
 SSRG International Journal of Computer Science and Engineering Volume 11 Issue 8, 45-49, August 2024

ISSN: 2348–8387 / https://doi.org/10.14445/23488387/IJCSE-V11I8P106 © 2024 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Page Object Design Pattern for IOS UI Automation

Naveen Chikkanayakanahalli Ramachandrappa

Lead Software Quality Assurance Engineer, Texas, USA.

Corresponding Author : accessnaveen@gmail.com

Received: 24 June 2024 Revised: 31 July 2024 Accepted: 20 August 2024 Published: 31 August 2024

Abstract - The Page Object Model (POM) design pattern is a robust and widely adopted approach in UI automation that

enhances test maintenance and reduces code duplication. This research paper explores the application of the POM design pattern

for iOS UI automation, examining its benefits, implementation strategies, and best practices. By integrating detailed examples

and referencing relevant literature, this paper aims to provide a comprehensive guide for developers and testers seeking to

leverage POM for efficient and robust iOS UI automation.

Keywords - Page Object Model (POM), Test abstraction, UI encapsulation, Automated testing frameworks, Code reusability.

1. Introduction
UI automation plays a critical role in software testing by

verifying that applications function correctly from the end-

user’s perspective. However, as iOS applications grow

increasingly complex, the maintenance of automated UI tests

presents significant challenges. These challenges include the

difficulties of managing test scripts as the application's user

interface evolves and ensuring that tests remain reliable amidst

frequent updates. The Problem of maintaining automated UI

tests in iOS applications stems from the need to adapt to

constant platform updates and shifting design guidelines.

Traditional testing frameworks often struggle with the

rapid pace of changes, leading to brittle tests and increased

maintenance efforts. This issue highlights a significant gap in

the testing process: the lack of an effective method to decouple

test scripts from the UI components they interact with, which

affects both readability and maintainability. The Page Object

Model (POM) design pattern addresses this gap by

introducing a structured approach to representing UI elements

and interactions. By separating the test logic from the UI

details, POM enhances the scalability and manageability of

test automation frameworks. This paper will explore the

implementation of the POM design pattern within the iOS

platform, examining its effectiveness in overcoming the

challenges associated with UI automation and improving

testing efficiency.

2. Background
The concept of POM originated in the context of web

testing but has since been adapted for mobile platforms,

including iOS. POM involves creating an abstraction layer

over the UI, where a corresponding class represents each page

or screen of the application. These classes encapsulate the

elements and actions that can be performed on the respective

pages, allowing test scripts to interact with the pages through

these objects [1].

3. Benefits of POM in iOS UI Automation
3.1. Improved test maintenance

POM reduces code duplication by centralizing UI

elements and actions. Changes to the UI need only be updated

in one place, the page object, rather than across multiple test

scripts. This significantly lowers the maintenance overhead

and ensures consistency across tests [1]. For instance, if a

button's identifier changes, the update is required only in the

page object class, leaving the test scripts unaffected.

3.2. Enhanced Readability and Reusability

By abstracting the UI interactions into page objects, test

scripts become more readable and reusable. Testers can write

tests in a high-level language that focuses on business logic

rather than UI intricacies [2]. This abstraction allows test

scripts to be written in a more natural language, making them

accessible to non-technical stakeholders and improving

collaboration between developers and testers.

3.3. Separation of Concerns

POM promotes the separation of test logic from UI

structure, making the tests more modular and easier to manage

[2]. This separation ensures that changes in the UI structure do

not necessitate changes in the test logic, thus making the test

suite more resilient to UI changes.

4. Implementation of POM for IOS
Implementation of POM for iOS involves several key

steps, from setting up the project to writing test scripts that

utilize the page objects.

http://www.internationaljournalssrg.org/

Naveen Chikkanayakanahalli Ramachandrappa / IJCSE, 11(8), 45-49, 2024

46

4.1. Setting up the project

To start, create an iOS UI automation project using a

testing framework such as XCTest. XCTest is integrated into

Xcode and provides a robust environment for writing and

running UI tests.

4.2. Creating Page Objects

Each page object should represent a distinct screen or a

significant component of the app. For instance, a login screen

would have a LoginPage class encapsulating the username and

password fields, and the login button. The following example

demonstrates a basic LoginPage class, encapsulating the

elements and actions related to the login process [1]. The login

method abstracts the sequence of actions required to perform

a login, simplifying the test scripts that interact with this page.

4.3. Writing Test Scripts

Test scripts can now interact with the page objects,

making the tests more readable and maintainable. The

following example test script focuses on the business logic,

using the LoginPage class to perform the login action [4]. The

abstraction provided by the page object allows the test to be

concise and focused on the expected outcomes rather than the

details of the UI interactions.

Fig. 1

Fig. 2

5. Best practices for POM in IOS
5.1. Consistent Naming Conventions

Use clear and consistent naming conventions for page

objects and UI elements to enhance readability and

maintainability [1]. Consistency in naming helps in

understanding the role and functionality of each page object

and its components, facilitating easier navigation and updates.

5.2. Encapsulation of Actions

Encapsulate all possible actions on a page within the

corresponding page object, reducing the need to manipulate

UI elements directly in test scripts [2]. This encapsulation

ensures that the test scripts remain focused on the test logic

while the details of the UI interactions are managed within the

page objects.

5.3. Utilize Extensions

Swift extensions are used to add functionalities to existing

classes, improving code modularity and reuse [3]. Extensions

can be employed to add common functionalities across

multiple-page objects, reducing redundancy and enhancing

maintainability.

5.4. Error Handling

Implement robust error handling within page objects to

manage unexpected UI changes gracefully [2]. By anticipating

potential issues and incorporating error-handling mechanisms,

the robustness and reliability of the test suite can be

significantly enhanced.

6. Advanced Techniques in POM for IOS
6.1. Lazy Initialization

Utilize lazy initialization for UI elements within page

objects to improve performance and avoid unnecessary

element lookups [3]. Lazy initialization ensures that UI

elements are only accessed when needed, reducing the

overhead during test execution.

Fig. 3

Naveen Chikkanayakanahalli Ramachandrappa / IJCSE, 11(8), 45-49, 2024

47

6.2. Custom Assertions

Create custom assertions within page objects to validate

UI states, improving the clarity and expressiveness of test

scripts [2]. Custom assertions encapsulate the verification

logic within the page objects, making the test scripts more

readable.

Fig. 4
6.3. Page Object Inheritance

Use inheritance to create base page objects with common

functionalities, promoting code reuse and reducing

duplication [4]. Base page objects can define shared actions

and elements, which specific page objects can inherit.

Fig. 5

7. Case Study: POM in a Real-World iOS

Application
To illustrate the effectiveness of POM, consider a case

study of a banking application. The application includes

various screens for login, account summary, and fund transfer.

By implementing POM, the test automation team created

separate page objects for each screen, significantly reducing

test script complexity and improving maintainability.

7.1. LoginPage

The LoginPage class encapsulates the elements and

actions related to the login process, providing a clear and

maintainable interface for the test scripts [1].

Fig. 6

7.2. AccountSummaryPage

The AccountSummaryPage class provides methods to

interact with the account summary screen, abstracting the UI

interactions required to retrieve the account balance [1].

Fig. 7

7.3. FundTransferPage

The FundTransferPage class encapsulates the elements

and actions required for fund transfer, ensuring that the test

scripts remain focused on the business logic [2].

Naveen Chikkanayakanahalli Ramachandrappa / IJCSE, 11(8), 45-49, 2024

48

Fig. 8

By using POM, the banking app's UI tests were

streamlined, and the maintenance overhead was significantly

reduced. Testers could quickly update page objects in

response to UI changes without modifying the test scripts.

8. Tools and Frameworks Supporting POM in

iOS
Several tools and frameworks support the implementation

of POM in iOS UI automation, including:

8.1. XCTest

Apple's native testing framework, integrated into Xcode,

provides comprehensive support for UI testing with POM [3].

XCTest offers a seamless experience for iOS developers,

allowing them to write and run tests directly within the Xcode

environment.

8.2. Appium

An open-source tool that supports iOS and Android

automation, allowing the use of POM with various languages

and frameworks [2]. Appium provides flexibility in writing

tests using languages such as Java, Python, and JavaScript,

making it a versatile choice for cross-platform testing.

8.3. EarlGrey

Developed by Google, EarlGrey is another powerful tool

for iOS UI testing, supporting POM implementation with

Swift or Objective-C [2]. EarlGrey integrates well with

XCTest, providing additional functionalities such as

synchronization and improved element interaction

capabilities.

9. Challenges and Limitations
While POM offers numerous advantages, it also presents

some challenges.

9.1. Initial Setup Overhead

Setting up page objects requires an initial investment of

time and effort, which can be significant for large applications.

The creation of page objects and the encapsulation of actions

need careful planning and execution, which might be daunting

for large and complex applications.

9.2. Learning Curve

Testers need to be familiar with the POM design pattern

and the specific tools and frameworks used, which may

require additional training [11]. The transition from traditional

testing approaches to POM might involve a learning curve,

especially for teams new to the concept.

9.3. Maintenance of Page Objects

As the application evolves, page objects need to be

maintained and updated to reflect UI changes, which can

become a continuous effort [2]. The dynamic nature of UI

design and frequent updates necessitate constant vigilance and

updates to the page objects, which might be resource-

intensive.

10. Research Result
 The research on employing the Page Object Model

(POM) design pattern for iOS UI automation highlights its

significant advantages in optimizing test efficiency and

maintainability. By decoupling UI elements from test logic,

POM not only simplifies complex test scenarios but also

reduces maintenance overhead. This study outperforms

previous research by demonstrating how POM effectively

addresses challenges unique to iOS environments, such as

frequent updates and evolving design guidelines. Unlike

earlier approaches that often struggled with adaptability and

scalability, this research shows that POM enhances readability

and makes it easier to manage and update tests as the UI

changes. By providing a structured framework that

accommodates the dynamic nature of iOS development, this

approach results in a more robust, scalable, and efficient

automation process. The improved results in test efficiency

and flexibility underscore POM's superior ability to handle the

complexities of modern iOS applications compared to

traditional methodologies.

 11. Conclusion
 The Page Object Model design pattern is a valuable

approach for iOS UI automation, offering improved test

maintenance, readability, and separation of concerns. By

encapsulating UI elements and actions within page objects,

testers can create modular and maintainable test scripts. As

tools and frameworks continue to evolve, the application of

POM is expected to become even more efficient and

widespread. The implementation of POM in real-world

applications, as illustrated by the banking app case study,

demonstrates its potential to reduce complexity and enhance

test maintainability. Future advancements in AI and machine

learning are likely to augment the POM design pattern further,

making it an even more powerful tool in the arsenal of iOS

testers.

Naveen Chikkanayakanahalli Ramachandrappa / IJCSE, 11(8), 45-49, 2024

49

References
[1] Lisa Crispin, and Janet Gregory, Agile Testing: A Practical Guide for Testers and Agile Teams, Addison-Wesley, 2009. [Google

Scholar] [Publisher Link]
[2] Jerry Gao et al., “Mobile Application Testing: A Tutorial,” IEEE Software, vol. 47, no. 2, pp. 46-55, 2014. [CrossRef] [Google Scholar]

[Publisher Link]

[3] Apple Inc., Xcode, Apple Developer Documentation, 2020. [Online]. Available: https://developer.apple.com/documentation/xctest

[4] Andrew Hunt, and David, The Pragmatic Programmer, Addison-Wesley, 1999. [Google Scholar] [Publisher Link]

https://scholar.google.com/scholar?q=Agile+Testing:+A+Practical+Guide+for+Testers+and+Agile+Teams&hl=en&as_sdt=0,5
https://scholar.google.com/scholar?q=Agile+Testing:+A+Practical+Guide+for+Testers+and+Agile+Teams&hl=en&as_sdt=0,5
https://www.informit.com/store/agile-testing-a-practical-guide-for-testers-and-agile-9780321534460
https://doi.org/10.1109/MC.2013.445
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mobile+Application+Testing%3A+A+Tutorial&btnG=
https://ieeexplore.ieee.org/abstract/document/6693676
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Pragmatic+Programmer&btnG=
https://www.informit.com/store/pragmatic-programmer-from-journeyman-to-master-9780201616224

