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Abstract - In the study of confidentiality and integrity during replication in fog and edge computing environments, the SHA-

256 hashing algorithm and the PyCryptodome library played crucial roles. The SHA-256 algorithm, a member of the SHA-

2 family, was employed for its robust cryptographic hash function, ensuring data integrity by generating a unique, fixed-size 

256-bit hash value for every input. This characteristic was pivotal in detecting any alterations to the data, thereby preserving 

its integrity during transmission and storage. The PyCryptodome library, an extensive suite of cryptographic functions, was 

utilized to implement the SHA-256 algorithm effectively. This library provided the necessary tools to integrate advanced 

cryptographic techniques into the system, enhancing the security of data replication processes. By leveraging these 

technologies, the study aimed to establish a secure framework that safeguarded data confidentiality and integrity across 

distributed fog and edge computing environments. The results demonstrated the feasibility and efficacy of using SHA-256 

and PyCryptodome in mitigating potential security threats, thereby contributing to the development of more resilient and 

trustworthy computing infrastructures. Object-Oriented Development (OOD) is employed to decrease development 

schedules, reduce resource demands, and improve code reusability. Python serves as the programming language, while 

MySQL functions as the database.  

 

Keywords - Ensuring data confidentiality, Integrity assurance, Secure data replication, Encryption techniques, Access 

control mechanisms, Data integrity verification, Privacy-preserving strategies. 

 

1. Introduction 
In the dynamic fog and edge computing landscape, 

protecting data privacy and authenticity while replicating it 

has become increasingly important. A growing number of 

Internet of Things (IoT) devices and edge computing nodes 

are driving up the amount of data created and processed at 

the network's perimeter. Data intrusions are a major 

concern in today's data-driven digital economy. 

Unfortunately, data breaches of various severity have 

affected many firms. As a result of the intrusions, third 

parties have gained malicious access to critical customer 

information, putting those people in danger. Data security 

vulnerabilities pose a significant threat to Nigeria due to the 

country's large population of over 200 million people. The 

country has seen a proliferation of cyber events, which have 

affected both public and private sector organizations. Data 

invasions in Nigeria saw a significant uptick in the first 

quarter of 2023, according to cybersecurity firm Surfshark. 

An astounding 82,000 have occurred, a 64% increase over 

the previous total. While traditional cloud computing stores 

and processes data in a central location, fog and edge 

computing move these tasks closer to the data's original 

point of origin. This dispersed nature offers benefits such as 

lower latency and bandwidth utilization. However, this 

dispersed nature also presents significant challenges in 

terms of data security. The suggested method employs an 

edge-and-fog computing environment to preserve data 

integrity and secrecy throughout replication. Information 

confidentiality hinges on granting access to only authorized 

workers. 

2. Related Works 
[1] An all-encompassing plan to address edge 

computing data integrity issues was put up by Li et al. 

(2021). Aside from a thorough experimental assessment, 

they also performed a systematic literature analysis and 

suggested a new integrity auditing procedure that uses 

cryptographic methods like Merkle hash trees. To highlight 

improvements in efficiency and security, the essay 

compared the suggested alternative to current techniques. 

However, issues with scalability, dynamic data updates, 

real-world implementations, user privacy, and interaction 

with modern technology have rendered the inquiry 

unfinished. The solutions that were suggested were tested in 

some situations, but how well they could handle larger, 

more complicated systems with different kinds of data and 

devices was not addressed. Furthermore, the study might 

benefit from more thorough real-world case studies to 

validate the solutions' viability and effectiveness in different 

deployment settings. Future studies should explore the 

integration of suggested auditing systems with emerging 

technologies such as blockchain and artificial intelligence to 

enhance security and efficiency further. In order to improve 

data integrity verification using aggregate signatures, Li et 

al. (2021) applied an approach. In order to ensure security 
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Alalibo, H. & Bennett, E.O / IJCSE, 11(6), 53-60, 2024 

 

54 

qualities, we first performed a literature analysis to identify 

the gaps and limitations in existing approaches. Then, we 

used aggregate signatures to build a unique integrity 

auditing protocol, which we mathematically formulated. 

Thorough simulations were carried out to evaluate the 

performance of the proposed strategy, with a major focus on 

its computational and communication efficacy. However, 

the inquiry revealed numerous gaps in existing knowledge. 

These include things like handling dynamic data, 

considering user privacy, being able to scale to large-scale 

systems, and being practical for implementation in the real 

world. Additional study is needed to identify effective 

mechanisms for managing dynamic data changes since the 

technique mainly focuses on static data integrity. To fully 

understand the practical difficulties and effectiveness in 

different operating settings, the study is missing real-world 

deployment and validation. To further enhance operational 

efficiency and security, future research might explore the 

possibility of integrating the proposed aggregate signature 

system with emerging technologies like AI and blockchain. 

  

[2] Data security and privacy in cloud storage settings 

may be enhanced with the help of the systematic 

methodology suggested by Ming et al. (2019). A certificate-

less Policy Decision Point (PDP) protocol, zero-knowledge 

protocols, randomization methods, and certificate-less 

encryption are all part of the methodology. The approach 

sought to fix major escrow problems with legacy systems 

and do away with the requirement for certificates. To further 

ensure that no data is leaked during verification, it uses zero-

knowledge proofs. A comprehensive security analysis and 

performance review were conducted on the suggested 

approach to confirm its claims and measure its 

effectiveness. Nevertheless, there are still supplementary 

domains that necessitate investigation, such as the ability to 

manage massive environments efficiently, deal with 

dynamic data operations, put the technology to use in 

practical situations, and guarantee user privacy beyond 

integrity checks. We need more study to understand the 

practical issues and performance in real-world operational 

settings and to create and appraise strategies for managing 

dynamic data operations. Future studies should look at ways 

to combine the certificate-less PDP system with new 

technology, including blockchain and artificial intelligence, 

to make it more secure and efficient. 

  

[3] Data replication and consistency in fog computing 

settings can be enhanced by the methods presented by Naas 

et al. (2021). The methodology includes data insertion 

strategies, measures for performance, methods for 

managing consistency, and assessment based on 

simulations. Using the iFogSim simulator, the authors put 

their plans into action and evaluated them. They focused on 

integrating ways to reduce service latency and assure data 

integrity across geo-distributed fog nodes. However, there 

are certain gaps in our understanding of the approach that 

affect its applicability and use. These include issues with 

energy consumption, scalability for different Internet of 

Things (IoT) scenarios, dynamic data management, and the 

incorporation of security measures. Additional research is 

needed to confirm these tactics in varied and large-scale IoT 

installations; however, the study did show gains in latency 

reduction. Without thoroughly covering security elements 

like data encryption and access control during replication 

procedures, the technique mainly focuses on consistency 

and replication. Furthermore, dynamic data operations are 

not well investigated. 

 

[4] Dastjerdi et al. (2016) explore fog computing in 

depth. The authors highlight its concepts, architectures, and 

many applications. The authors reviewed the literature to 

lay the groundwork for fog computing and its guiding 

principles, with an emphasis on how it emerged as a 

response to cloud computing's shortcomings in latency-

sensitive applications like the Internet of Things. They 

presented a comprehensive reference architecture for fog 

computing, detailing all its components and their 

interrelationships. In order to demonstrate how fog 

computing might alleviate network congestion and latency, 

the article looked at several use cases, such as health 

monitoring, emergency response, and smart city 

applications. The article compared fog computing with 

regular cloud computing based on performance parameters. 

The focus was on improving the quality of service for real-

time applications, optimizing bandwidth, and reducing 

latency. However, the study acknowledged certain gaps in 

our understanding, including issues with scale and practical 

application, standards and interoperability, privacy and 

security, energy efficiency, and dynamic resource 

management. By filling these gaps, fog computing can 

become a more feasible and effective alternative for 

applications that are sensitive to latency and resource 

consumption. 

  

[5] In their 2023 publication, Daoud et al. laid forth a 

thorough approach to protecting fog computing systems 

through efficient use of resources. The processes of 

monitoring, risk assessment, resource management, and 

access control are essential. The technique used a risk model 

to determine users' reliability, keep track of their actions, 

distribute resources effectively, and implement eXtensible 

Access Control Markup Language access controls. 

However, the inquiry revealed several knowledge gaps. 

These included issues with scalability, energy efficiency, 

interoperability, and dynamic adaptability, as well as the 

need for practical application. Only testing and 

implementation in the real world can determine the 

effectiveness and difficulties in various situations. Energy 

consumption optimization, cloud and fog system 

integration, and adaptive methods for real-time resource 

allocation and danger mitigation should be the focus of 

future studies. By addressing these shortcomings, we can 

enhance the robustness and applicability of security 

frameworks in fog computing environments, thereby 

protecting more applications and managing resources more 

efficiently. 

 

[6] Ometov et al. (2022) compared and analyzed 

security concerns in the context of cloud, edge, and fog 

computing paradigms using a comprehensive literature 
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review. The process involved curating relevant literature 

from many sources. The writers subsequently classified it 

based on the computer paradigm and certain security 

factors, including privacy, availability, confidentiality, and 

integrity. The writers compared the security procedures, 

risks, and mitigation strategies of cloud, edge, and fog 

computing. They highlighted the main threats and 

weaknesses specific to each paradigm, as well as the ways 

in which existing solutions address these issues. The study 

identified emerging dangers and sectors with inadequate 

current solutions as research gaps that required filling while 

also uncovering current trends in security research. The 

survey also revealed numerous unresolved issues, such as 

managing heterogeneity, ensuring the effectiveness of 

security solutions in real-world scenarios, enhancing the 

interoperability of security protocols, adapting dynamically 

to threats, and safeguarding user privacy. Future studies 

should fill these gaps. By filling these gaps, future studies 

can safeguard cloud, edge, and fog computing systems 

against emerging threats and boost their security and 

dependability, making them more capable of handling the 

growing needs of various applications. 

  

[7] Fatimeh et al. (2024) examined data replication 

strategies in cloud, fog, and edge computing through a 

thorough literature review. This research compiles relevant 

studies from scholarly publications, sorts them according to 

computing paradigm and data replication technique, and 

then compares them according to consistency, availability, 

and latency. By employing this method, we can discern 

patterns in data replication studies and pinpoint areas that 

require attention. The presentation of significant insights 

revealed knowledge gaps in several areas, including real-

world application, energy efficiency, interoperability, 

security and privacy, scalability and performance, and 

dynamic adaptation. More study of real-world applications, 

especially diverse ones, is needed to explain performance 

and practical issues. Research on scalability in big fog and 

edge networks is still in its infancy, and energy efficiency is 

a must for sustainable edge computing. Further study is 

necessary to address the challenging issue of 

interoperability and standardize data synchronization and 

replication processes. Privacy, security, and the capacity to 

adjust to changing network circumstances and user needs 

must be given top priority. Future studies may address these 

shortcomings to make data replication in cloud, fog, and 

edge computing more secure, sustainable, and effective. 

 

[8] Torabi et al. (2020) use a systematic review 

methodology to examine and classify data replication 

strategies in fog computing scenarios. There is a lack of 

information on several fronts, including interoperability, 

privacy and security, scalability, energy efficiency, and 

practical application data. The study highlights research on 

safe and privacy-preserving replication algorithms, scalable 

solutions for large-scale deployments, and thorough studies 

of the trade-offs between data replication and energy use. It 

further highlights the significance of flexible algorithms that 

can swiftly react to changes in user behavior and network 

circumstances. The research concludes that closing the gaps 

in fog computing can lead to more secure results and more 

dependable and effective data replication procedures, 

thereby improving the overall functionality and reliability 

of fog-based systems. 

 

[9] Kaliyaperumal et al. (2023) came up with a new 

way to make sure data stays intact in fog computing settings. 

The approach included breaking down large amounts of IoT 

data into smaller, more manageable chunks and then using 

fuzzy clustering to find elements of the data that were 

comparable. Data integrity verification is the backbone of 

the technique; it improves efficiency and reduces costs by 

removing the need for extra client-side information storage. 

However, the study may benefit from more thorough 

performance measurements and consideration of scalability 

under different scenarios. The technique does not address 

additional security considerations like user authentication 

and data confidentiality. Furthermore, there are limited 

studies that compare this technique to other data integrity 

verification methods. Only real-world implementation and 

testing can confirm the study's applicability and usefulness 

in live fog computing systems, as it primarily relied on 

theory and simulations. The study did not address potential 

consequences or trade-offs related to user-side computing 

resources and network bandwidth. Dynamic data 

management requires more research. 

 

[10] Research by Tian et al. (2019) examined a public 

auditing approach that uses privacy-preserving tactics and 

efficient verification processes. They assessed the protocol 

using security analysis and performance measurements. In 

addition to improving data storage security, the protocol 

fills a need for resolving latency difficulties. Future research 

should prioritize optimizing auditing protocols for fog 

computing settings with low latency. To allow peripheral 

computing systems and fog to change dynamically, adaptive 

security frameworks are required. The smooth functioning 

of cloud, fog, and edge paradigms depends on unified 

security standards. Scalability optimization of models is 

essential, as are real-time methods for ensuring data 

integrity. Future research should primarily focus on finding 

ways to speed up audits without increasing delays. 

 

3. Methodology 
Object-Oriented Analysis and Design Methodology 

(OOADM) was used to undertake the implementation of the 

suggested system design. The Object-Oriented Systems 

Analysis and Design Methodology was a system approach 

to information system analysis and design that focused on 

software objects and how they interacted with the system 

and its surrounding environment. The study's goals were to 

abstract components, give them names, and then organize 

their activities into class abstractions. The next step in 

developing these class abstractions was to determine their 

function within the system and the individuals responsible 

for carrying them out. 

 

3.1. Analysis of the System  

Once a user has created an account, the system will 

immediately produce a private key and store it in the Edge 
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node. Upon document submission, the system will 

automatically create a key for file signatures. To ensure data 

integrity and prevent data replication, the user will first 

download the file and then check the document's digital file 

signature value. The use of distributed databases, fog, and 

edge computing ensured data redundancy and accessibility 

across multiple nodes. Data encryption was used to 

transform plaintext data into ciphertext, which ensures that 

it cannot be deciphered by unauthorized individuals. All 

data fragments that were duplicated across the network were 

encrypted before transmission. The target node decrypted 

the data back to its original state upon arrival. This approach 

would ensure that the data remained inaccessible and 

protected from malevolent actors, even if intercepted during 

replication. A cryptographic hash function digitally signed 

each data transport before replication. The data had 

remained unchanged during transmission, as verified by this 

signature. The destination node confirmed the data's 

integrity and authenticity upon receiving the digital 

signature. Every node has two keys: one for data signing and 

one for verifying signatures. This architecture allowed for 

the secure signing and validation of data, preventing 

unwanted adjustments during replication. To ensure data 

security and integrity during replication, the SHA-256 

hashing method was used. To implement SHA-256 hashing, 

we used the PyCryptodome module, which is a self-

contained Python package containing low-level 

cryptographic primitives. See Figure 1 for an illustration of 

the system's architecture. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 System architecture 

 

3.2. Mathematical Model  

An RSA public-key / private-key pair can be generated 

by the following steps: 

 

The file is uploaded into the cloud database after being 

divided into small pieces denoted as F.  label equation is:  

 Fi=(f1,f2,f3,fn)n    (1)  

The database requires the generation of two large, 

random primes, e and d, for file encryption. The encryption 

operation in the RSA crypto-system is exponential to the eth 

power modulo n: 

 c=ENCRYPT(m)=eMODd                 (2)                                       

The message m is usually a key that is properly 

structured and meant to be shared. A conventional technique 

employs the shared key to encrypt the actual message. This 

method can encrypt a message of any length with just a 

single exponentiation. Amplification of the dth power 

modulo n is used to carry out the decryption operation. 

m=DECRYPT(m)=edMODd                (3) 

Encryption and decryption are inherently inverse 

operations due to the connection between the exponents e 

and d. Therefore, the decryption procedure recovers the 

initial message m. Applying the decryption operation to a 

message—which entails raising it to the dth power—is the 

process of digitally signing it. 

 s=SIGN(m)=edMOD               (4)  

Applying the encryption procedure on the digital 

signature and comparing the output with the message or 

recovering it can verify it. 

m=VERIFY(s)=seMODd               (5) 

class RBAC: roles = {} 

permissions = {} 

3.3. Algorithm of the System  

def assign_permission(self, role, permission): # Assign 

permission to a role 

roles[role].add_permission(permission) 

class ABAC: attributes = {} policies = [] def 

assign_attribute(self, user, attribute): # Assign attribute to 

a user attributes[user].add(attribute) 

def add_policy(self, conditions, actions): 

# Add a policy with specified conditions and actions 

policies.append({"conditions": conditions, "actions": 

actions})  class PEP 

def enforce_policy(self, user_attributes, requested_action): 

# Enforce policies based on user attributes and requested 

action decision = PDP.evaluate_policies(user_attributes, 

requested_action) if decision == "Allow": 

# Grant access 

return "Access Granted" else: 

# Deny access 

return "Access Denied" 

class PDP: policies = [] 

def add_policy(self, conditions, actions): 

# Add a policy with specified conditions and actions 

policies.append({"conditions": conditions, "actions": 

actions}) 

def evaluate_policies(self, user_attributes, 

requested_action): 

Data Confidentiality & Integrity 

Encryption/Decryption Module (RBAC MODEL) 

Cloud database 

 

                                                               Edge Input Device like phone, laptop  

 Replication & Consistency (ABAC MODEL) 

Integrity Check 
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# Evaluate policies based on user attributes and requested 

action for policy in policies: 

if satisfies_conditions(user_attributes, 

policy["conditions"]) and \ requested_action in 

policy["actions"]: 

return "Allow" return "Deny" 

def satisfies_conditions(user_attributes, conditions): # 

Check if user attributes satisfy the conditions for condition 

in conditions: 

if condition not in user_attributes: return False 

return True 

class DataReplication: 

def replicate_data(self, data, destination): 

# Replicate data to the specified destination 

# Include mechanisms for ensuring data confidentiality and 

integrity encrypted_data = encrypt(data) 

hash_value = calculate_hash(data) 

# Send encrypted_data and hash_value to the destination # 

Verify integrity at the destination 

def encrypt(data): 

# Implement encryption algorithm pass 

def calculate_hash(data): 

# Implement hash calculation algorithm pass 

# Static Analysis 

# - Perform consistency checks on RBAC and ABAC 

configurations # - Analyse policies for completeness and 

conflicts 

# Dynamic Analysis 

# - Simulate access requests with varying user attributes 

and actions # - Evaluate the dynamic behaviour of policies 

in PDP 

 

3.4. Sequence Diagram 
The system will save the user's data, including their IP 

address. Users are prompted to choose a document type, 

such as PDF or DOC, and the system will automatically 

utilize RSA to encrypt the file. It is necessary for the user 

to provide the private key while decrypting, and the server 

will then check if it matches the current key.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Sequence diagram 

Fig. 3 File upload page 

 

 

 
Fig. 4 Original file and download file comprise 
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Fig. 5 Original file and download file comprise 

 

 
Fig. 6 File encryption page 

 

Table 1. Encryption  file result 

File 

(MB) 

Size Checksum 

(s) 

Integrity 

(s) 

Hash 

(s) 

Encryption 

(s) 

Decryption 

(s) 

Signature 

(s) 

10 0.021 0.032 0.015 0 0 0 

100 0.238 0.235 0.248 0.016 0 0.018 

60 0.145 0.147 0.146 0.016 0 0.014 

10 0.016 0.011 0.018 0 0 0.016 

30 0.091 0.08 0.07 0.017 0 0 

40 0.094 0.094 0.086 0 0 0.017 

110 0.303 0.267 0.256 0.033 0 0.014 

90 0.236 0.239 0.22 0.022 0.005 0.036 

70 0.155 0.161 0.16 0.001 0.015 0.012 

40 0.102 0.095 0.1 0 0 0.018 

80 0.171 0.187 0.184 0.031 0.002 0.014 

120 0.282 0.285 0.285 0.022 0.008 0.035 

4. Discussion of Result 

Figures 3, 4, and 5 display the output results of the 

system. For the distributed systems to work, we had to 

replicate data without changing it. It was crucial to ensure 

precise data replication in multiple locations before 

uploading a file to the fog or edge nodes. The process began 

with creating a unique hash value for the source file. This 

hash value functioned as a digital identity, preserving the 

precise content of the file at the time of creation. It would 

be simple to spot changes or inconsistencies by comparing 

the downloaded file's hash value to the original. During 

replication, some edge and fog nodes received the original 

file, which they saved after downloading. Each node 

recalculated the hash value of the downloaded file as part of 

the integrity check. We compared the hash values to ensure 

the file's integrity and prevent any modifications. However, 

the disparity indicated a problem during the file's 

transmission. Several steps were taken to address any 

integrity issues. Using secure transmission protocols like 

HTTPS and SSL/TLS reduced the possibility of interception 

and interference by encrypting data in transit. 

 

Furthermore, we implemented redundancy measures, 

such as storing the file in multiple locations, to ensure the 

recovery of the original content in the event of a 

compromised location. We also instituted periodic integrity 

checks further to guarantee consistent monitoring of the 

files' state. We compared the original hash values of the 

cached files with their current hash values to detect any 

unexpected changes. In the event that inconsistencies were 

found, administrators were notified automatically so that 

they could fix the file and restore its integrity. 

 

Figure 6 and Table 1 showed the encryption technique 

for data confidentiality during replication. We used the 

SHA-256 hashing method to safeguard sensitive 

information from unwanted access and intrusions during 

replication. Implementing SHA-256 encoding for data 

encryption included several important processes. Firstly, we 

applied a thorough encryption method to the data that we 

were replicating. We selected the cryptographic hash 

function SHA-256 due to its strong security characteristics 

and resistance to collision attacks. It is extremely unlikely 

that unauthorized parties will be able to decipher the 

original material from the hash because this technique 

transformed it into a fixed-size, 256-bit hash value. Several 

nodes in the fog and edge computing networks relayed the 

encrypted data during replication. By comparing the hash 
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values, any node with the necessary decryption keys can 

verify that the data received is genuine and intact. This 

ensured the privacy and authenticity of the copied data by 

immediately revealing any alterations or tampering during 

transit. In addition, SHA-256 encoding prevented attacks 

that may have targeted the replication process, which was 

an extra safeguard. After transforming the data into a hash 

value, it became resistant to plaintext assaults. This 

transformation prevented malicious actors from 

intercepting and deciphering unencrypted information. This 

method ensured the safety of sensitive data in a distributed 

computing setting by drastically reducing the possibility of 

data invasions. Deploying SHA-256 hashing for data 

encryption in the fog and edge computing environments 

successfully demonstrated a complete solution to preserving 

secrecy throughout replication. By harnessing the power of 

cryptographic hash functions, the system successfully 

secured sensitive data, ensuring its integrity and security 

throughout the replication process. This implementation 

highlighted the importance of using advanced encryption 

methods to tackle the specific problems caused by the 

dispersed nature of fog and edge computing networks. 

 

4.1. Evaluation of Result 

The comparison of the SHA-256 hashing algorithm and 

the PyCryptodome library against other techniques for 

ensuring confidentiality and integrity during replication in a 

fog and edge computing environment highlighted several 

key aspects. 

Cryptographic applications chose SHA-256, a member 

of the SHA-2 family, for its robustness and widespread 

acceptance. Its strength lay in its fixed output length of 256 

bits, which provided a high level of security against 

collision and preimage attacks. This made it an ideal 

candidate for maintaining data integrity, as any alteration in 

the data resulted in a significantly different hash, making 

unauthorized modifications easily detectable. Additionally, 

the deterministic nature of SHA-256 ensured that the same 

input always produced the same hash output, facilitating 

consistent data replication across multiple nodes in the fog 

and edge environments. 

The PyCryptodome library was used to enhance the 

implementation of SHA-256 further. PyCryptodome, a self-

contained Python library, offered a comprehensive suite of 

cryptographic primitives and provided a user-friendly 

interface for implementing SHA-256. Its compatibility with 

Python's standard libraries, as well as the absence of 

external dependencies, streamlined the development 

process. PyCryptodome's optimized performance and 

regular updates incorporated the latest security features and 

bug fixes, ensuring a reliable and secure framework for 

hashing operations. 

In contrast to other techniques, SHA-256, combined 

with PyCryptodome, outperformed alternative hashing 

algorithms like MD5 and SHA-1, which had known 

vulnerabilities such as susceptibility to collision attacks. 

The choice of SHA-256 addressed these weaknesses, 

offering a more secure alternative. Furthermore, when 

compared to newer algorithms like SHA-3, SHA-256's 

established track record and extensive documentation made 

it a more practical choice for immediate implementation, 

especially in environments where time and resource 

constraints were significant factors. 

The evaluation also considered symmetric encryption 

methods and their role in maintaining confidentiality. While 

algorithms like AES provided robust encryption, the focus 

on hashing with SHA-256 was particularly relevant for 

ensuring data integrity during replication. When compared 

to the heavy computational load of encryption and 

decryption, hashing operations are much lighter. This made 

SHA-256 a better choice for fog and edge devices with 

limited resources. 

After a thorough analysis, it was found that using SHA-

256 along with the PyCryptodome library was the best way 

to protect privacy and integrity while copying data in fog 

and edge computing settings. This approach effectively 

balances security, performance, and ease of 

implementation, making it a preferred choice over other 

cryptographic techniques. 

5. Conclusion  
All things considered, the PyCryptodome library's use 

of the SHA-256 hashing technique to ensure privacy and 

authenticity during replication in cloud and edge computing 

settings worked like a charm. The strong cryptographic 

hash functions of the SHA-256 algorithm protected the data 

from prying eyes and accidental changes. We accelerated 

the integration process by utilizing the PyCryptodome 

module's features, which enabled safe and efficient 

handling of data replication across dispersed nodes. By 

combining SHA-256 with PyCryptodome, we were able to 

solve the fundamental issues with privacy and security in 

the fog and edge computing models. SHA-256's 

cryptographic strength ensured data integrity, and its 

sensitivity to changes allowed for easy detection of any 

alterations. PyCryptoDome also made it easier to deploy 

these security features, which improved the system's overall 

dependability. This strategy not only secured data during 

transmission but also boosted trust in the distributed 

computing system, reducing the possibility of security 

breaches. Modern computer environments necessitate 

strong cryptographic methods, according to the study. 

PyCryptodome and other comprehensive libraries are 

essential for achieving high data security standards. Finally, 

this study demonstrated the practicality and effectiveness of 

combining PyCryptodome with SHA-256 to protect data 

privacy and integrity in cloud and edge computing 

environments. The writers state categorically that they have 

no competing interests.
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