
 SSRG International Journal of Computer Science and Engineering Volume 11 Issue 7, 8-14, July 2024

ISSN: 2348–8387 / https://doi.org/10.14445/23488387/IJCSE-V11I7P102 © 2024 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

State Management Techniques and Options for Micro-

frontend Web Development

Tanmaya Gaur

Principal Architect, Customer Support, T-Mobile US, Washington, USA.

Corresponding Author : tanmay.gaur@gmail.com

Received: 16 May 2024 Revised: 25 June 2024 Accepted: 12 July 2024 Published: 31 July 2024

Abstract - The intention behind building applications as Micro Frontend is to develop the experience as a composition of

features which are owned and developed completely isolated and by independent teams. These micro-experiences are strung

together at run-time or build-time to deliver a single cohesive application experience to the end user. State management refers

to the patterns of persisting application data across multiple components and web pages. The state was available to the client

application and is used to determine end-user experience. Effective state management keeps the experiences across the entire

application session in sync and predictable. Traditional application development has some well-defined options to solve state

management. For applications implemented as micro-frontends, there are specific nuances and implications of that development

paradigm which need to be accounted for. This paper will attempt to review traditional state management methodologies and

provide an overview of considerations when using a micro-frontend style application.

Keywords - State Management, CRM, Web Development, Micro-frontend.

1. Introduction
HTTP follows a classical client-server model, with a

client opening a connection to make a request and then waiting

until it receives a response. HTTP is traditionally a stateless

protocol, meaning that the server on its own does not keep any

data (state) between two requests. There are often similar data

needs across various parts of an application. While it is always

possible to have the UI Application trigger another API Call

every time it needs access to that data, performance, load and

resource optimization prescribes storing such data in a client-

side state OR building an effective caching solution. Caching

by itself is a large topic which we will discuss separately. For

right now, let us think of State management as a synchronized

cache of dynamic server data on the client side. The onus is on

the client application to maintain a session state. State

management refers to the overall patterns used to synchronize,

store, and expose (to application code) access to the state of

the application. Modern dynamic web applications often

retrieve significant information across the duration of the user

session. State management helps keep this state preserved on

or near the client and exposes methods to allow different parts

of the application to access and utilize this data. This helps

applications avoid expensive API calls (refer to Figure 2) to

the backend, thereby reducing back-end load as well as

avoiding duplicative code. If done right, this would imply

fewer lines of code, which in turn means simpler logic, which

makes applications easier to understand and maintain. A good

state management strategy accounts for ensuring consistency

of the state and provides strategies for revocation and override

if the state gets stale. Overall, state management can help code

quality, operability, and maintenance as it can promote the

reuse of application code across multiple components or

modules of a web application. While traditional options for

state management apply to micro-frontends, there are specific

nuances to be aware of. These details are often missed in

documentation around micro-frontend, which mostly focuses

on the build and deployment strategies. In this paper, we will

go through the common state management techniques one by

one and discuss the unique specificities of using them in a

micro-frontend. This paper will also compare and contrast

these techniques from the security, performance, scalability,

and usability of a micro-frontend web application. In most

cases, it is recommended to place the state management

responsibility within a common omnipresent container app or

micro-frontend in a way that the state is available to all other

micro-frontends seamlessly. This, however, gets tricky at

scale, for example, if we implement micro-frontends using

web components which are built for encapsulation and

modularity. Also, given how we do want micro-frontends to

be able to execute stand-alone with minimal inter dependency,

we most often end up with having two state management

solutions, one at a micro-frontend level and a global shared

state. These and other considerations which are crucial in

determining a solution specific to a micro-frontend use-case

are also discussed in this chapter.

http://www.internationaljournalssrg.org/
https://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://en.wikipedia.org/wiki/Stateless_protocol
https://en.wikipedia.org/wiki/Stateless_protocol

Tanmaya Gaur / IJCSE, 11(7), 8-14, 2024

9

Fig. 1 State across a user Session

Fig. 2 State sharing across a flow can avoid duplicative API calls

User Client application STATE Data Servers

Retrieve data

Store State

Retrieve State

Centralized logic

to make state

predictable and

consistent

Application Access & Browse

Application Access & Browse

Browse

Products

User

Authenticate Add to Cart Checkout

State Management

State DB

Write Profile Data Read Profile Data

Tanmaya Gaur / IJCSE, 11(7), 8-14, 2024

10

2. Implementation Concerns
There are multiple options available to implement state

Management. This section lists the architectural

considerations to help decide which ones work best for your

specific use case. It is always important to understand your use

case and determine the best option for your specific needs.

Irrespective of the option you end up with, it makes sense to

isolate state management into its own app or within the

common container app. We will touch on this in the

subsequent section.

2.1. Your Choice of Micro-Frontend

Just like session management, your choice of micro-

frontend pattern impacts your implementation of state

management. Most monolith apps run in the execution context

of the tab and hence share Cookies, HTML5 Storage, Global

objects, etc.With micro-frontend, depending on the

implementation, this may not always be the case. E.g. a micro-

frontend built using Iframe will not have access to the Global

objects of the parent container. Irrespective of the underlying

storage solution, State management should expose well

defined state interfaces available to your micro-frontends. It is

ideal to expose methods to query and mutate the state as well

as have an observable pattern over important state data as it

helps abstract the micro-frontends from the actual state

storage. Such abstraction lets developers update the

underlying state implementation without impacting every

single micro-frontend.

State management is responsible for the consistency of

experience across the application as the state of an application

evolves. This becomes slightly more taxing as all micro-

frontends are coded and designed to be independent. Also,

micro-frontends concurrently loaded on a webpage may all be

interested in user activity interacting with any one of them.

Instead of all micro-frontends chatting with each other, it

is a recommended pattern to have them communicate via

methods and events exposed by state management (refer to

Figure 3). e.g. in a commerce app, if a user adds a product to

the cart, the banner and other apps may need to update upsell

and cross-sell offerings appropriately.

 Fig. 3 State management abstracts micro-frontends concurrently running in a web application

Add to Cart Banner Upsell Slot

GETTER/SETTER

METHODS

methods that provide access to State

object properties

OBSERVABLE

EVENTS

notify of "interesting changes" to

state object properties

State Management

Web Application

Update State

Emit Event to notify/of cart Update

STATE DB

Tanmaya Gaur / IJCSE, 11(7), 8-14, 2024

11

2.2. Session v/s State Management

While sometimes being used in overlapping contexts,

there exists a difference between state and session

management. The difference often depends on your

application and the specific use case.

• Session management refers to the approaches to keep

sessions consistent between client and server by

persisting a secure token on the client app, which is sent

with all HTTP traffic and is well understood by the server.

• In certain scenarios, applications may want to store more

data on the client than just the session tokens. This allows

the application to reduce network traffic and, at times,

simplify the client application. This may avoid code

duplication and assist performance at times by avoiding

http roundtrips. This is an example of an application state

where the data is specific features in the application or

stores details of the current user. There could also be data

related to the user’s interaction with the application, the

status of various events and location data like which page

the user is currently on and his navigation history.

2.3. Client-Side v/s Server-Side state

Client-side state refers to patterns storing the state on the

client device itself. This is the more commonly used pattern

for web applications storing state. There are various options

like cookies, Web-Storage API, Global Variables and

indexedDB, which will be discussed in the next section.

Storing state on the server side means it will be stored on a

server outside the client device. This makes it easier to share

that data across multiple devices and to manipulate it without

approval or access to the device itself. There are specific use

cases where server-side state storage makes more sense than

the client side.

2.4. Security Risks

Almost all browser data storage options are susceptible to

XSS. Some options provide an additional level of data

isolation, like HttpOnly cookies, private closures, Web

Workers, etc. Still, none of these options are foolproof from a

security perspective. State data Security is not just dependent

on your choice of data storage, and there is also the need to

make sure that JavaScript that can execute on the page is

secure. As such, its best to consider all browser data unsecure

and never trust it where it can have security connotations.

2.5. The Data itself

There are various limitations to the different data storage

options. Data stored server side comes with upload/download

costs. The client-side options have restrictions with regard to

the size and data types supported. As an example, web storage

limits data stored to a maximum of 5MB while cookies are

limited to 4 KB. These considerations are a topic for the next

section.

2.6. User-Agent Compatibility Required

Your use cases and browsers may also influence the state

strategy you need to support. E.g. Certain browsers do not

support indexed DB in private browsing mode.

2.7. Data Availability

Does the state need to persist across multiple tabs? Does

the state need to persist across user sessions? Does the state

need to persist across a browser crash? These are important

considerations when deciding your state management

solution.

2.8. Data Fetching and Caching

There is an overlap between the ideas of “managing state”

and “caching fetched data from the server”. For example, you

can use a state management tool like Mobx or Redux to track

the loading state and cache the fetched data, although they are

not purpose-built for that use case. There are also tools that are

specifically designed to abstract the use case of fetching data,

caching it, and managing the loading state and cached data

internally without needing to write that code yourself.

Depending on your specific needs, these choices at times, may

make more sense than writing the solution from scratch.

2.9. State Categories

Another way to think of the state is to think of the

different needs at different levels.

• Micro-frontend State: These state variables can be

accessed and/or modified within the micro-frontend

implementation. The actual scope will depend on the

specificity of the implementation.

• Page State: These variables are limited to being accessed

and/or modified within a page or route. All micro-

frontends loaded on that specific page will have access to

this data. The data is cleaned up at specific events,

traditionally as you navigate away from the page. An

example would be page reload.

• App State: These variables can be accessed and modified

across the application. i.e. all micro-frontends should be

able to access and update this data.

3. Implementation Options
With the basic understanding in mind, this section details

some of the key state management considerations for micro-

frontends, working through the different implementation

options. The paper will focus on client-side application state

solutions only.

3.1. Cookies

Cookies or HTTP Cookies are small files of information

sent by web servers to web browsers over the HTTP protocol.

Web Browsers store the cookies they receive for a specific

period, as specified in the cookie metadata returned by the

server. There are other properties associated with cookies that

help manage data security. In micro-frontends, cookies can be

used to communicate between different micro-frontends, but

data can only be shared if the micro-frontends are under the

same sub-domain.

Tanmaya Gaur / IJCSE, 11(7), 8-14, 2024

12

Fig. 5 State data in cookies

Cookies can be used to store state data (Refer to Figure 5)

and are automatically transmitted as part of the headers unless

the request is to a cross-domain server. They can also be

available to both the client and server, depending on how they

are configured. They are also widely supported across all

browser types. The downside of cookies is that they are

limited in the amount and type of data they can store. Cookies

support a maximum of 4096 bytes of data, which is not enough

for the data needs of modern applications.

Fig. 6 State data web storage (Session or local storage)

3.2. Session or Local Storage

Session storage and local storage (Refer to Figure 6)

provide application developers capability for storing name-

value pairs client-side. The key aspects of this storage area:

• Scope: This defines who can access the stored data. Data

stored using the localStorage API is accessible across tabs

if the webpages which are loaded on these tabs are from

the same origin. sessionStorage API stores data within the

window context from which it was called, meaning that

the tab cannot access data which was stored from Table 2.

• Duration: localStorage persists across browsing sessions,

whereas sessionStorage stores data for the duration of the

current browsing session only.

So why use localStorage instead of sessionStorage.

localStorage is best if data is needed to be accessed across

windows or tabs, across multiple sessions. SessionStorage on

the other hand, allows you to store data scoped to the tab,

allowing you to run multiple simultaneous tabs. Browser

storage can support up to 5MB of storage per origin.

Fig. 7 State tokens in global variables

3.3. Global Variable

A custom variable is created by the application under the

window.variableName means that the variable is being

declared at the global scope. This means any JS code running

in that tab will have access to this variable. How does this

compare to sessionStorage (Refer to Figure 7)? Let us find

out?

• Scope: Window variables have a global scope, while

session storage variables have a session scope. This

means that any function or script on the page can access

window variables.

• Duration: Window variables do not persist, which means

that they are lost when the page is unloaded.

Global variables are useful if you want to store a value

that needs to be accessed by multiple functions or scripts on

the page. Suppose that aligns with the needs of your

application. These work for all micro-frontend styles except

Iframe-based approaches.

3.4. Service Worker

While more complex to implement than the other

methods discussed so far, service workers bring some cool

capabilities to the mix, including their ability to proxy http

requests. Service Workers can behave like a browser proxy

server (Refer to Figure 9) that executes in an impendent

context that persists even if your web app refreshes or reloads.

Service workers do have the additional benefits of running in

Tab 1/ Domain 1

Tab 1/ Domain 1

Tab 1/ Domain 2

Browser

X
NO

ACCESS

Web Storage

Read/Write

Read/Write*
if local Storage

Tab 2/ Domain 1

Tab 1/ Domain 1

Tab 3/ Domain 2

Browser

X
NO

ACCESS

Global

Variable

(window.*)

Read/Write

Tab 1/ Domain 1

Tab 2 / Domain 2

Read*/Write

*based on httponly

X
NO

ACCESS

Cookies

(Domain1)

Browser

Tanmaya Gaur / IJCSE, 11(7), 8-14, 2024

13

their own context and hence can be more performant than

having data in memory in a global variable. Some obvious

shortcomings are that you’ll have to write a fallback for

scenarios where service workers are not supported, as an

example, you cannot use it in incognito in Firefox, and it’s

going to increase the complexity of the app with the message

passing / asynchronosity aspect. Also, in theory, there are

more points of failure as you are introducing a Service Worker

into the mix. If having multiple tabs in sync is a requirement,

this is a much better approach than trying to broadcast the data

using post messages.

Fig. 9 State management using service worker

3.5. IndexedDB

IndexedDB (Refer to Figure 10) is a powerful client-side

storage mechanism that allows web developers to store

structured data, including files/Blob. The key difference from

web storage API is the ability to store large amounts of data as

well as it being asynchronous API and its ability to survive

tabs and even a browser crash.

IndexedDB has some clear advantages over other solutions.

• In most user agents, it can store 1GB of data, which makes

it suitable for larger storage needs. Also, not having these

objects in memory can help with performance.

• IndexedDB can native JavaScript object data and hence

avoids the need to serialize data into JSON strings.

• IndexedDB access is asynchronous, so it has minimal

impact on the main JavaScript processing thread.

While indexedDB makes a lot of sense for state

management and is also accessible from, it does not add

significant value as a session token solution for most web

applications.

Fig. 10 State in indexedDB

4. Conclusion
Session management remains vital to web development

irrespective of the architecture being a monolith or a micro-

frontend. While it is entirely possible to follow traditional

session management approaches when using micro-frontends,

there are key architectural differences to consider, as detailed

in this paper. There are some obvious shortcomings of certain

approaches, as discussed. Beyond these micro-frontend

nuances, the choice of the best technique or option depends on

various other factors, such as the security, performance,

scalability, and usability requirements of your web

application, and the preferences and capabilities of the web

developer.

References
[1] Session Management Cheat Sheet, Owasp Cheat Sheet Series, Owasp, 2024. [Online]. Available:

https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html.

[2] Using the web Storage API, MDN Web Docs, Developer. Mozilla, 2024. [Online]. Available: https://developer.mozilla.org/en-

US/docs/Web/API/Web_Storage_API/Using_the_Web_Storage_API.

[3] IndexedDB API, MDN Web Docs, Developer. Mozilla, 2024. [Online]. Available: https://developer.mozilla.org/en-

US/docs/Web/API/IndexedDB_API

[4] How to Store Session Tokens in a Browser (And the Impacts of Each), Ropnop Blog, 2020. [Online]. Available:

https://blog.ropnop.com/storing-tokens-in-browser/#global-variable.

[5] Chanchal Aidasani, Browser Storage: A Comparative Analysis of IndexDB, Local Storage, and Session Storage, Browsee, 2023.

[Online]. Available: browsee.io/blog/unleashing-the-power-a-comparative-analysis-of-indexdb-local-storage-and-session-storage/.

[6] Craig Buckler, How to Use IndexedDB to Manage State in JavaScript, StackAnatomy, Medium, 2021. [Online]. Available:

medium.com/stackanatomy/how-to-use-indexeddb-to-manage-state-in-javascript-50ac358d896c.

X

Fetch

Fetch

Tab 2/ Domain 1

Tab 1/ Domain 1

Tab 3/ Domain 2

Browser

X NO

ACCESS

Service

Worker

NO ACCESS

Tab 2/ Domain 1

Tab 1/ Domain 1

Tab 3/ Domain 2

Browser

NO
ACCESS

IndexedDB X
read/write

read/write

Tanmaya Gaur / IJCSE, 11(7), 8-14, 2024

14

[7] James L. Milner, Service Worker State Management, Jameslmilner, 2018. [Online]. Available:

https://www.jameslmilner.com/posts/serviceworker-state-management/.

[8] State Management: Overview, React Common Tools and Practices, Netlify.app, 2022. [Online]. Available: react-community-tools-

practices-cheatsheet.netlify.app/state-management/overview/.

