
 SSRG International Journal of Computer Science and Engineering Volume 11 Issue 6, 53-60, June 2024

ISSN: 2348–8387 / https://doi.org/10.14445/23488387/IJCSE-V11I6P108 © 2024 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

A Model for Data Confidentiality and Integrity during

Replication in Fog & Edge Computing Environment

Alalibo, H.1, Bennett, E.O2

Department of Computer Science, Rivers State University, Port Harcourt, Nigeria.

2Corresponding Author : bennett.okoni@ust.edu.ng

Received: 24 April 2024 Revised: 29 May 2024 Accepted: 12 June 2024 Published: 30 June 2024

Abstract - In the study of confidentiality and integrity during replication in fog and edge computing environments, the SHA-

256 hashing algorithm and the PyCryptodome library played crucial roles. The SHA-256 algorithm, a member of the SHA-

2 family, was employed for its robust cryptographic hash function, ensuring data integrity by generating a unique, fixed-size

256-bit hash value for every input. This characteristic was pivotal in detecting any alterations to the data, thereby preserving

its integrity during transmission and storage. The PyCryptodome library, an extensive suite of cryptographic functions, was

utilized to implement the SHA-256 algorithm effectively. This library provided the necessary tools to integrate advanced

cryptographic techniques into the system, enhancing the security of data replication processes. By leveraging these

technologies, the study aimed to establish a secure framework that safeguarded data confidentiality and integrity across

distributed fog and edge computing environments. The results demonstrated the feasibility and efficacy of using SHA-256

and PyCryptodome in mitigating potential security threats, thereby contributing to the development of more resilient and

trustworthy computing infrastructures. Object-Oriented Development (OOD) is employed to decrease development

schedules, reduce resource demands, and improve code reusability. Python serves as the programming language, while

MySQL functions as the database.

Keywords - Ensuring data confidentiality, Integrity assurance, Secure data replication, Encryption techniques, Access

control mechanisms, Data integrity verification, Privacy-preserving strategies.

1. Introduction
In the dynamic fog and edge computing landscape,

protecting data privacy and authenticity while replicating it

has become increasingly important. A growing number of

Internet of Things (IoT) devices and edge computing nodes

are driving up the amount of data created and processed at

the network's perimeter. Data intrusions are a major

concern in today's data-driven digital economy.

Unfortunately, data breaches of various severity have

affected many firms. As a result of the intrusions, third

parties have gained malicious access to critical customer

information, putting those people in danger. Data security

vulnerabilities pose a significant threat to Nigeria due to the

country's large population of over 200 million people. The

country has seen a proliferation of cyber events, which have

affected both public and private sector organizations. Data

invasions in Nigeria saw a significant uptick in the first

quarter of 2023, according to cybersecurity firm Surfshark.

An astounding 82,000 have occurred, a 64% increase over

the previous total. While traditional cloud computing stores

and processes data in a central location, fog and edge

computing move these tasks closer to the data's original

point of origin. This dispersed nature offers benefits such as

lower latency and bandwidth utilization. However, this

dispersed nature also presents significant challenges in

terms of data security. The suggested method employs an

edge-and-fog computing environment to preserve data

integrity and secrecy throughout replication. Information

confidentiality hinges on granting access to only authorized

workers.

2. Related Works
[1] An all-encompassing plan to address edge

computing data integrity issues was put up by Li et al.

(2021). Aside from a thorough experimental assessment,

they also performed a systematic literature analysis and

suggested a new integrity auditing procedure that uses

cryptographic methods like Merkle hash trees. To highlight

improvements in efficiency and security, the essay

compared the suggested alternative to current techniques.

However, issues with scalability, dynamic data updates,

real-world implementations, user privacy, and interaction

with modern technology have rendered the inquiry

unfinished. The solutions that were suggested were tested in

some situations, but how well they could handle larger,

more complicated systems with different kinds of data and

devices was not addressed. Furthermore, the study might

benefit from more thorough real-world case studies to

validate the solutions' viability and effectiveness in different

deployment settings. Future studies should explore the

integration of suggested auditing systems with emerging

technologies such as blockchain and artificial intelligence to

enhance security and efficiency further. In order to improve

data integrity verification using aggregate signatures, Li et

al. (2021) applied an approach. In order to ensure security

http://www.internationaljournalssrg.org/

Alalibo, H. & Bennett, E.O / IJCSE, 11(6), 53-60, 2024

54

qualities, we first performed a literature analysis to identify

the gaps and limitations in existing approaches. Then, we

used aggregate signatures to build a unique integrity

auditing protocol, which we mathematically formulated.

Thorough simulations were carried out to evaluate the

performance of the proposed strategy, with a major focus on

its computational and communication efficacy. However,

the inquiry revealed numerous gaps in existing knowledge.

These include things like handling dynamic data,

considering user privacy, being able to scale to large-scale

systems, and being practical for implementation in the real

world. Additional study is needed to identify effective

mechanisms for managing dynamic data changes since the

technique mainly focuses on static data integrity. To fully

understand the practical difficulties and effectiveness in

different operating settings, the study is missing real-world

deployment and validation. To further enhance operational

efficiency and security, future research might explore the

possibility of integrating the proposed aggregate signature

system with emerging technologies like AI and blockchain.

[2] Data security and privacy in cloud storage settings

may be enhanced with the help of the systematic

methodology suggested by Ming et al. (2019). A certificate-

less Policy Decision Point (PDP) protocol, zero-knowledge

protocols, randomization methods, and certificate-less

encryption are all part of the methodology. The approach

sought to fix major escrow problems with legacy systems

and do away with the requirement for certificates. To further

ensure that no data is leaked during verification, it uses zero-

knowledge proofs. A comprehensive security analysis and

performance review were conducted on the suggested

approach to confirm its claims and measure its

effectiveness. Nevertheless, there are still supplementary

domains that necessitate investigation, such as the ability to

manage massive environments efficiently, deal with

dynamic data operations, put the technology to use in

practical situations, and guarantee user privacy beyond

integrity checks. We need more study to understand the

practical issues and performance in real-world operational

settings and to create and appraise strategies for managing

dynamic data operations. Future studies should look at ways

to combine the certificate-less PDP system with new

technology, including blockchain and artificial intelligence,

to make it more secure and efficient.

[3] Data replication and consistency in fog computing

settings can be enhanced by the methods presented by Naas

et al. (2021). The methodology includes data insertion

strategies, measures for performance, methods for

managing consistency, and assessment based on

simulations. Using the iFogSim simulator, the authors put

their plans into action and evaluated them. They focused on

integrating ways to reduce service latency and assure data

integrity across geo-distributed fog nodes. However, there

are certain gaps in our understanding of the approach that

affect its applicability and use. These include issues with

energy consumption, scalability for different Internet of

Things (IoT) scenarios, dynamic data management, and the

incorporation of security measures. Additional research is

needed to confirm these tactics in varied and large-scale IoT

installations; however, the study did show gains in latency

reduction. Without thoroughly covering security elements

like data encryption and access control during replication

procedures, the technique mainly focuses on consistency

and replication. Furthermore, dynamic data operations are

not well investigated.

[4] Dastjerdi et al. (2016) explore fog computing in

depth. The authors highlight its concepts, architectures, and

many applications. The authors reviewed the literature to

lay the groundwork for fog computing and its guiding

principles, with an emphasis on how it emerged as a

response to cloud computing's shortcomings in latency-

sensitive applications like the Internet of Things. They

presented a comprehensive reference architecture for fog

computing, detailing all its components and their

interrelationships. In order to demonstrate how fog

computing might alleviate network congestion and latency,

the article looked at several use cases, such as health

monitoring, emergency response, and smart city

applications. The article compared fog computing with

regular cloud computing based on performance parameters.

The focus was on improving the quality of service for real-

time applications, optimizing bandwidth, and reducing

latency. However, the study acknowledged certain gaps in

our understanding, including issues with scale and practical

application, standards and interoperability, privacy and

security, energy efficiency, and dynamic resource

management. By filling these gaps, fog computing can

become a more feasible and effective alternative for

applications that are sensitive to latency and resource

consumption.

[5] In their 2023 publication, Daoud et al. laid forth a

thorough approach to protecting fog computing systems

through efficient use of resources. The processes of

monitoring, risk assessment, resource management, and

access control are essential. The technique used a risk model

to determine users' reliability, keep track of their actions,

distribute resources effectively, and implement eXtensible

Access Control Markup Language access controls.

However, the inquiry revealed several knowledge gaps.

These included issues with scalability, energy efficiency,

interoperability, and dynamic adaptability, as well as the

need for practical application. Only testing and

implementation in the real world can determine the

effectiveness and difficulties in various situations. Energy

consumption optimization, cloud and fog system

integration, and adaptive methods for real-time resource

allocation and danger mitigation should be the focus of

future studies. By addressing these shortcomings, we can

enhance the robustness and applicability of security

frameworks in fog computing environments, thereby

protecting more applications and managing resources more

efficiently.

[6] Ometov et al. (2022) compared and analyzed

security concerns in the context of cloud, edge, and fog

computing paradigms using a comprehensive literature

Alalibo, H. & Bennett, E.O / IJCSE, 11(6), 53-60, 2024

55

review. The process involved curating relevant literature

from many sources. The writers subsequently classified it

based on the computer paradigm and certain security

factors, including privacy, availability, confidentiality, and

integrity. The writers compared the security procedures,

risks, and mitigation strategies of cloud, edge, and fog

computing. They highlighted the main threats and

weaknesses specific to each paradigm, as well as the ways

in which existing solutions address these issues. The study

identified emerging dangers and sectors with inadequate

current solutions as research gaps that required filling while

also uncovering current trends in security research. The

survey also revealed numerous unresolved issues, such as

managing heterogeneity, ensuring the effectiveness of

security solutions in real-world scenarios, enhancing the

interoperability of security protocols, adapting dynamically

to threats, and safeguarding user privacy. Future studies

should fill these gaps. By filling these gaps, future studies

can safeguard cloud, edge, and fog computing systems

against emerging threats and boost their security and

dependability, making them more capable of handling the

growing needs of various applications.

[7] Fatimeh et al. (2024) examined data replication

strategies in cloud, fog, and edge computing through a

thorough literature review. This research compiles relevant

studies from scholarly publications, sorts them according to

computing paradigm and data replication technique, and

then compares them according to consistency, availability,

and latency. By employing this method, we can discern

patterns in data replication studies and pinpoint areas that

require attention. The presentation of significant insights

revealed knowledge gaps in several areas, including real-

world application, energy efficiency, interoperability,

security and privacy, scalability and performance, and

dynamic adaptation. More study of real-world applications,

especially diverse ones, is needed to explain performance

and practical issues. Research on scalability in big fog and

edge networks is still in its infancy, and energy efficiency is

a must for sustainable edge computing. Further study is

necessary to address the challenging issue of

interoperability and standardize data synchronization and

replication processes. Privacy, security, and the capacity to

adjust to changing network circumstances and user needs

must be given top priority. Future studies may address these

shortcomings to make data replication in cloud, fog, and

edge computing more secure, sustainable, and effective.

[8] Torabi et al. (2020) use a systematic review

methodology to examine and classify data replication

strategies in fog computing scenarios. There is a lack of

information on several fronts, including interoperability,

privacy and security, scalability, energy efficiency, and

practical application data. The study highlights research on

safe and privacy-preserving replication algorithms, scalable

solutions for large-scale deployments, and thorough studies

of the trade-offs between data replication and energy use. It

further highlights the significance of flexible algorithms that

can swiftly react to changes in user behavior and network

circumstances. The research concludes that closing the gaps

in fog computing can lead to more secure results and more

dependable and effective data replication procedures,

thereby improving the overall functionality and reliability

of fog-based systems.

[9] Kaliyaperumal et al. (2023) came up with a new

way to make sure data stays intact in fog computing settings.

The approach included breaking down large amounts of IoT

data into smaller, more manageable chunks and then using

fuzzy clustering to find elements of the data that were

comparable. Data integrity verification is the backbone of

the technique; it improves efficiency and reduces costs by

removing the need for extra client-side information storage.

However, the study may benefit from more thorough

performance measurements and consideration of scalability

under different scenarios. The technique does not address

additional security considerations like user authentication

and data confidentiality. Furthermore, there are limited

studies that compare this technique to other data integrity

verification methods. Only real-world implementation and

testing can confirm the study's applicability and usefulness

in live fog computing systems, as it primarily relied on

theory and simulations. The study did not address potential

consequences or trade-offs related to user-side computing

resources and network bandwidth. Dynamic data

management requires more research.

[10] Research by Tian et al. (2019) examined a public

auditing approach that uses privacy-preserving tactics and

efficient verification processes. They assessed the protocol

using security analysis and performance measurements. In

addition to improving data storage security, the protocol

fills a need for resolving latency difficulties. Future research

should prioritize optimizing auditing protocols for fog

computing settings with low latency. To allow peripheral

computing systems and fog to change dynamically, adaptive

security frameworks are required. The smooth functioning

of cloud, fog, and edge paradigms depends on unified

security standards. Scalability optimization of models is

essential, as are real-time methods for ensuring data

integrity. Future research should primarily focus on finding

ways to speed up audits without increasing delays.

3. Methodology
Object-Oriented Analysis and Design Methodology

(OOADM) was used to undertake the implementation of the

suggested system design. The Object-Oriented Systems

Analysis and Design Methodology was a system approach

to information system analysis and design that focused on

software objects and how they interacted with the system

and its surrounding environment. The study's goals were to

abstract components, give them names, and then organize

their activities into class abstractions. The next step in

developing these class abstractions was to determine their

function within the system and the individuals responsible

for carrying them out.

3.1. Analysis of the System

Once a user has created an account, the system will

immediately produce a private key and store it in the Edge

Alalibo, H. & Bennett, E.O / IJCSE, 11(6), 53-60, 2024

56

node. Upon document submission, the system will

automatically create a key for file signatures. To ensure data

integrity and prevent data replication, the user will first

download the file and then check the document's digital file

signature value. The use of distributed databases, fog, and

edge computing ensured data redundancy and accessibility

across multiple nodes. Data encryption was used to

transform plaintext data into ciphertext, which ensures that

it cannot be deciphered by unauthorized individuals. All

data fragments that were duplicated across the network were

encrypted before transmission. The target node decrypted

the data back to its original state upon arrival. This approach

would ensure that the data remained inaccessible and

protected from malevolent actors, even if intercepted during

replication. A cryptographic hash function digitally signed

each data transport before replication. The data had

remained unchanged during transmission, as verified by this

signature. The destination node confirmed the data's

integrity and authenticity upon receiving the digital

signature. Every node has two keys: one for data signing and

one for verifying signatures. This architecture allowed for

the secure signing and validation of data, preventing

unwanted adjustments during replication. To ensure data

security and integrity during replication, the SHA-256

hashing method was used. To implement SHA-256 hashing,

we used the PyCryptodome module, which is a self-

contained Python package containing low-level

cryptographic primitives. See Figure 1 for an illustration of

the system's architecture.

Fig. 1 System architecture

3.2. Mathematical Model

An RSA public-key / private-key pair can be generated

by the following steps:

The file is uploaded into the cloud database after being

divided into small pieces denoted as F. label equation is:

 Fi=(f1,f2,f3,fn)n (1)

The database requires the generation of two large,

random primes, e and d, for file encryption. The encryption

operation in the RSA crypto-system is exponential to the eth

power modulo n:

 c=ENCRYPT(m)=eMODd (2)

The message m is usually a key that is properly

structured and meant to be shared. A conventional technique

employs the shared key to encrypt the actual message. This

method can encrypt a message of any length with just a

single exponentiation. Amplification of the dth power

modulo n is used to carry out the decryption operation.

m=DECRYPT(m)=edMODd (3)

Encryption and decryption are inherently inverse

operations due to the connection between the exponents e

and d. Therefore, the decryption procedure recovers the

initial message m. Applying the decryption operation to a

message—which entails raising it to the dth power—is the

process of digitally signing it.

 s=SIGN(m)=edMOD (4)

Applying the encryption procedure on the digital

signature and comparing the output with the message or

recovering it can verify it.

m=VERIFY(s)=seMODd (5)

class RBAC: roles = {}

permissions = {}

3.3. Algorithm of the System

def assign_permission(self, role, permission): # Assign

permission to a role

roles[role].add_permission(permission)

class ABAC: attributes = {} policies = [] def

assign_attribute(self, user, attribute): # Assign attribute to

a user attributes[user].add(attribute)

def add_policy(self, conditions, actions):

Add a policy with specified conditions and actions

policies.append({"conditions": conditions, "actions":

actions}) class PEP

def enforce_policy(self, user_attributes, requested_action):

Enforce policies based on user attributes and requested

action decision = PDP.evaluate_policies(user_attributes,

requested_action) if decision == "Allow":

Grant access

return "Access Granted" else:

Deny access

return "Access Denied"

class PDP: policies = []

def add_policy(self, conditions, actions):

Add a policy with specified conditions and actions

policies.append({"conditions": conditions, "actions":

actions})

def evaluate_policies(self, user_attributes,

requested_action):

Data Confidentiality & Integrity

Encryption/Decryption Module (RBAC MODEL)

Cloud database

 Edge Input Device like phone, laptop

 Replication & Consistency (ABAC MODEL)

Integrity Check

Alalibo, H. & Bennett, E.O / IJCSE, 11(6), 53-60, 2024

57

Evaluate policies based on user attributes and requested

action for policy in policies:

if satisfies_conditions(user_attributes,

policy["conditions"]) and \ requested_action in

policy["actions"]:

return "Allow" return "Deny"

def satisfies_conditions(user_attributes, conditions): #

Check if user attributes satisfy the conditions for condition

in conditions:

if condition not in user_attributes: return False

return True

class DataReplication:

def replicate_data(self, data, destination):

Replicate data to the specified destination

Include mechanisms for ensuring data confidentiality and

integrity encrypted_data = encrypt(data)

hash_value = calculate_hash(data)

Send encrypted_data and hash_value to the destination #

Verify integrity at the destination

def encrypt(data):

Implement encryption algorithm pass

def calculate_hash(data):

Implement hash calculation algorithm pass

Static Analysis

- Perform consistency checks on RBAC and ABAC

configurations # - Analyse policies for completeness and

conflicts

Dynamic Analysis

- Simulate access requests with varying user attributes

and actions # - Evaluate the dynamic behaviour of policies

in PDP

3.4. Sequence Diagram
The system will save the user's data, including their IP

address. Users are prompted to choose a document type,

such as PDF or DOC, and the system will automatically

utilize RSA to encrypt the file. It is necessary for the user

to provide the private key while decrypting, and the server

will then check if it matches the current key.

Fig. 2 Sequence diagram

Fig. 3 File upload page

Fig. 4 Original file and download file comprise

Data
storage

Verity

Download

Create account Upload document
UpdateRepli cation

Status

VerifyDataInte

grity
Distal signature Server

Create

account

File
upload

Required

Alalibo, H. & Bennett, E.O / IJCSE, 11(6), 53-60, 2024

58

Fig. 5 Original file and download file comprise

Fig. 6 File encryption page

Table 1. Encryption file result

File

(MB)

Size Checksum

(s)

Integrity

(s)

Hash

(s)

Encryption

(s)

Decryption

(s)

Signature

(s)

10 0.021 0.032 0.015 0 0 0

100 0.238 0.235 0.248 0.016 0 0.018

60 0.145 0.147 0.146 0.016 0 0.014

10 0.016 0.011 0.018 0 0 0.016

30 0.091 0.08 0.07 0.017 0 0

40 0.094 0.094 0.086 0 0 0.017

110 0.303 0.267 0.256 0.033 0 0.014

90 0.236 0.239 0.22 0.022 0.005 0.036

70 0.155 0.161 0.16 0.001 0.015 0.012

40 0.102 0.095 0.1 0 0 0.018

80 0.171 0.187 0.184 0.031 0.002 0.014

120 0.282 0.285 0.285 0.022 0.008 0.035

4. Discussion of Result

Figures 3, 4, and 5 display the output results of the

system. For the distributed systems to work, we had to

replicate data without changing it. It was crucial to ensure

precise data replication in multiple locations before

uploading a file to the fog or edge nodes. The process began

with creating a unique hash value for the source file. This

hash value functioned as a digital identity, preserving the

precise content of the file at the time of creation. It would

be simple to spot changes or inconsistencies by comparing

the downloaded file's hash value to the original. During

replication, some edge and fog nodes received the original

file, which they saved after downloading. Each node

recalculated the hash value of the downloaded file as part of

the integrity check. We compared the hash values to ensure

the file's integrity and prevent any modifications. However,

the disparity indicated a problem during the file's

transmission. Several steps were taken to address any

integrity issues. Using secure transmission protocols like

HTTPS and SSL/TLS reduced the possibility of interception

and interference by encrypting data in transit.

Furthermore, we implemented redundancy measures,

such as storing the file in multiple locations, to ensure the

recovery of the original content in the event of a

compromised location. We also instituted periodic integrity

checks further to guarantee consistent monitoring of the

files' state. We compared the original hash values of the

cached files with their current hash values to detect any

unexpected changes. In the event that inconsistencies were

found, administrators were notified automatically so that

they could fix the file and restore its integrity.

Figure 6 and Table 1 showed the encryption technique

for data confidentiality during replication. We used the

SHA-256 hashing method to safeguard sensitive

information from unwanted access and intrusions during

replication. Implementing SHA-256 encoding for data

encryption included several important processes. Firstly, we

applied a thorough encryption method to the data that we

were replicating. We selected the cryptographic hash

function SHA-256 due to its strong security characteristics

and resistance to collision attacks. It is extremely unlikely

that unauthorized parties will be able to decipher the

original material from the hash because this technique

transformed it into a fixed-size, 256-bit hash value. Several

nodes in the fog and edge computing networks relayed the

encrypted data during replication. By comparing the hash

Alalibo, H. & Bennett, E.O / IJCSE, 11(6), 53-60, 2024

59

values, any node with the necessary decryption keys can

verify that the data received is genuine and intact. This

ensured the privacy and authenticity of the copied data by

immediately revealing any alterations or tampering during

transit. In addition, SHA-256 encoding prevented attacks

that may have targeted the replication process, which was

an extra safeguard. After transforming the data into a hash

value, it became resistant to plaintext assaults. This

transformation prevented malicious actors from

intercepting and deciphering unencrypted information. This

method ensured the safety of sensitive data in a distributed

computing setting by drastically reducing the possibility of

data invasions. Deploying SHA-256 hashing for data

encryption in the fog and edge computing environments

successfully demonstrated a complete solution to preserving

secrecy throughout replication. By harnessing the power of

cryptographic hash functions, the system successfully

secured sensitive data, ensuring its integrity and security

throughout the replication process. This implementation

highlighted the importance of using advanced encryption

methods to tackle the specific problems caused by the

dispersed nature of fog and edge computing networks.

4.1. Evaluation of Result

The comparison of the SHA-256 hashing algorithm and

the PyCryptodome library against other techniques for

ensuring confidentiality and integrity during replication in a

fog and edge computing environment highlighted several

key aspects.

Cryptographic applications chose SHA-256, a member

of the SHA-2 family, for its robustness and widespread

acceptance. Its strength lay in its fixed output length of 256

bits, which provided a high level of security against

collision and preimage attacks. This made it an ideal

candidate for maintaining data integrity, as any alteration in

the data resulted in a significantly different hash, making

unauthorized modifications easily detectable. Additionally,

the deterministic nature of SHA-256 ensured that the same

input always produced the same hash output, facilitating

consistent data replication across multiple nodes in the fog

and edge environments.

The PyCryptodome library was used to enhance the

implementation of SHA-256 further. PyCryptodome, a self-

contained Python library, offered a comprehensive suite of

cryptographic primitives and provided a user-friendly

interface for implementing SHA-256. Its compatibility with

Python's standard libraries, as well as the absence of

external dependencies, streamlined the development

process. PyCryptodome's optimized performance and

regular updates incorporated the latest security features and

bug fixes, ensuring a reliable and secure framework for

hashing operations.

In contrast to other techniques, SHA-256, combined

with PyCryptodome, outperformed alternative hashing

algorithms like MD5 and SHA-1, which had known

vulnerabilities such as susceptibility to collision attacks.

The choice of SHA-256 addressed these weaknesses,

offering a more secure alternative. Furthermore, when

compared to newer algorithms like SHA-3, SHA-256's

established track record and extensive documentation made

it a more practical choice for immediate implementation,

especially in environments where time and resource

constraints were significant factors.

The evaluation also considered symmetric encryption

methods and their role in maintaining confidentiality. While

algorithms like AES provided robust encryption, the focus

on hashing with SHA-256 was particularly relevant for

ensuring data integrity during replication. When compared

to the heavy computational load of encryption and

decryption, hashing operations are much lighter. This made

SHA-256 a better choice for fog and edge devices with

limited resources.

After a thorough analysis, it was found that using SHA-

256 along with the PyCryptodome library was the best way

to protect privacy and integrity while copying data in fog

and edge computing settings. This approach effectively

balances security, performance, and ease of

implementation, making it a preferred choice over other

cryptographic techniques.

5. Conclusion
All things considered, the PyCryptodome library's use

of the SHA-256 hashing technique to ensure privacy and

authenticity during replication in cloud and edge computing

settings worked like a charm. The strong cryptographic

hash functions of the SHA-256 algorithm protected the data

from prying eyes and accidental changes. We accelerated

the integration process by utilizing the PyCryptodome

module's features, which enabled safe and efficient

handling of data replication across dispersed nodes. By

combining SHA-256 with PyCryptodome, we were able to

solve the fundamental issues with privacy and security in

the fog and edge computing models. SHA-256's

cryptographic strength ensured data integrity, and its

sensitivity to changes allowed for easy detection of any

alterations. PyCryptoDome also made it easier to deploy

these security features, which improved the system's overall

dependability. This strategy not only secured data during

transmission but also boosted trust in the distributed

computing system, reducing the possibility of security

breaches. Modern computer environments necessitate

strong cryptographic methods, according to the study.

PyCryptodome and other comprehensive libraries are

essential for achieving high data security standards. Finally,

this study demonstrated the practicality and effectiveness of

combining PyCryptodome with SHA-256 to protect data

privacy and integrity in cloud and edge computing

environments. The writers state categorically that they have

no competing interests.

Alalibo, H. & Bennett, E.O / IJCSE, 11(6), 53-60, 2024

60

References
[1] Bo Li et al., “Inspecting Edge Data Integrity with Aggregate Signature in Distributed Edge Computing Environment,” IEEE

Transactions on Cloud Computing, vol. 10, no. 4, pp. 2691-2703, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[2] Yang Ming, and Wenchang Shi, “Efficient Privacy-Preserving Certificateless Provable Data Possession Scheme for Cloud Storage,”

IEEE Access, vol. 7, pp. 122091-122105, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[3] Mohammed Islam Naas et al., “IoT Data Replication and Consistency Management in Fog Computing,” Journal of Grid Computing,

vol. 19, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[4] A.V. Dastjerdi et al., “Chapter 4 - Fog Computing: Principles, Architectures, and Applications,” Internet of Things, pp. 61-75, 2016.

[CrossRef] [Google Scholar] [Publisher Link]

[5] Wided Ben Daoud et al., “Fog Computing Network Security Based on Resources Management,” EURASIP Journal on Wireless

Communications and Networking, vol. 2023, pp. 1-18, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[6] Esmaeil Torabi, Mostafa Ghobaei-Arani, and Ali Shahidinejad, “Data Replica Placement Approaches in Fog Computing: A Review,”

Cluster Computing, vol. 25, no.5, pp. 3561-3589, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[7] Uma Maheswari Kaliyaperumal, Mary Saira Bhanu Somasundaram, and Nickolas Savarimuthu, “Partitioning-Based Data Sharing

Approach for Data Integrity Verification in Distributed Fog Computing,” International Journal of Engineering and Technology

Innovation, vol. 13, no. 2, pp. 160–174, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[8] Hui Tian et al., “Privacy-Preserving Public Auditing for Secure Data Storage in Fog-to-Cloud Computing,” Journal of Network and

Computer Applications, vol. 127, pp. 59-69, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[9] A. Fatimeh, B. Ali, and C. Smith, “Analysis of Cloud, Fog, and Edge Computing Data Replication Methods: A Systematic Literature

Review,” Journal of Computing Research, vol. 29, no. 2, pp. 145-167, 2024.

[10] Aleksandr Ometov et al., “A Systematic Literature Review on Security Challenges in Cloud, Edge, and Fog Computing,” Journal of

Cloud Computing, vol. 11, no. 3, pp. 275-302, 2022.

[11] Fatemeh Karamimirazizi, Seyed Mahdi Jameii, and Amir Masoud Rahmani, “Data Replication Methods in Cloud, Fog, and Edge

Computing: A Systematic Literature Review,” Wireless Personal Communications, vol. 135, pp. 531-561, 2024. [CrossRef] [Google

Scholar] [Publisher Link]

[12] Aleksandr Ometov et al., “A Survey of Security in Cloud, Edge, and Fog Computing,” Sensors, vol.22, no.3, pp. 1-27, 2022.

[CrossRef] [Google Scholar] [Publisher Link]

http://doi.org/10.1109/TCC.2021.3059448
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Inspecting+Edge+Data+Integrity+with+Aggregate+Signature+in+Distributed+Edge+Computing+Environment&btnG=
https://ieeexplore.ieee.org/abstract/document/9354962
http://doi.org/10.1109/ACCESS.2019.2938528
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Yang+Ming+and+Wenchang+Shi%2C+Efficient+Privacy-Preserving+Certificateless+Provable+Data+Possession+Scheme+for+Cloud+Storage%2C&btnG=https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Yang+Ming+and+Wenchang+Shi%2C+Efficient+Privacy-Preserving+Certificateless+Provable+Data+Possession+Scheme+for+Cloud+Storage%2C&btnG=
https://ieeexplore.ieee.org/abstract/document/8821311
https://doi.org/10.1007/s10723-021-09571-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=IoT+Data+Replication+and+Consistency+Management+in+Fog+Computing&btnG=
https://link.springer.com/article/10.1007/s10723-021-09571-1
https://doi.org/10.1016/B978-0-12-805395-9.00004-6
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A.V.+Dastjerdi+%2C+%E2%80%9CFog+Computing%3A+Principles%2C+Architectures%2C+and+Applications&btnG=
https://www.sciencedirect.com/science/article/abs/pii/B9780128053959000046
https://doi.org/10.1186/s13638-023-02256-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Wided+Ben+Daoud+et+al%2C+Fog+Computing+Network+Security+Based+on+Resources+Management&btnG=
https://link.springer.com/article/10.1186/s13638-023-02256-1
https://doi.org/10.1007/s10586-022-03575-6
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Data+replica+placement+approaches+in+fog+computing%3A+A+review.&btnG=
https://link.springer.com/article/10.1007/s10586-022-03575-6
https://doi.org/10.46604/ijeti.2023.10685
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Partitioning-Based+Data+Sharing+Approach+for+Data+Integrity+Verification+in+Distributed+Fog+Computing&btnG=
https://ojs.imeti.org/index.php/IJETI/article/view/10685
https://doi.org/10.1016/j.jnca.2018.12.004
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Privacy-preserving+public+auditing+for+secure+data+storage+in+fog-to-cloud+computing&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1084804518303862
https://doi.org/10.1007/s11277-024-11082-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fatemeh+Karamimirazizi%2C+Seyed+Mahdi+Jameii%2C+and++Amir+Masoud+Rahmani%2C++%E2%80%9CData+Replication+Methods+in+Cloud%2C+Fog%2C+and+Edge+Computing%3A+A+Systematic+Literature+Review&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fatemeh+Karamimirazizi%2C+Seyed+Mahdi+Jameii%2C+and++Amir+Masoud+Rahmani%2C++%E2%80%9CData+Replication+Methods+in+Cloud%2C+Fog%2C+and+Edge+Computing%3A+A+Systematic+Literature+Review&btnG=
https://link.springer.com/article/10.1007/s11277-024-11082-7
https://doi.org/10.3390/s22030927
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Survey+of+Security+in+Cloud%2C+Edge%2C+and+Fog+Computing&btnG=
https://www.mdpi.com/1424-8220/22/3/927

