [12]. Moreover, 

underdiagnosing brain tumors can have serious consequences, 

including reduced treatment effectiveness and lower survival 

rates. Accurate diagnoses, on the other hand, enable targeted 

treatments and significantly improve patient outcomes and 

long-term survival [7]. 

2. Literature Review 
Dinthisrang Daimary et al. [1] presented a unique method 

for brain tumor segmentation—hybrid SegNet, ResNet, and 

U-Net. It solves the issue of tiny brain tumors being 

segmented improperly. They each attained mean accuracy 

scores of 91.6%, 93.3%, and 93.1%. By using cutting-edge 

hybrid designs, they seek to strike a compromise between 

accuracy and computing efficiency. Implementation 

complexity and possible computing demands are limitations. 

Experimental findings on the BraTS dataset demonstrate 

improved accuracy over conventional CNNs. 

 T. Balamurugan et al. [2] present a hybrid Deep 

Convolutional Neural Network (DCNN) classifier with a 

LuNet classifier for brain tumor diagnosis. The primary 

intention of this work is to determine the area of the tumor site 
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and classify brain tumors as benign or malignant. It can 

correctly diagnose both high and low-grade Tumors compared 

to previous techniques. It shows better accuracy results, 99.7% 

compared to the other CNN techniques. So, the proposed 

method outperforms the existing techniques. 

Ayesha Jabbar et al. [3] introduce a hybrid model, Caps-

VGGNet, to improve brain tumour detection and 

classification. By automating feature extraction and 

classification, the hybrid model tackles the problem of high 

dataset requirements. The study seeks to increase diagnostic 

accuracy, specificity, and sensitivity compared to 

conventional models. The accuracy obtained for this model is 

99%. However, limitations include potential interpretability 

issues due to the model's complex architectures and the need 

for comprehensive validation across diverse medical 

conditions beyond the datasets used. 

Parasa Rishi Kumar et al. [4] introduced a hybrid model, 

HDLN (Hybrid Deep Learning Network), and uses mask 

RCNN to classify brain tumor.  This model's primary goal is 

to categorize the different kinds of brain tumours. Compared 

to the current categorization algorithms, it attained a 

remarkable accuracy of 98.53%. The study does, however, 

identify many limitations that could have an impact on its 

effectiveness, including dataset bias, generalizability to a 

variety of patient demographics, and potential difficulties in 

actual clinical settings.  

Jose Dixon et al. [5] propose an improved AI-based 

architecture that is a major step forward in the categorization 

of brain tumours. The ViT (vision transform) and CNNs are 

combined into a hybrid ensemble framework to improve the 

model's robustness and accuracy for identifying brain tumours 

from MRI scans. The potential of AI-driven technologies in 

medical imaging and healthcare applications is highlighted by 

the overall gains in terms of diagnostic efficiency and 

reliability, even with certain constraints like computational 

complexity and interpretability. It has limitations, such as 

reliance solely on MRI images for predictions, limited 

explainability of machine decisions, and the use of a single 

ML classifier. These constraints provide motivation for future 

enhancements and refinements in our approach. 

Annapareddy V. N. Reddy et al. [6] developed a novel 

brain tumor classification system using a comprehensive 

approach. Tumour borders are first identified through 

preprocessing with an enhanced median filter and then 

segmentation using a U-net model. For tumour classification, 

the hybrid DBN (Deep Belief Network) and Bi-LSTM 

(Bidirectional Long Short-Term Memory) model is used, and 

weights are optimized using the cutting-edge BMEBEO (Blue 

Monkey Extended Bald Eagle Optimisation) method. The 

study's significant F-measure was 96.16%. However, 

limitations can include computational complexity and 

susceptibility to changes in image quality, pointing out areas 

that need to be improved in the future.  

Ebrahim Mohammed Senan et al. [7] proposed a novel 

approach integrating deep learning and traditional machine 

learning techniques for brain tumour diagnosis. Its goal is to 

improve medical diagnosis, essential to raising patient 

survival rates by making them timelier and more accurate. 

However, generalizability is impacted by restrictions such as 

dataset size and unpredictability. Despite difficulties, the 

AlexNet with SVM hybrid performs admirably, exhibiting 

95.10% accuracy in the classification of MRI images of brain 

tumours, indicating encouraging advancements in medical 

diagnostic systems. 

Asaf Raza et al. [8] proposed a hybrid deep learning 

model based on a modified GoogLeNet architecture to 

accurately classify three types of brain tumors. The model 

achieves exceptional performance metrics by enhancing 

GoogLeNet with additional layers and integrating a leaky 

ReLU activation function: 99.67% accuracy. Compared to 

various state-of-the-art models like AlexNet, ResNet50, and 

others, DeepTumorNet demonstrates superior classification 

accuracy, highlighting its potential for robust brain tumor 

classification. However, the limitation is the potential dataset 

bias with few malignant MRI images, impacting 

generalization to real-world scenarios where malignancies are 

rarer. 

Nagwa M. Aboelenein et al. [9] propose the Hybrid Two-

Track U-Net (HTTU-Net) architecture for brain tumor 

segmentation.  By utilising batch normalisation, Leaky ReLU 

activation, and two separate tracks with differing layer counts 

and kernel sizes combined for final segmentation, it seeks to 

improve automated diagnosis performance and accuracy. 

Class imbalance is addressed by applying generalised Dice 

loss and targeted loss, which produce encouraging results with 

average Dice similarity coefficients. The paper highlights its 

potential to speed diagnostic processes while discussing 

quantitative and qualitative evaluations and displaying high 

accuracy comparable to expert human-level performance. The 

limitation here is that each epoch's training stage is time-

consuming. 

Ali Isin et al. [10] explores recent progress in MRI-based 

brain tumor segmentation, focusing on deep learning methods. 

Its objective is to assess the efficiency of these techniques in 

automating segmentation, thereby enhancing diagnostic 

precision and reducing manual workload. The scope includes 

an overview of brain tumors, traditional segmentation 

methods, and a detailed examination of cutting-edge deep 

learning algorithms. They considered a limited dataset, 

potentially influencing the model's performance. Future 

directions emphasize the integration of these advancements 

into everyday clinical workflows to advance patient care 

through timely and precise tumor detection. 



Poornachandu & Srinivas / IJCSE, 11(11), 1-10, 2024 

 

4 

Shaimaa E. Nassar et al. [11] examine the difficulties in 

classifying brain tumours in medical image analysis, 

highlighting the critical role that artificial intelligence—

specifically, deep learning—plays in improving precision and 

effectiveness. Using a system that combines five different 

models, the suggested methodology uses a dataset of 3064 T1-

weighted contrast-enhanced MRI scans from 233 patients. 

This method seeks to efficiently automate the classification of 

tumours, assisting radiologists in making quicker and more 

accurate diagnoses. The study recognises limitations in 

generalizability and the need for additional validation across 

varied patient populations despite attaining an outstanding 

overall accuracy of 99.31%. The limitation highlighted here is 

the scarcity of patient data, particularly for the meningioma 

class. 

Ramin Ranjbarzadeh et al. [12] proposed a methodology 

to enhance brain tumor localization and segmentation from 

MRI by addressing computational complexity and overfitting. 

It introduces a preprocessing step focusing on relevant image 

regions to reduce computational load and mitigate overfitting 

with a Cascade Deep Learning model. A Cascade 

Convolutional Neural Network (C-CNN) efficiently extracts 

local and global features, complemented by a novel Distance-

Wise Attention (DWA) mechanism improving segmentation 

accuracy by considering tumor and brain center locations. It 

achieves mean dice scores of 0.9203 for the whole tumor. The 

limitation here is related to the handling of large tumor 

volumes.  

Using MRI images, Baiju Babu Vimala et al. [13] utilize 

transfer learning with five EfcientNets for multi-class brain 

tumor classification. Models are initialized with ImageNet 

weights and enhanced with convolution, dropout, and fully 

connected layers. Evaluation of the CE-MRI Figshare dataset 

includes fine-tuning for each EfcientNet variant. 

EfcientNetB2 demonstrates superior performance through 

rigorous testing and cross-dataset validation, achieving an 

accuracy of 99.06%, surpassing existing methods. Limitations 

involve dataset biases and reliance on high-quality MRI scans. 

Mirza Mumtaz Zahoor et al. [14] proposed a two-phase 

deep learning framework for brain tumor analysis using MRIs. 

The first phase employs DBFS-EC for accurate tumor 

detection, achieving high performance metrics. The second 

phase combines HOG and BRAIN-RENet CNN features to 

classify tumors, aiming to enhance detection accuracy across 

glioma, meningioma, pituitary, and normal images. However, 

challenges include dataset variability, generalizability across 

clinical scenarios, and computational complexity for real-time 

use. T. Balamurugan et al. [2] designed a hybrid DCNN 

classifier using an enhanced LuNet algorithm for MRI brain 

tumor analysis. It aims to boost diagnostic accuracy by 

assessing tumor areas and classifying tumors as benign or 

malignant. Leveraging GLCM and VGG16 for feature 

extraction and LOG for preprocessing, the method achieves 

99.7% accuracy. However, challenges persist with dataset size 

and computational complexity, suggesting avenues for further 

improvements in automated brain tumor diagnosis. Most 

conventional deep learning models face the problem of 

handling large tumor regions in high-dimensional MRI scans 

and potential interpretability issues due to heavy and complex 

architectures. 

3. Materials and Methods 
3.1. Imaging Analysis of BraTs 

The assessment of cutting-edge techniques for 

segmenting brain tumors in multimodal MRI scans has always 

been the main emphasis of BraTS. BraTS 2020 is a multi-

institution pre-operative magnetic resonance imaging system 

that is primarily used for the segmentation of brain tumors that 

are biologically heterogeneous, such as gliomas and 

meningioma. Additionally, employing integrative analyses of 

radiomic aspects and machine learning approaches, BraTS'20 

focuses on the prediction of patient overall survival and the 

differentiation between pseudoprogression and actual tumor 

recurrence to identify the clinical importance of this 

segmentation task. Lastly, evaluating algorithmic uncertainty 

in tumor segmentation is the goal of BraTS'20.  

3.2. Proposed Hybrid DLV-Unet Model  

To overcome the Conventional issues of computational 

complexity and limited computing demands over Machine 

learning and deep learning architectures, an advanced deep 

learning-based brain tumor segmentation was proposed using 

a hybrid DLV3-Unet model. Initially, the data augmentation 

will be performed along the required features, and the train 

samples' mask images will be prepared. Build the fine-tuned 

hybrid DLV3-Unet model architecture by integrating 

enhanced Deep lab V3 and U-net models to further validate 

the proposed model using test data. The concept of the model 

architecture decorates in Figure 3.1. 

• Pre-processing and augmentation through the invention 

of features.  

• Build Fine-tuned hybrid DLV3-Unet model. 

• Validate the model using test data. 

3.2.1. Pre-Processing and Augmentation through the 

Invention of Features 

The proposed model uses the Brats-2020 data set to 

segment the brain tumor regions. It holds 42.8 Gb of High 

dimensional NIfTI files (.nii.gz) related to all brain tumors 

multimodal MRI scans, and these offer the details about the 

following brain tumor MRI slices. Majorly Native (T1), post-

contrast T1-weighted, T2-weighted, T2-FLAIR volumes. 

Before being fed into the proposed model network, the 

resolution of the dataset was first resized to 512 × 512 

resolution because the original 1024 × 1024 resolution 

consumed too much GPU memory. Then, the image was 

normalized by dividing the pixel value by 128. 
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Fig. 1 Proposed hybrid model for brain tumor segmentation 

Step 1: Consider dtrain, dtest, and dval and load the train, test, 

and validate data.  

Step 2: Resize the images once they are cropped in the Train 

data. 

Step 3: Convert the mask data to prepare the mask image 

XXY.  

Step 4: To resize, images in the Mask image are cropped. 

3.2.2. Build Fine-Tuned Hybrid DLV3-Unet Model 

Architecture 

The major ideology behind the hybrid model architecture 

is to improve the detection rate in both the spalling class and 

the crack class. U-net has an improved detection rate for the 

spalling class and the crack class, but while combining U-net 

architecture with Deep Lab v3, the missed crack class is also 

detected in a better manner. U-Net's U-formed design and 

conjunction at each convolution level are among its key 

characteristics. 

Initial Phase 

The altered, aligned atrous spatial pyramid pooling, 

which forms the core of the expanded architecture, is the 

primary characteristic of DeepLabV3. In the altered 

Deeplabv3, additional layers, additional batch normalization, 

and ReLu are applied at strides of 4, 8, and 16 following each 

depthwise separable convolution operation. Utilizing three X 

three conventional layers at varying stride rates of eighteen, 

apply Atrous Spatial Pyramid Pooling (ASPP) and 

concatenate the conventional layer after picture pooling. A 

depth-wise convolution and a point-wise convolution make up 

an ASPP convolution. Every channel in the depthwise 

convolution process uses a distinct filter to carry out the 

convolution function. While the single-pixel dot product is all 

that the point-wise convolution does, The ASPP module uses 

point-wise convolution and depthwise atrous separable 

convolution of various rates. After two convolution operations 

in the deep lab v3, the feature map was upsampled and 

transferred to the encoder phase in U-net architecture. 

Phase of Encoder 

U-Net's encoder section employs four convolution blocks 

before moving on to 2D max-pooling operations. The number 

of channels with special features begins at 32 and increases by 

two, with each max-pooling until 512 channels are reached.  

Phase of Decoder 

After transposing convolution operations, the decoder 

section has four convolution blocks identical to the encoder 

section. Convolution in reverse, or inverted convolution, is 

also referred to as deconvolution techniques. Transpose 

convolution uses a flexible kernel that may be taught to 

compensate for data loss throughout the upsampling process, 

in contrast to bilinear upsampling, which uses a fixed kernel 

to upsample a feature map. Transpose convolution has the 

benefit of potentially being a non-linear technique that can 

efficiently remove extraneous information. 

Phase of Deployment 

Data from the decoder's previous layer was further 

concatenated with the feature map. Lastly, bilinear 

upsampling and a straightforward two-times convolution were 

put into practice.  

Figure 2 is an illustration for DeepLabV3 + Unet. This is 

quite effective in a big network like the DLV3-Unet and 

lowers the computing cost compared to standard convolution. 

Loading Data Set Pre-processing Pre-processing 

 

Deep Lab V3 

ASPP 
U-Net 

Hybrid DLV3-Unet model 

Test Data 

Augmentation through 

invention of features Fine Tunned Hybrid DLV3-Unet model 

Predicting Enhanced Brain tumor Segmentation 
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Fig. 2 Proposed Hybrid DLV3-Unet model architecture for Brain Tumor segmentation 

 
Fig. 3 Outcome of the mask brain tumor image using data augmentation 

4. Results and Discussion 
The quality of the segmented results is always determined 

by the quality of the input data. Pre-processing is the first step 

to improving the quality of unprocessed MRI brain tumor 

images. Data augmentation is a method that uses previously 

collected information to create modified copies of a dataset, 

thereby artificially expanding the training set. Data 

augmentation during ML model training helps avoid 

overfitting.  

In order to increase the applicability and robustness of the 

model, artificial data variations are created using data 

augmentation for feature invention. It can manage data 

variability, build the mask data by learning new features, and 

avoid overfitting. Nonetheless, augmentation must be 

balanced to preserve segmented data quality and prevent 

excessive computational expenses.  

In this stage, raw images are available in xx. nii file 

format with a total of 155 slices, which are converted into a 

grayscale image and resized to 240 x 240. The data 

augmentation is used to fit raw data to the learning model 

during the pre-processing stage. This strategy is useful for 

improving model performance, particularly when working 

with varied data. Figure 3 describes the outcomes of data pre-

processing and generating mask data for the raw data using 

data augmentation. The experimental results show enhanced 

contrast with the raw data. The pre-processed images are 

driven by a hybrid deep learning-based fine-tuned hybrid 

DLV3-Unet model approach, which is an integrated model of 

U-Net with deep lab version 3 for brain tumor segmentation.  

The proposed model is built with a learning rate of 0.0010 

and a total of 8,855,293 (33.78 MB) parameters, which 

contain 8,821,181 (33.65 MB) trainable parameters and 

34,112 (133.25 KB) non-trainable parameters to achieve 

better segmentation accuracy. Table 1 below refers to the total 

summary of the hybrid DLV3-Unet model. 

       A maximum of 352 runs, each run having 5 epochs, are 

performed to fit the fine-tuned hybrid DLV3-Unet model until 

it reaches the convergence state. At the 5th epoch of the 249th 

run, the model achieved a better training and validation 

accuracy of 98.74 and 98.26. It is clearly noticed that the 

proposed model takes 384 ms for each epoch and 96 sec for 

each run.  

 

Compared with traditional models, the proposed 

experimental results show better results regarding Dice 

coefficients, precision, sensitivity, and specificity for training 

and validation data. Table 2 refers to model performance in 

terms of training and validation data. 
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Table 1. Summary of the proposed hybrid DLV3-Unet model 

Layer (type) Output Shape Param # Connected to 

input_layer_2 (InputLayer) (None, 128, 128, 2) 0 - 

conv2d_14 (Conv2D) (None, 128, 128, 3) 57 input_layer_2[0]… 

mobilenetv2_1.00_1… (Functional) (None, 4, 4, 1280) 2,257,984 conv2d_14[0][0] 

up_sampling2d_2 (UpSampling2D) (None, 16, 16, 1280) 0 mobilenetv2_1.00… 

conv2d_15 (Conv2D) (None, 16, 16, 32) 368,672 up_sampling2d_2[… 

max_pooling2d_4 (MaxPooling2D) (None, 8, 8, 32) 0 conv2d_15[0][0] 

conv2d_16 (Conv2D) (None, 8, 8, 64) 18,496 max_pooling2d_4[… 

max_pooling2d_5 (MaxPooling2D) (None, 4, 4, 64) 0 conv2d_16[0][0] 

conv2d_17 (Conv2D) (None, 4, 4, 128) 73,856 max_pooling2d_5[… 

max_pooling2d_6 (MaxPooling2D) (None, 2, 2, 128) 0 conv2d_17[0][0] 

conv2d_18 (Conv2D) (None, 2, 2, 256) 295,168 max_pooling2d_6[… 

max_pooling2d_7 (MaxPooling2D) (None, 1, 1, 256) 0 conv2d_18[0][0] 

conv2d_19 (Conv2D) (None, 1, 1, 512) 1,180,160 max_pooling2d_7[… 

conv2d_20 (Conv2D) (None, 1, 1, 512) 2,359,808 conv2d_19[0][0] 

conv2d_transpose_4 (Conv2DTranspose) (None, 2, 2, 256) 524,544 conv2d_20[0][0] 

concatenate_4 (Concatenate) (None, 2, 2, 512) 0 
conv2d_transpose… 

conv2d_18[0][0] 

conv2d_21 (Conv2D) (None, 2, 2, 256) 1,179,904 concatenate_4[0]… 

conv2d_transpose_5 (Conv2DTranspose) (None, 2, 2, 128) 131,200 conv2d_21[0][0] 

concatenate_5 (Concatenate) (None, 4, 4, 256) 0 
conv2d_transpose… 

conv2d_17[0][0] 

conv2d_22 (Conv2D) (None, 4, 4, 128) 295,040 concatenate_5[0]… 

conv2d_transpose_6 (Conv2DTranspose) (None, 8, 8, 64) 32,832 conv2d_22[0][0] 

concatenate_6(Concatenate) (None, 8, 8, 128) 0 
conv2d_transpose… 

conv2d_16[0][0] 

conv2d_23 (Conv2D) (None, 8, 8, 64) 73,792 concatenate_6[0]… 

conv2d_transpose_7 (Conv2DTranspose) 
(None, 16, 16, 32) 

 
8,224 conv2d_23[0][0] 

concatenate_7 (Concatenate) (None, 16,16, 64) 0 
conv2d_transpose… 

conv2d_15[0][0] 

conv2d_24 (Conv2D) (None, 16, 16, 32) 18,464 concatenate_7[0]… 

up_sampling2d_3 (UpSampling2D) (None, 128, 128, 32) 0 conv2d_24[0][0] 

conv2d_25 (Conv2D) (None, 128, 128, 64) 18,496 up_sampling2d_3[… 

conv2d_26 (Conv2D) (None, 128, 128, 32) 18,464 conv2d_25[0][0] 

conv2d_27 (Conv2D) (None, 128, 128, 4) 132 conv2d_26[0][0] 

Table 2.  Performance of the hybrid DLV3-Unet model on training and validation data 

Training performance Validation performances 

accuracy: 0.9874 

dice_coef: 0.3859 

dice_coef_edema: 0.4061 

dice_coef_enhancing: 0.2640 

dice_coef_necrotic: 0.3231 

loss: 0.0330 

mean_io_u: 0.5102 

precision: 0.9942 

sensitivity: 0.9827 

specificity: 0.9979 

val_accuracy: 0.9826 

val_dice_coef: 0.2618 

val_dice_coef_edema: 0.0486 

val_dice_coef_enhancing: 0.0100 

val_dice_coef_necrotic: 0.0122 

val_loss: 0.2179 

val_mean_io_u: 0.4969 

val_precision: 0.9828 

val_sensitivity: 0.9823 

val_specificity: 0.9943 
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Fig. 4 Evaluation report of the proposed model  

Figure 4 refers to the performance of the test data in terms 

of accuracy, precision, and loss.  

The loss and precision prove accurate segmentation of the 

brain tumor images using the proposed model. 

 
Fig. 5 Histogram-based visualization of the proposed model in terms of sensitivity and precision 

Plot the training precision and validation precision across 

each epoch value to know how well the model is learning. The 

y-axis represents the accuracy, and the x-axis represents the 

epoch values, as shown in Figure 5. The precision of the 

training data gradually increases with each epoch, and the 

validation precision decreases after 3 epochs. Figure 5 

visualizes the performance of precision and sensitivity on each 

epoch using a plot and histogram. 

The training loss rapidly decreases initially, and then both 

training and validation losses gradually decrease, indicating 

that the model is improving at making predictions without 

overfitting, which leads to strong performance on the training 

and validation sets. Figure 6(a) refers to a plot visualization of 

the loss and accuracy for both training and validation precision 

across each epoch value to know how well the model is 

learning. The y-axis represents the loss, and the x-axis 

represents the epoch values, as shown in Figure 5. The results 

plot visualization refers to the growth rate of the validation 

loss from 0.24891 to 0.21790. The Dice coefficient of the 

proposed model gradually increases with each epoch, and the 

plotted results prove the similarity between the predicted 

segmented image and ground truth values of the brain tumor 

images using pixel-wise comparison. Fig. 6(b) refers to a plot 

visualization of the mean IOU and dice coefficient for both 

training and validation precision across each epoch value to 

know how well the model is learning.  

 
Fig. 6 (a) Plot visualization of the proposed model in terms of loss and 

accuracy 
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Fig. 6(b) plot visualization of the proposed model in terms of mean IOU 

and dice similarity coefficient 

 
Fig. 7(a) prediction of segmented brain tumor regions on the test image  

 
Fig. 7(b) Prediction of segmented brain tumor regions on the dynamic 

samples  

After evaluating the performance of the trained model, 

assess the test accuracy using test data and prediction 

segments of brain tumors. The proposed hybrid DLV3-Unet 

model obtains a test accuracy of 98.6. Figures 7(a) and 7(b) 

refer to the model prediction of segmented regions of brain 

tumor images. 

The current approaches use a variety of strategies. 

Nevertheless, the proposed model shows enhanced accuracy 

over existing approaches and can be utilized to overcome 

some of the shortcomings of traditional methodologies. Table 

3 compares the accuracy values of the proposed and current 

models. The bar chart for the existing model accuracy values 

in relation to the suggested model accuracy is displayed in 

Figure 8. It demonstrates greater accuracy than the methods 

currently in use. The methods employed are represented by the 

x-axis, and their accuracy is indicated by the y-axis. Compared 

to the existing methods, which yield 98.64% accuracy, the 

suggested model's accuracy is higher than that of the existing 

techniques. 

 
Table 3. Comparison of the proposed model with the conventional 

model 

SNo Author Techniques Used Accuracy 

1 
Dinthisrang  

daimary [1] 

SegNet, ResNet and  

U-Net 
93.3% 

2 T.Balamurugan [2] 
Hybrid Deep CNN,  

LuNet classifier 
98.60% 

3 Ayesha Jabbar [3] Caps-VGG Net model 98% 

4 
Parasa Rishi  

Kumar [4] 

Mask RCNN,  

Hybrid Deep CNN 
98.53% 

5 
Annapareddy  

V.N. Reddy [6] 

Deep Belief Network and 

bidirectional long  

short-term memory 

96.16% 

6 

Ebrahim 

Mohammad 

 Senan [7] 

AlexNet, 

 SVM 
95.10% 

7 Proposed Model 
Proposed Fine-tuned  

hybrid DLV3-Unet Model 
98.64% 

 

 
Fig. 8 Comparison graph 

90 95 100

Dinthisrang…

T.Balamurugan [2]

Ayesha Jabbar [3]

Parasa Rishi…

Annapareddy…

Ebrahim…

 Proposed Model

Accuracy Accuracy
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5. Conclusion 
The proposed hybrid DLV3-Unet model is capable of 

handling large and sensitive tumor regions in high 

dimensional MRI images. The integrated architecture 

interprets the results well and greatly segments the brain tumor 

regions accurately. It is well-known for its resilience in 

semantic segmentation tasks. The proposed model produced 

remarkable results, with an accuracy of 98.6%. The reason for 

its excellent performance could have been its capacity to 

record fine-grained features while maintaining spatial 

information. The proposed deep learning-based hybrid 

architecture proved to be effective in segmentation and 

improved the detection rate of both the spalling class and the 

crack class. However, the DLV3-Unet model, tuned for image 

segmentation, showed its versatility and effectiveness in 

accurately segmenting sensitive brain tumour regions. The 

exceptional precision achieved by the model highlights their 

potential in medical imaging applications, providing 

physicians with useful instruments for accurate treatment and 

diagnostic planning. Furthermore, to improve the model's 

efficiency, modified kernels with multiple optimizers for 

detecting multiple sensitive brain tumor regions are used. 
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