
SSRG International Journal of Computer Science and Engineering Volume 11 Issue 2, 1-14, February 2024

ISSN: 2348–8387 / https://doi.org/10.14445/23488387/IJCSE-V11I2P101 © 2024 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Flexible Software Architecture for Validation of

Change Requirements

Abhijeet R. Thakare1, Atul O. Thakare2, Omprakash W. Tembhurne3, Soora Narasimha Reddy4, Parag S.

Deshpande5

1MCA Department, Ramdeobaba College of Engineering and Management, Nagpur, Maharashtra, India.

2STME, SVKM’s NMIMS University, Navi Mumbai, Maharashtra, India.
3CSE Department, MIT-ADT University, Pune, Maharashtra, India.

4CSE(Networks) department, Kakatiya Institute of Technology and Science, Warangal, Telangana, India.
5Visvesvaraya National Institute of Technology, South Ambazari Road, Nagpur, Maharashtra, India.

2Corresponding Author : aothakare@gmail.com

Received: 01 January 2024 Revised: 03 February 2024 Accepted: 15 February 2024 Published: 28 February 2024

Abstract - In a dynamic environment such as government organizations validation logic is changing because of the

introduction of new laws or new procedures. Since government or public organizations may be legally scrutinized, such

validations are important and have to be strictly enforced. In most organizations, this change is incorporated by changing

software code or by changing the underlying structure of the database. Many times, this adds a lot of cost to the software,

and sometimes, it may not be possible to modify the underlying structure due to the unavailability of domain experts and

technical experts. The motivation behind the work is to be able to specify the domain requirements in the form of Entity

and Attributes so that any user can specify the change in validation logic in a simple way. Suppose the validation logic is

expressed in some programming language that operates on relational tables. In that case, the complexity of validation

logic is quite large. Also, if validation logic changes, the developer must implement that logic by writing more lines of

code in the corresponding programming language, which is very cumbersome and results in a waste of man-hours. A

highly skilled developer will write 100 lines of code per day (Approximately 9 Hours). To avoid this, we have proposed

expressing validation logic using high-level entity attributes, a natural data representation. We provided different

operators in the language that are sufficient to express validation logic. The experimentation results prove that the

proposed software system facilitates expressing the validation logic using high-level entity attributes and reduces the

complexity and cost of the process of updating the validation logic.

Keywords - Entity and attributes, Validation logic, Domain requirements, Dynamic software design, Change request.

1. Introduction
In today’s highly dynamic environment, the only

permanent thing is “change”. Generally, complex

enterprise systems meet with continuous evolutions. This

change impact is adverse and cumulative. To get an idea of

what “change” means in this context, consider an example

of a government organization. Assume that a software

system is designed using a traditional approach to maintain

the details of the employees in the organization. This

software system is designed keeping in perspective all the

rules, regulations, and constraints specified concerning the

employees in that organization. Government organizations

are highly sensitive to new laws or new procedures. These

new laws or new procedures are strictly enforced by

government organizations in their software, occasionally

for legal scrutinization purposes. New validation rules

must be inserted to incorporate these new laws and

procedures into the existing system. This leads to increased

complexity and an increasingly dynamic nature of the

software [1].

To implement these validations in the existing system,

one has to update the underlying database structure, and

the system's interface must be altered to be coherent with

the underlying structure. This is sometimes much more

burdensome than updating the database structure with the

new validations. This means writing long and cumbersome

database function code or queries. Just adding the database

code does not satisfy the need, the database code needs to

be tested to ensure that the code is correct because that

database code should be tested and debugged properly. For

performing this task, long man-hours are wasted

unnecessarily. Another issue while enforcing new rules

and regulations in the traditional system is that the

http://www.internationaljournalssrg.org/

Atul O. Thakare et al. / IJCSE, 11(2), 1-13, 2024

2

database is designed by some person (or group of people).

These people may not always be present; a new person

may not understand the database design, which was

designed formerly by those people. The new person would

find enforcing these new rules and regulations extremely

difficult or impossible. Another problem associated with

the traditional approach is that every time the interface

changes, the staff must be trained again and/or instructed

to familiarize themselves with the updated interface.

Hence, there is a need for a generalized model (interface)

that will handle effectively the above-discussed scenarios.

In the proposed research, we have focused on designing a

novel high-level model based on entity and attributes. This

interface will be able to accommodate dynamically

changing validation logic.

1.1. Motivation

Various approaches have been proposed in the

domain. These approaches bypass the models, which

incorporate a high-level description in common vocabulary

that only human experts can understand and are essentially

consistent. These approaches are based on the underlying

assumption that enforcing rules and regulations are known

beforehand and are unlikely to change drastically in the

foreseeable future. Under this assumption, it was possible

to encode knowledge and implementation of the system

with models as high-level specifications and generate

platform-specific implementations. However, considering

the current scenario, we observe that the rules and

regulations are continually changing, and a need arises to

update the system with the new rules and regulations.

Thus, we needed to develop to accommodate the

dynamically changing validation logic dynamically. In

legacy approaches, the validation logic is expressed with

respect to the relational tables, which have a high

complexity of validation logic as it involves writing

complex database language code. Hence, the need

suggested that if we could specify the validation logic in

the form of Entity and Attributes, then anybody would be

able to manipulate the validation logic and would simplify

the procedure of updating new rules and regulations in an

existing system. Another concern behind the motivation of

this topic was cost-effectiveness. The rules and regulations

keep changing regularly; consequently, the validation logic

must undergo radical changes. Many times, this adds a lot

of cost to the software. Also, many times, it becomes

impossible to implement the validation logic due to the

lack of domain experts. This need triggered the motivation

for the design of a system. Our system provides an

interface to specify and implement the validation logic and

can dynamically accommodate these changes. Writing long

and cumbersome database code involves investing

precious man-hours. An average programmer can code

1000 lines of code in 10 days on average. If we can save

these precious man-hours, then those can be invested in

something fruitful. Thus, simplifying the validation logic

specification will save many man-hours invested in coding

the long and cumbersome database code.

1.2. Contributions

• A novel design of an intermediate high-level interface

that transforms high-level rules and regulations into a

low-level database representation.

• A novel procedure to facilitate the specification and

implementation of validation logic in the form of

Entity and Attributes.

• Designing high-level functions and operators that

assist in the specification of validation logic.

• Storing of validation logic for future demand by the

system.

2. Related Work
To adapt to the drastically changing requirements, the

software must be updated often with significant

improvements made in a short amount of time. Demands

severely test the software system's ability to change and

improve quickly for new features and continuous

enhancements. Software maintenance and software

evolution are two different things. Bug fixes, small

additions, and migration are generally referred to as

software maintenance. Conversely, significant functional

improvements and modifications are the main focus of

software evolution. The research described in [2]

distinguishes between two unique scenarios: evolution and

maintenance. The term software maintenance has the

objective of keeping the software error-free and up-to-date

as per technological advancements. Software evolution has

the objective of updating the software product as per the

changing functional and non-functional requirements.

Software evolution includes the perspectives of perfective

and adaptive maintenance [3]. Therefore, the efforts

required in software evolution amount to more than three-

quarters of the maintenance activities. In most situations,

evolution results from concurrent changes in several of the

properties of one or more activities of an application [3].

Keeping software evolving while preserving the system's

general stability and coherence is a difficult task for

developers and maintainers. Work depicted in [4] defines

software evolution as a feedback system with complex

interaction and feedback control among software systems,

development processes, and application environments. A

system's environment (domain), requirements (experience),

and implementation technologies (process) can all change

over time, according to [5], which defines software

evolution. Another definition of evolvability given by them

is the capacity of a system to withstand modifications to its

surroundings, specifications, and execution technologies.

A framework, Tropos4AS, mainly targeted for adaptive

software systems, has been addressed in [6]. This

framework is utilized successfully for requirement

validation. In this framework, various approaches like

Agent-oriented software engineering, goal-oriented

Atul O. Thakare et al. / IJCSE, 11(2), 1-13, 2024

3

requirements engineering, and BDI agent software

platforms are integrated. The technique of validating big

data streaming in an IoT environment has been addressed in

[7]. Various formal techniques of performing requirement

change management in software systems have been

addressed in [8].

A requirement validation framework has been depicted

in [9]. This framework, named Virtual Requirement

Prototype (VRP), will decrease the cost and feedback

duration of stakeholders. This activity is achieved by

allowing Stakeholders to collaborate with a virtual

prototype for certifying embedded software requirements.

In the work done in [10], a method named CuRV is

proposed. This method utilizes a mental framework. The

mental framework technique is beneficial for examining

customer's activity and mental condition. With the help of

CuRV, a benchmark is established for validation. It is also

useful to rank and ratify elicited requirements. CuRV is

mainly useful for validating customer requirements. Work

presented in [11] depicts a framework named AGG. With

the help of AGG, Graph transformation is achieved.

Validation of the software model is achieved with the help

of the AGG framework. In the AGG framework, validation

techniques evolved are based on a formal approach.

These techniques include phases such as Graph

parsing, critical pain analysis, and consistency checking.

The work addressed in [12] addresses a concurrency-

centered framework. In the context of JPL's MDS

Framework, this framework is helpful for real-time C++

semantic parallelization and validation. The temporal

constraint network is a crucial component of executing

mission planning and control architectures of the mission

Data System Framework. For validation of semantic

variants of the Temporal Constraint Network, a

concurrency centered framework is beneficial. Various

approaches are useful to validate software requirements.

The work depicted in [13] proposes a technique for

generating Natural Language text from process models.

This technique is beneficial for validating user

requirements effectively. In this complete process,

requirements are initially transformed into a process model.

In the work carried out in [14], a Web Usability Evaluation

Process (WUEP) is proposed. This method in collaboration

with Model-Driven Development, is utilized to perform

usability evaluations in the early development stages of

web development. WUEP has proven to be effective for

performing empirical validation of requirements. A method

developed in [15] explains a model-driven approach for

validating spreadsheets. The task of co-evolution is also

executed in this system. In the work [16], a prototype for

validating typical features of critical software for nuclear

power plants. This nuclear power plant is used for safety

protection. Formal specification of language is useful for

performing validation tasks. Work performed in [17], a

system is proposed that automatically detects changes in

Software Architecture. Various Graph Analysis Algorithms

are applied to detect patterns in Software Architecture. The

work proposed in [18] depicts the techniques of validating

quality requirements for the software so that the cost of

software validation is reduced. Work depicted in [19]

proposes a toolkit that is utilized for keeping the Software

Architecture up to the mark during software development.

This toolkit (model) is based on language-independent

meta-data. In the work [20], a malleable Software

Architecture is proposed. Languages’ syntax and semantics

are represented in this Software Architecture. This syntax

and semantics are meant for mobile agents. A-Line
Information System Architecture (LISA) has been proposed

in [21]. It offers a high level of scalability and flexibility for

monitoring low-level operations and a high level of data.

Work Presented in [22] depicts a Service Oriented

Architecture based on an event. Aspects produced from

SOA and EDA Architectures are dubbed, which results in

extensive formalization of evaluation of Software

Architecture Proposed.

3. Problem Definition
In the traditional approach for enterprise systems, a

three-tier architecture is used, which compromises three

layers: User Interface Layer, Business Logic Layer, and

Database Layer, as described in Figure 1.

The problem with the above approach is that if the

validation logic changes due to the introduction of new

laws and procedures, the legacy software architecture

seems incapable of coping with the need to specify and

implement the validation logic dynamically. This is mostly

because it involves modifying software code or updating

the underlying structure. This is often a costly operation,

and sometimes, it may be impossible to perform the

modifications due to the lack of or unavailability of

domain experts. To overcome this problem, we propose a

high-level architectural design that will be flexible enough

to deal with the manipulation of validating conditions in

Entity and Attribute form.

Fig. 1 Traditional Three-Tier enterprise system

Atul O. Thakare et al. / IJCSE, 11(2), 1-13, 2024

4

3.1. Background of Validation Logic

Considering the overall system, it is a pretty obvious

question: what is validation logic? The answer is simple.

Whenever new rules and regulations are enforced in an

organization, these rules need to be incorporated into the

user database maintenance system. The validation logic

can be simply perceived as translating these rules and

regulations into the machine language (Figure 2).

Validation provides confidence that the right product is

being created. It further guarantees that the software being

created (or modified) meets the needs of its stakeholders

and that the laws are correctly and effectively

implemented. It is a very important aspect in implementing

the given set of rules and regulations. The rules and

regulations are provided as company policies, which are

supposed to be mapped onto the database in the form of

validation logic so that whenever any act against the

policies is performed, the validation logic would raise an

exception, indicating that the corresponding rule(s) is

violated. These validation logics are strictly scrutinized

and hence require correctness and precision. Thus, if the

database code is written in terms of relational tables

directly, then it involves a lot more complexity in the

validation logic because the rules specified are mostly

pretty complex and descriptive in nature, thus resulting in

hundreds of lines of code. But if this validation logic is

specified in terms of some high-level operators and

functions, then it will save a lot of time invested in writing

those hundreds of lines of code, resulting in saving man-

hours.

Fig. 2 Validation logic

3.2. Design Paradigm

The central theme of the architecture proposed in

Figure 3 is to have a set of layers wherein adjoining layers

will have a predefined and complete set of relationships.

We have defined a layered architecture consisting of an

intermediate layer and a high-level Entity-Attribute layer

between the User Interface Layer and the Business Logic

Layer. This intermediate high-level interface layer consists

of a set of predefined operators sufficient to express the

validation logic. By utilizing these operators, a naive, non-

database user can specify and implement the validation

logic.

This adds more flexibility to the software as the

validation logic can be easily defined and manipulated. If

the validation logic changes, the developer’s effort is saved

in changing the code compared to the traditional approach.

Fig. 3 Proposed model

As the business logic changes due to changes in client

requirements, a developer doesn’t require changing the

entire code or changing the structure of the database. As

Validation logic is part of a business logic layer, a

developer will easily formulate the new validation logic

using entity attributes, and his/her man efforts for changing

the entire code or changing the structure of the database are

drastically saved. The upcoming sections give a detailed

description of the functionality of each layer.

3.2.1. User Interface (UI)

This layer is particularly associated with the validation

logic capturing process. The user enters the validation logic

through this interface. This interface design complies with

dynamically realigning itself with the structure of the

lower-level entity attribute framework. This means that any

change taking place at the entity level is dynamically

accommodated whenever the underlying entity level

structure changes. We achieve this customization by

capturing the entity details using the Meta-data stored in the

database tables. The interface has a facility to enter user-

defined validation logic names to identify the logic.

Further, we can go ahead and select the desired entity

name from a drop-down list, which will eventually result in

populating a drop-down list consisting of the attributes

related to the selected entity. This list is dynamically

populated with the relevant attributes of corresponding

entities as and when the user makes a selection for an

entity. Then, the user interface pops up the required number

of input media to input the parameters for the

corresponding entity-attribute pair. Again, this activity is

event-driven and is dynamically manipulated as and when

different selections are made. There is a custom provision

Atul O. Thakare et al. / IJCSE, 11(2), 1-13, 2024

5

made to input a numerical compare value instead of set
operators in case relational operators are selected;

otherwise, this input media can be left blank. The most

important thing to highlight is that there are virtually no

bounds or restrictions on how many conditions to insert in a

validation logic. The user can input as many conditions as

he wishes to add. This gives the user all the freedom to

customize the validation logic according to the given

scenario. This feature also helps achieve flexibility and

preciseness regarding validation logic.

Another important point to be highlighted is that we

can add multiple validation conditions under a single logic

name. The Entity Attribute framework is designed to take

care of this scenario, where the validation logic is

independently evaluated, and each condition in that

validation logic is evaluated separately. This feature gives a

higher degree of preciseness and flexibility to specify the

validation logic. The validation logic is associated with a

truth value (i.e. true or false), and the evaluation is

compared against the user-specified truth value. For

simplicity, the implemented model considers only truth

values for evaluation; however, in the future, numerical

values can be considered for evaluation purposes.

In further sections, a detailed elaboration of specifying

validation logic is provided. It describes how the design

accomplishes the main goals of adaptability, ease of use,

accuracy, etc.

3.2.2. Entity Attribute Framework

After the user enters the validation logic, it is passed on

to this layer, which has several functionalities to perform.

This layer primarily deals with the process of tokenization

and parsing of the given validation logic. The validation

logic is in a sequence of Entity Attributes pair form, which

is raw data that must be processed. On the reception of

validation logic, first of all, the logic is tokenized. The

tokens are separated using ‘#’ as a delimiter. The obtained

tokenized string is then parsed, and the appropriate

meaning of each token is interpreted using a set of rules

predefined in the grammar.

The grammar and the whole tokenization and parsing

process are elaborated in detail in the upcoming sections.

Briefly describing, the framework can be described as a

language for processing the validation logic regarding

Entity and Attributes. After parsing, validation logic

proceeds for evaluation. For evaluation, we simply refer to

the unique reference ID allotted to the validation logic and

the parameter list essential for processing the validation

logic. This whole functionality is performed by a special

function that requires input from the logic reference ID and

the parameter list. The user is also notified about the

parameter list required for the evaluation. Analyzing the

scenario from the user’s perspective, the user simply

perceives that he defined the validation logic and provided

the parameter list; the rest of the process is completely

abstract to the user. What the user receives, in the end, is

just the outcome of whether the validation logic is

evaluated as true or false. This also tends to save a lot of

man-hours that might have been invested without our

system. This seems to be a big achievement in increasing

the system's efficiency, as human error is much less

because the programmer does not need to waste time

coding and testing long and cumbersome database code.

The primary contribution of this layer is incorporating

simplicity, clarity, and abstraction in the language. This

makes it easier for a naïve user to perceive the whole

system as compared to the traditional systems, which tend

to define all the functionalities at the table level.

3.2.3. Business Logic

This layer primarily interacts with the low-level

database representation. In the Entity Attribute framework,

a predefined set of operators operates on the parameters to

generate either a set or a truth value as output. Each of the

operators, defined in the business layer, is associated with a

procedure. There is a one-to-one mapping between the

operators and the database procedures. During the parsing

phase, the database language code associated with the

operator is fetched, and the procedure is called. Based on its

functionality, the procedure generates either a truth value or

a set as output. The output is given back to the Entity

framework layer, which in turn gives it back to the user.

The operators defined in the Entity-Attribute framework are

sufficient to define any condition in the validation logic.

The operators are designed to be as generic as possible. The

operators are primarily of two types:1) Set 2) Relational.

The union and intersection operators have the set return

type. However, the rest of the operators have a Boolean

return type.

3.2.4. Database Layer

For the overall system to be efficient, the database

design has to be efficient. This layer depicts the relational

database in the architecture. This layer has the lower-level

database representation of the Entity-Attribute structure.

The operators mentioned in the business logic layer are

mapped to procedures in the database. Whenever a high-

level operator is referred to in the validation logic context,

the procedure from the database is invoked. When referring

to the operator, the procedure code is fetched corresponding

to that operator. For generalization, the attribute markers

are used instead of actual parameters while storing them in

the database. Also, an actual mapping from database

language code to markers is stored in a separate set. This

set is referred to whenever the procedure is called. So, the

code with attribute markers is first fetched when the actual

procedure needs to be called. Then, the corresponding

markers for that particular code are replaced by the actual

parameters. This phenomenon is analogous to the “pass by

Atul O. Thakare et al. / IJCSE, 11(2), 1-13, 2024

6

value” concept in an object-oriented language. This feature

assists in the implementation of flexibility and generality in

the system. As mentioned earlier, the database design has to

be efficient for the system to be efficient. To achieve these,

dozens of models were tried, tested, and failed until finally,

we came up with this architecture model, providing us with

features like flexibility, generality, simplicity, abstraction,

etc. However, this arena has far more boundaries to be

explored and captured. The upcoming sections now give a

detailed description of every process.

4. Proposed Approach
4.1. Specifying a Validation Logic in UI

Specifying the validation logic is a much simpler task

and easily perceivable by a naïve database user. The

specification of the validation logic involves just making

selections from a bunch of drop-down lists. To simplify

this process, we realized that if the human involvement

factor in decision-making is reduced, then we can achieve

a higher degree of correctness in the system as the human

involvement factor can’t be eliminated at this stage, so as a

step towards achieving this goal, as many drop-down lists

possible are provided. This ensures that human errors in

this context are minimized. In some areas, manual input is

required; however, we are working on that part to reduce

the human involvement factor further. Thus, all it takes to

specify validation logic is making a selection using some

drop-down lists. To specify validation logic, a user has to

follow certain steps. As the validation specification relies

primarily on the Entity-Attribute framework, a user needs

to select an entity from the drop-down list. When selecting

an entity, the relevant attributes associated with that entity

are populated in the next drop-down list. The attributes and

operators are populated dynamically. Then, the input fields

are generated equal to the number of parameters required

by that attribute for its evaluation.

Further, the parameters essential for processing the

attribute must be entered. If required, the numerical

compare value can also be specified depending on whether

the attribute evaluates to a numeric value or set. This

constitutes a single condition in the validation logic. As

mentioned earlier, we can specify as many conditions as

we wish. This flexibility is incorporated by adopting a

unique naming scheme for all the HTML components that

are present or dynamically generated. Also, the validation

logic is associated with a truth value, which the user will

specify. It is verified when the logic is evaluated, and the

user is notified about the evaluation status.

All the operators and the functions are specified in

simple representation so that any user can understand and

specify the validation logic. Once the validation logic is

specified, it is framed and stored in a special format using

‘#’ as a delimiter. This step is mandatory for imparting

ease in further processing of the validation condition. The

primary advantage of implementing this flexibility is that

the process of specifying validation logic is highly

simplified.

We will elaborate on this scenario with the help of an

example. Consider the validation logic condition specified

as follows:

If (STUDENT.TOTAL_CREDITS < 50 AND

STUDENT.DEPARTMENT=’CSE’ AND

 STUDENT_COURSE.COURSE_NAME

 SUBSET COURSE.COURSE_NAME)

 RETURN TRUE;

ELSE

RETURN FALSE;

The condition in if-clause (highlighted) is what the

user will be specified, and the overall structure is how the

user will perceive the condition formulated. Here,

“STUDENT” “STUDENT_COURSE” are Entities, and

“TOTAL_CREDITS”, “DEPARTMENT” and

“COURSE_NAME” attributes. The validation logic is

stored in the database as follows:

#STUDENT.TOTAL_CREDITS#<50#AND#STUD-

ENT.DEPARTMENT#=’CSE’#AND

#STUDENT_COURSE.COURSE_NAME#SUBSET#COURSE.

COURSE_NAME#

Here, # is used as a separator for distinguishing

between entity attributes, operators, connectors, and

numeric values.

4.2. Processing of Validation Logic

The processing of validation logic is carried out in

three particular phases. First of all, the validation logic

string is tokenized. The tokenized string is parsed,

referring to the language's grammar rules. Later, depending

upon the return type of the operator, the result is returned

and verified with the truth value provided by the user. The

organization of the database also plays an important role in

increasing the system's overall efficiency. The following

sections provide a deep insight into how the validation

logic is processed.

4.2.1. Database Organization

An entity may be defined as a thing that is recognized

as being capable of independent existence and which can be

uniquely identified. An attribute is a specification that

defines a property of an object, element, or file. The

database table schemas are a part of the Entity-Attribute

Atul O. Thakare et al. / IJCSE, 11(2), 1-13, 2024

7

framework and are referred to as an entity. The entities are

represented in the form of sets for simplicity. All the

attributes are associated with at least one parameter

essential for the purpose of evaluation. A generic form of

representation of an entity along with its associated

attributes will correspond to something as depicted as

follows:

 S.T1 (p1), S.T2 (p2), S.T3 (p1, p2), S.T4 (p1, p2, p3, p4)

Where,

‘S’ → Entity

T1, T2, T3 and T4 →Attributes associated with the entity

S.

 p1, p2, p3, p4 → parameters associated with the

corresponding attributes.

The entity-attribute representation suggests that parameter

p1 is associated with attribute T1, p2 is associated with

T2, p1, and p2 both are required for evaluation of T3,

parameters p1, p2, p3, p4 all are mandatory to be specified

for the evaluation of attribute T4.

Example - Consider an Entity Student with attributes as

Roll_Number, Name, Gender, DOB, Age, total_credits,

and subjects_count. The Entity student can be represented

as:

Student. Roll_Number (roll_no),

Student. Name (roll_no), Student. Gender (roll_no),

Student.DOB (roll_no), Student. Age (roll_no), Student.

Total_credits (roll_no), Student. Subjects_count (level_no,

roll_no)

Thus, it is evident that Name will require roll_no as a

parameter to obtain its value compared against the user-

specified value. Similarly, roll_no is a sufficient parameter

to evaluate Roll_Number, Gender, DOB, Age, and

total_credits. But, on the other hand, subjects_count

require level_no and roll_no both of them for its

evaluation.

4.2.2. Tokenization

A token is a set of one or more letters that have

meaning together. Tokenization is the process of creating

tokens from an input stream of text. The validation logic,

after special amendments, is ready for the process of

tokenization. Regardless of the quantity of words or

inflectional ends, a word may have, a lexeme is a unit of

lexical meaning. The defined token formats are sufficient

for tokenizing all the lexemes specified in the validation

logic. The Lexemes from the validation logic are identified

based on the rules of the lexical analyzer. The lexemes in

the validation logic are delimited with a special character

(#) to facilitate the tokenisation process. Using ‘#’ as a

delimiter, we can easily distinguish between different types

of lexemes. This approach of using a special character has

a limitation; the special character used for delimitation

cannot be used in the validation logic other than for

delimitation purposes. A possible solution is using such a

special character, which is highly unlikely to be used in

daily life for that domain expertise. Since we considered

the implementation for the college database system, and it

seems ‘#’ is unlikely to be used in this domain, ‘#’ was a

choice preferred for the delimiter.

There are four valid categories of tokens defined in

our system:

Entity. Attribute

The first category of tokens identifies the entity and

attribute in the lexeme. E.g.

STUDENT.TOTAL_CREDITS. The attributes mentioned

are of two types: i) Compound function with a return value

(TOTAL_CREDITS), or ii) attribute type with no return

value (e.g. ROLL_NUMBER). All the attributes require a

particular number (at least one) of input parameters, and it

returns either a Boolean value, Numerical value, or a Set.

E.g. TOTAL_CREDITS takes roll_number as input

parameter and returns the completed credits by the student

whereas ROLL_NUMBER requires roll_no as input

parameter and returns a boolean value. The set operators

require input parameters and a return set of values to be

fetched and processed if required.

Operator

This second category of tokens identifies the operator.

The relational operators are generally associated with a

value to be compared with. The operators are of two types:

1) Relational and 2) Set.

The Set operators are UNION, INTERSECTION, and

SUBSET. The first two types return a set, whereas the

former ones have a Boolean type. The Relational operators

are <, >, <=, >=, ==. These operators require a compare

value to be provided by the user to compare with the

evaluated value of the corresponding attribute.

AND | OR

These tokens are meant to identify the fusing

condition type, i.e. to identify whether the conditions in the

if-clause are logically ANDed or logically ORed.

Operand

This token is used along with the relational operators,

i.e. when relational operators are specified, the operand has

to be specified. This type of token has literal values, which

Atul O. Thakare et al. / IJCSE, 11(2), 1-13, 2024

8

are alphanumeric in nature. This token represents the

values that are specified in accordance to be compared

with the return values of the attributes after evaluation.

For example, the values ‘50’ and ‘CSE’ are

categorized as the operand type of tokens.

E.g. consider the previously considered condition.

#STUDENT.TOTAL_CREDITS#<50#AND#ST-

UDENT.DEPARTMENT#=’CSE’#AND#

STUDENT_COURSE.COURSE_NAME#SUBSET#COU

RSE.COURSE_NAME#

Now, the lexemes are classified based on their type of

token, as shown in Table 1.

4.2.3. Parsing

Parsing is the act of examining a sequence of symbols,

either in computer languages or natural languages, in

accordance with the guidelines of a formal grammar. This

phase constitutes one of the most important phases in the

processing of the validation logic. After the validation

logic is tokenized, the parsing phase comes into the

picture. For interpreting each and every token, there is a set

of production rules defined in the grammar.

Based on those rules, the evaluation of the validation

logic takes place, and the result is returned to the user. The

process of parsing is explained in detail below.

Table 1. Lexemes represented as tokens

Lexeme Token Type

STUDENT.TOTAL_CREDITS
Entity.Attribute

<
Operator

50
Operand

AND
AND | OR

STUDENT.DEPARTMENT
Entity.Attribute

=
Operator

’CSE’
Operand

AND
AND | OR

STUDENT_COURSE.COURSE_

NAME

Entity.Attribute

SUBSET
Operator

COURSE.COURSE_NAME
Entity.Attribute

4.2.4. Grammar

To understand the language framework, we need to

understand grammar and its associated rules. The Context-

Free Language is defined as a 5-tuple L= (V, ∑, P, N, S).

The formal definition of the Context Free language is

given below. The grammar and the production rules follow

the language definition. An example of derivation of the

validation logic accompanying grammar supports the

grammar definition and verifies the production rules.

L= (V, ∑, P, N, S)

Where,

V = (∑ U N) is a finite set of symbols called the

vocabulary (or set of grammar symbols); ∑ ⊆ V is the set

of terminal symbols (for short, terminals);

S ∈ (V − Σ) is a designated symbol called the start symbol;

N = V − Σ is called the set of non-terminal symbols (for

short, non-terminals); P ⊆ (V − Σ) × V* is a finite set of

productions (or rewrite rules, or rules).

The set of terminals and non-terminals is as follows:

Terminals (∑) →{< if >, < then >, < else >, < end >, <

return >, < true >, < false >, <, >, <=, >=, ==, union,

intersection, subset, <entity>, <attribute>}

Non-Terminals (N)→ {S, C, X, O1, O2, E, A, D, K}

The formal set of production rules, P, is as given below:

S→<if>C<then>S<else>S<end>|<if>C<then>S

 <end>|<return><true>|<return><false>

C →C (X O1 X) C | C (X O2 K) C | and | or | €

X →E D A

K →[0-9] + | ‘[a-z A-Z]+’

O1 →union | intersection | subset

O2 →< | <= | > | >= | == | <>

E →<entity>

A →<attribute>

D → .

Note: Here,

< entity > corresponds to the Entity Name from Entity

Attribute Framework.

 e.g. STUDENT

< attribute > corresponds to the attribute names associated

with the entity.

 e.g. TOTAL_CREDITS

Since the list of Entities and attributes can be too long,

we have abbreviated the description in this context.

E.g. consider the above-specified logic. First, we will

verify whether the grammar actually derives the validation

logic. The if-then-else grammar is adopted from

Atul O. Thakare et al. / IJCSE, 11(2), 1-13, 2024

9

Compilers: principles, techniques, and tools, which ensure

that the if-then-else grammar is free from hanging else.

Hence, we will just focus on the grammar specified for the

condition.

C → C (X O2 K) C

C → € (X O2 K) C

C → (EDA O2 K) C

C → (studentDA O2 K) C

C→ (student.A O2 K) C

C → (student.total_credits O2 K) C

C → (student.total_credits < K) C

C→ (student.total_credits < 50) C

C→ (student.total_credits < 50) C (X O2 K) C

C → (student.total_credits < 50) and (X O2 K) C

C → (student.total_credits < 50) and (EDA O2 K) C

C→ (student.total_credits < 50) and (studentDA O2

 K) C

C→ (student.total_credits < 50) and (student.A O2

 K) C

C→ (student.total_credits < 50) and (student.dept

 O2 K) C

C → (student.total_credits < 50) and (student.dept =

 K) C

C→ (student.total_credits < 50) and (student.dept =

 ‘CSE’) C

C→ (student.total_credits < 50) and (student.dept =

 ‘CSE’) C

C→ (student.total_credits < 50) and (student.dept =

 ‘CSE’) C (X O1 X) C

C→ (student.total_credits < 50) and (student.dept =

 ‘CSE’) and (X O1 X) C

C → (student.total_credits < 50) and (student.dept =

 ‘CSE’) and (EDA O1 X) C

C → (student.total_credits < 50) and (student.dept =

 ‘CSE’) and (student_courseDA O1 X) C

C → (student.total_credits < 50) and (student.dept =

 ‘CSE’) and (student_course.A O1 X) C

C→ (student.total_credits < 50) and (student.dept =

 ‘CSE’) and (student_course.course_name O1

 X) C

C → (student.total_credits < 50) and (student.dept =

 ‘CSE’) and (student_course.course_name

 subset X) C

C → (student.total_credits < 50) and (student.dept =

 ‘CSE’) and (student_course.course_name

 subset EDA) C

C → (student.total_credits < 50) and (student.dept =

 ‘CSE’) and (student_course.course_name

 subset courseDA) C

C → (student.total_credits < 50) and (student.dept =

 ‘CSE’) and (student_course.course_name

 subset course.A) C

C → (student.total_credits < 50) and (student.dept =‘CSE’)

and (student_course.course_name subset

course.course_name) C

C → (student.total_credits < 50) and (student.dept =

 ‘CSE’) and (student_course.course_name

 subset course. course_name) €

The validation logic is derived using leftmost

derivation, as shown in Figure 4. As evident from the

derivation, the grammar is capable of parsing all types of

validation logic identical to the type of logic in the

example. Also, there is no restriction on the number of

conditions inserted in the validation logic. Here, for

simplicity, we considered three types of conditions to

demonstrate the parsing of validation logic without any

loss of generality. The validation logic would consist of

conditions of a similar type. The only change will occur in

the number of conditions and the type of operators and

operands. We have considered just the parse tree for

conditions since condition parsing is the only part

considered during the storage and evaluation of the

validation logic. Hence, the demonstration of parsing for

specified conditions serves the purpose. That is the very

reason we are considering ‘C’ as the start symbol and not

‘S’. Using the grammar production rules, the parse tree s

generated is shown in Figure 4.

Fig. 4 Parse tree for the validation logic

Atul O. Thakare et al. / IJCSE, 11(2), 1-13, 2024

10

5. Results and Result Analysis
5.1. Semantic Analysis or Evaluation

After the parsing of the validation logic is done, each

condition in the validation logic is evaluated individually.

For evaluation, the expression generated by the parse tree

is considered. The expressions can be of the four types of

tokens. Each token type is processed differently. This

means the tokens of category I are processed to evaluate
the database language code, if present, or simply the

attribute value is compared to the value specified by the

user in the category IV type of token, i.e. operand. We will

provide a relational table representation of each entity

required for processing and evaluating the specified

validation logic. Depending on other pairs, some entity and

attribute pairs are not mapped because those simply

represent the columns in that particular relational table.

This mapping is stored in a separate entity,

‘parameter_attribute’. This entity can be described in Table

2. Here, each entity is individually mapped to a

‘DBMS_LANGUAGE_CODE’ whose functionality is

predefined in the database.

It is the stored procedure that carries out the actual

functionality of the attribute. For example, consider the

entity-attribute pair “student.total_credits”. For this

particular pair, the database language code associated with

it is eval_credits(#RN#, marks), which is a PL/SQL code

predefined. So “eval_credits(#RN#, marks)” is the function

prototype. This procedure takes the student's roll number

as an input parameter and produces marks as the output of

the type integer. Here, we observe that the student's roll

number will be available only at the run time and not

beforehand. So, for the process to be generalized, we make

use of markers. A marker is a temporary replacement for

the parameter and will be substituted by the actual

parameter value during the time of evaluation. The markers

are stored in a special format to facilitate the distinguishing

markers from actual validation logic lexemes.

The markers have a generalized type as

#marker_name#. Thus, “#RN#” is a marker associated

with the entity total_credits. So, when the user specifies the

roll number, the marker is replaced with the roll number,

and then the call for the procedure is made. The mapping

between the entity and its associated markers is stored in

another entity, “ATTRIBUTE_MARKERS”, which is

described in Table 3. Every attribute has at least one

parameter associated with it. That parameter is essential to

fetch the values of the evaluation of entity attributes, which

are then compared with user-specified values to return a

Boolean result. So, “#RN#” is the marker associated with

the attribute “total_credits”. To get a deeper insight into

the evaluation procedure, we will also consider the code

for the stored procedure eval_credits(). We have tried and

tested the code for MySQL and ORACLE SQL. Hence, we

will consider MySQL code for demonstration purposes for

the procedure, as shown in Figure 5.

As evident from the code, the attribute total_credits

returns the total credits scored by the roll number. Thus,

this function simplifies the task of obtaining total_credits

for a particular student. Had it been the case that this

function would be absent, then one would have to write the

whole query each time there would been a need to fetch the

total credits scored by a student. This function simplifies

the task of getting the total credits of the student and saves

a lot of time required to be invested in writing the code.

Thus, all we have to do is provide a particular roll number

to the attribute and get the result immediately. These

provide an easy and hassle-free way to perform the

required functionality. This is a much simpler query than

writing hundreds of lines of code.

Table 2. Representation of parameter_attribute entity in relational table format

Attribute_

id
entity_name

attribute

_ name

Dbms

language code

attribute

_ return

_type

in_

param

eters

out_

param

eters

in_

out_

parame

ters

1 student
total_

credits

eval_credits

(#RN#,marks)
int 1 1 0

2 student
count_

subjects

count_subjects

(#RN#,

#LEVEL_REG_NO#, marks)

int 1 1 0

Table 3. Representation of Attribute_Markers entity in relational table format

marker_ id attribute_ name marker
marker_

data_type
marker_name

1 total_ credits #RN# int roll_no

2 count_ subjects #RN# int roll_no

3 count_ subjects #LEVEL_REG_NO# int

Level_

Registration_

Number

Atul O. Thakare et al. / IJCSE, 11(2), 1-13, 2024

11

Fig. 5 Code for eval_credits () procedure

Considering a functionality consisting of hundreds and

thousands of lines of code, if we can provide such

functionality to ease off the coding process, we can save a

lot of man-hours of programming invested in this coding.

Procedures make use of dynamic SQL to dynamically

construct queries at run time. After the procedure finishes

its execution, the returned result is fetched and compared.

A user-defined Java function, eval (), is employed to

perform all these tasks. This function accepts the unique

reference ID used to refer to stored validation logic, called

logic_id, and the parameter list generated parallel during

lexical analysis. Using the logic_id, the validation logic is

extracted, and the above-described procedure is followed

for each of the individual conditions from the validation

logic. The validation logic is stored in the form of a string

of characters in the database; hence, extracting all the

entity-attribute pairs from the logic and individually

processing them is a complicated task. The processing

proceeds as follows. Firstly, the individual lexemes from

the validation logic are delimited using ‘#’ as a delimiter.

By doing this, we obtain separate lexemes or tokens, to be

precise. Secondly, as stated earlier, the tokens of four types

are to be processed. To process the first category of tokens,

we use ‘.’(dot) as a delimiter and separate the entity and

the attribute from the category token. Then, we fetch the

dbms_language_code from the parameter_attribute entity.

Later, the markers from the attribute_markers entity for the

corresponding attribute are fetched and substituted with the

parameters from the parameter list. Then, the call to the

stored procedure, if present, is made. The result is fetched

and stored in a string variable, result, for evaluation. When

tokens from other categories are encountered, different

generalized methods are adopted to process them. The

resultant string variable result is then fed to the javaScript

Engine to evaluate the result. Here, we have another

important case of first-category tokens where there is no

stored procedure associated with the attribute, e.g.

“student. dept == ‘CSE’”. The ‘department’ attribute

associated with the ‘student’ entity does not need to be

associated with any stored procedures. It can be processed

independently. Another classification in the first category

of tokens is the attributes with a SET return type. These

types are identical to the previously mentioned type, but

this token type needs to be processed individually and

dependently due to the return type. Now, the parameter list

is passed on to the specified validation logic. Assume we

are evaluating the validation logic for roll number 2. So,

the parameter list will contain roll number 2. Also, assume

that the total_credits for roll number 2 is 46, but roll

number 2 belongs to the ‘EEE’ department, and the

courses that roll number 2 has enrolled for belong to the

course names in the course entity. The resultant value of

the returned result is the logical ANDing of the obtained

truth values of the evaluated conditions. So (true && false

&&true) evaluates to false, and hence true is returned to

the user.

If similar validation conditions arise in the future, we

simply need to fetch the validation logic from the database

and provide the required parameter list for evaluation.

Thus, in this case, to notify the user about the necessary

and required parameters for evaluation, there is a custom

provision to generate the parameter list. The user can then

be prompted to input the desired parameters in the list and

the validation logic can be evaluated.

5.2. Adding more Functionality to the Existing System

From earlier sections, we can say that even a naïve

database user can easily specify the validation logic and

enforce the rules and regulations using the proposed

system. Also, the operators and attributes designed in the

system are correct and sufficient to specify any validation

logic. However, the need may arise in the future to add

more functionality to the system.

As far as the introduction of new rules and regulations

is concerned, we can add validation logic to the existing

system. However, such a need to add more attributes

corresponding to a particular entity may arise. So,

associating new attributes is not difficult in this new

system. As we know, the entity-attribute pair is mapped to

the database language code in the parameter_attribute

entity, and the corresponding markers, if any, are stored in

the attribute_markers entity. So, to add a new attribute, we

Atul O. Thakare et al. / IJCSE, 11(2), 1-13, 2024

12

first need to write a pl/SQL code for the required

functionality. Then, we need to store the exact prototype of

the pl/SQL code under the dbms_language_code attribute

in the parameter_attribute entity, associating the desired

entity attribute pair with the required return type and

parameters. Also, we need to store the markers necessary

for the corresponding attribute in the attribute_markers

entity. This is the case with entity attributes having

database language codes associated with them. Even if we

add new columns in an existing table, those attributes will

be dynamically populated in the interface. In addition to

this type of attribute, we do not need to perform any

special activities. While populating the new attributes from

the database, corresponding entities will be referred to, and

appropriate attributes will be populated.

5.3. Integration and Testing

The system is developed using Java Server Pages

(JSP) and Servlets as frontend and MySQL as backend.

Due to the wide functionality and ease of access provided,

JSP was adopted for designing and implementing the

frontend. For testing purposes, MySQL is used. However,

the system has also been tested for the Oracle SQL server.

We tried and tested this model on two different databases

viz., MySQL and ORACLE SQL. The results on both

databases have been quite satisfactory.

In the previous chapter, we did mention both

databases; however, for elaboration purposes, we chose

MySQL. In MySQL testing, the overall dimensions of the

database were small and limited. So, to make sure there are

no performance issues, we also tested the system on our

college’s database, and the results have been quite good.

The college’s database is bigger in both dimensions and

size. The system works fine on both databases and seems

to have no performance issues.

6. Conclusion
Capturing the current need of the hour, we designed a

flexible, dynamic, and simple system for capturing and

implementing validation logic. Currently, in many

government organizations, many new laws and procedures

are added from time to time. These laws or procedures

must be strictly enforced since the organizations are legally

scrutinized. To accommodate these changes, the

underlying structure often needs to be changed. This

results in the addition of cost in the software or sometimes

makes it impossible to incorporate these changes because

of either poor database design or the unavailability of the

domain expert. In the proposed system, we tried to reduce

the human dependency factor in the process of

specification and implementation of validation logic by

providing an intermediate high-level entity attribute

framework that translates the validation logic in terms of

Entity Attributes to low-level database representation. The

features and functionalities provided in the system seem to

be sufficient and complete for specifying and

implementing validation logic to the given date. By

facilitating the specification of validation logic in the

Entity Attribute form, we can save a lot of time invested in

coding database code. Representation of validation logic in

terms of Entity and Attributes also assists in imparting

simplicity in the system as the user can now easily

communicate with the system. The proposed system is

flexible enough to accommodate any additions for

functionality in the system without any serious

modification in the underlying structure and interface.

Acknowledgments

All the authors are grateful to Dr. Parag. S.

Deshpande, Professor & Head of Computer Science and

Engineering Department, VNIT, Nagpur, for his valuable

guidance and support for this work.

References
[1] Donald Firesmith, “Common Requirements Problems, Their Negative Consequences and the Industry Best Practices to Help Solve

Them,” Journal of Object Technology, vol. 6, no. 1, pp. 17-33, 2007. [Google Scholar] [Publisher Link]

[2] B.P. Lientz, E.B. Swanson, and G.E. Tompkins, “Characteristics of Application Software Maintenance,” Communications of the

ACM, vol. 21, no. 6, pp. 466-471, 1978. [CrossRef] [Google Scholar] [Publisher Link]

[3] Nazim H. Madhavji, Juan Fernandez-Ramil, and Dewayne Perry, Software Evolution and Feedback: Theory and Practice, John

Wiley & Sons, 2006. [Google Scholar] [Publisher Link]

[4] M.M. Lehman et al., “Metrics and Laws of Software Evolution- The Nineties View,” Proceedings Fourth International Software

Metrics Symposium, Albuquerque, NM, USA, pp. 20-32, 1997. [CrossRef] [Google Scholar] [Publisher Link]

[5] Selim Ciraci, and Pim van den Broek, “Evolvability as a Quality Attribute of Software Architectures,” EVOL, pp. 29-31, 2006.

[Google Scholar] [Publisher Link]

[6] Mirko Morandini et al., “Engineering Requirements for Adaptive Systems,” Requirements Engineering, vol. 22, no. 1, pp. 77-103,

2017. [CrossRef] [Google Scholar] [Publisher Link]

[7] Aparna Kumari et al., “Verification and Validation Techniques for Streaming Big Data Analytics in Internet of Things

Environment,” IET Networks, vol. 8, no. 3, pp. 155-163, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[8] Shalinka Jayatilleke, and Richard Lai, “A Systematic Review of Requirements Change Management,” Information and Software

Technology, vol. 93, pp. 163-185, 2018. [CrossRef] [Google Scholar] [Publisher Link]

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Common+Requirements+Problems%2C+Their+Negative+Consequences+and+the+Industry+Best+Practices+to+Help+Solve+Them&btnG=
https://www.jot.fm/issues/issue_2007_01/column2.pdf
https://doi.org/10.1145/359511.359522
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Characteristics+of+application+software+maintenance&btnG=
https://dl.acm.org/doi/10.1145/359511.359522
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+evolution+and+feedback%3A+Theory+and+practice&btnG=
https://dl.acm.org/doi/10.5555/1146327
https://doi.org/10.1109/METRIC.1997.637156
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Metrics+and+laws+of+software+evolution-+the+nineties+view%2C&btnG=
https://ieeexplore.ieee.org/abstract/document/637156
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Evolvability+as+a+Quality+Attribute+of+Software+Architectures&btnG=
https://ris.utwente.nl/ws/portalfiles/portal/5397018/Ciraci06evolvability.pdf
https://doi.org/10.1007/s00766-015-0236-0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Engineering+requirements+for+adaptive+systems&btnG=
https://link.springer.com/article/10.1007/s00766-015-0236-0
https://doi.org/10.1049/iet-net.2018.5187
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Verification+and+validation+techniques+for+streaming+big+data+analytics+in+internet+of+things+environment&btnG=
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-net.2018.5187
https://doi.org/10.1016/j.infsof.2017.09.004
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+systematic+review+of+requirements+change+management&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0950584917304664

Atul O. Thakare et al. / IJCSE, 11(2), 1-13, 2024

13

[9] Daniel Aceituna, Hyunsook Do, and Seok-Won Lee, “Interactive Requirements Validation for Reactive Systems Through Virtual

Requirements Prototype,” 2011 Model-Driven Requirements Engineering Workshop, Trento, Italy, pp. 1-10, 2011. [CrossRef]

[Google Scholar] [Publisher Link]

[10] Youn Kyu Lee, Hoh Peter In, and Rick Kazman, “Customer Requirements Validation Method Based on Mental Models,” 2014 21st

Asia-Pacific Software Engineering Conference, pp. 199-206, 2014, [CrossRef] [Google Scholar] [Publisher Link]

[11] Gabriele Taentzer, “AGG: A Graph Transformation Environment for Modeling and Validation of Software,” International

Workshop on Applications of Graph Transformations with Industrial Relevance, pp. 446-453, 2003. [CrossRef] [Google Scholar]

[Publisher Link]

[12] Damian Dechev et al., “Programming and Validation Techniques for Reliable Goal-driven Autonomic Software,” Autonomic

Communication, pp. 231-247, 2009. [Google Scholar] [Publisher Link]

[13] Henrik Leopold, Jan Mendling, and Artem Polyvyanyy, “Supporting Process Model Validation Through Natural Language

Generation,” IEEE Transactions on Software Engineering, vol. 40, no. 8, pp. 818-840, 2014. [CrossRef] [Google Scholar]

[Publisher Link]

[14] Adrian Fernandez, Silvia Abrahão, and Emilio Insfran, “Empirical Validation of a Usability Inspection Method for Model-Driven

Web Development,” Journal of Systems and Software, vol. 86, no. 1, pp. 161-186, 2013. [CrossRef] [Google Scholar] [Publisher

Link]

[15] Jácome Cunha et al., “Embedding, Evolution, and Validation of Model-Driven Spreadsheets,” IEEE Transactions on Software

Engineering, vol. 41, no. 3, pp. 241-263, 2014. [CrossRef] [Google Scholar] [Publisher Link]

[16] C.V. Ramamoorthy et al., “Application of a Methodology for the Development and Validation of Reliable Process Control

Software,” IEEE Transactions on Software Engineering, vol. SE-7, no. 6, pp. 537-555, 1981. [CrossRef] [Google Scholar]

[Publisher Link]

[17] Maayan Goldstein, and Itai Segall, “Automatic and Continuous Software Architecture Validation,” 2015 IEEE/ACM 37th IEEE

International Conference on Software Engineering, vol. 2, pp. 59-68, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[18] Andrea Caracciolo, Mircea Filip Lungu, and Oscar Nierstrasz, “How Do Software Architects Specify and Validate Quality

Requirements?,” European Conference on Software Architecture, vol. 8627, pp. 374-389, 2014. [CrossRef] [Google Scholar]

[Publisher Link]

[19] Georg Buchgeher, and Rainer Weinreich, “Integrated Software Architecture Management and Validation,” 2008 The Third

International Conference on Software Engineering Advances, Sliema, Malta, pp. 427-436, 2008. [CrossRef] [Google Scholar]

[Publisher Link]

[20] Gabriel Ciobanu, and Călin Juravle, “Flexible Software Architecture and Language for Mobile Agents,” Concurrency and

Computation: Practice and Experience, vol. 24, no. 6, pp. 559- 571, 2012. [CrossRef] [Google Scholar] [Publisher Link]

[21] Alfeed Theorin et al., “An Event-Driven Manufacturing Information System Architecture for Industry 4.0,” International Journal

of Production Research, vol. 55, no. 5, pp. 1297-1311, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[22] Sietse Overbeek, Marijn Janssen, and Patrick van Bommel, “Designing, Formalizing, and Evaluating a Flexible Architecture for

Integrated Service Delivery: Combining Event-Driven and Service-Oriented Architectures,” Service Oriented Computing and

Applications, vol. 6, no. 3, pp. 167-188, 2012. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1109/MoDRE.2011.6045361
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Interactive+requirements+validation+for+reactive+systems+through+virtual+requirements+prototype&btnG=
https://ieeexplore.ieee.org/abstract/document/6045361
https://doi.org/10.1109/APSEC.2014.39
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Customer+Requirements+Validation+Method+Based+on+Mental+Models&btnG=
https://ieeexplore.ieee.org/abstract/document/7091311
https://doi.org/10.1007/978-3-540-25959-6_35
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+graph+transformation+environment+for+modeling+and+validation+of+software&btnG=
https://link.springer.com/chapter/10.1007/978-3-540-25959-6_35
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Programming+and+Validation+Techniques+for+Reliable+Goal-driven+Autonomic+Software&btnG=
https://link.springer.com/chapter/10.1007/978-0-387-09753-4_9
https://doi.org/10.1109/TSE.2014.2327044
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Supporting+process+model+validation+through+natural+language+generation&btnG=
https://ieeexplore.ieee.org/abstract/document/6823180
https://doi.org/10.1016/j.jss.2012.07.043
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Empirical+validation+of+a+usability+inspection+method+for+model-driven+Web+development&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S016412121200218X
https://www.sciencedirect.com/science/article/abs/pii/S016412121200218X
https://doi.org/10.1109/TSE.2014.2361141
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Embedding%2C+evolution%2C+and+validation+of+model-driven+spreadsheets&btnG=
https://ieeexplore.ieee.org/abstract/document/6915751
https://doi.org/10.1109/TSE.1981.226474
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Application+Of+A+Methodology+For+The+Development+And+Validation+Of+Reliable+Process+Control+Software&btnG=
https://ieeexplore.ieee.org/abstract/document/1702887
https://doi.org/10.1109/ICSE.2015.135
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Automatic+and+continuous+software+architecture+validation&btnG=
https://ieeexplore.ieee.org/abstract/document/7202950
https://doi.org/10.1007/978-3-319-09970-5_32
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=How+do+software+architects+specify+and+validate+quality+requirements&btnG=
https://link.springer.com/chapter/10.1007/978-3-319-09970-5_32
https://doi.org/10.1109/ICSEA.2008.21
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Integrated+software+architecture+management+and+validation&btnG=
https://ieeexplore.ieee.org/abstract/document/4668142
https://doi.org/10.1002/cpe.1854
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Flexible+software+architecture+and+language+for+mobile+agents%2C&btnG=
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.1854
https://doi.org/10.1080/00207543.2016.1201604
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+event-driven+manufacturing+information+system+architecture+for+Industry+4.0&btnG=
https://www.tandfonline.com/doi/abs/10.1080/00207543.2016.1201604
https://doi.org/10.1007/s11761-011-0100-0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=formalizing%2C+and+evaluating+a+flexible+architecture+for+integrated+service+delivery%3A+combining+event-driven+and+service-oriented+architectures&btnG=
https://link.springer.com/article/10.1007/s11761-011-0100-0

