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Abstract - Data mining extracts hidden patterns from large datasets, making the information extracted useful for improving 

decisions and, hence, business outcomes. Among these methods, frequent itemset mining is a very popular and core technique 

within association rule mining The Apriori algorithm is one of the most popular algorithms in this area of frequent itemset and 

association rule discovery. Applications include market basket analysis, educational course selection, stock management, and 

medical data analysis. However, large datasets are exponentially increasing the computational burden of the Apriori algorithm, 

and hence, execution on parallel-distributed environments can improve performance. The improved approach presented in this 

paper integrates the Apriori algorithm with the Cuckoo Search algorithm using opposition parameters-based learning (CS-

OPBL). The Cuckoo Search mechanism with opposition-based learning efficiently prunes the transactions and items in each 

transaction. It is an approach whose processing time is greatly reduced if executed on a Spark in-memory distributed 

environment. The experimental results showed that the proposed CS-OPBL-based method outperforms the competing 

algorithms; for example, at a minimum support threshold of 0.75%, the processing time of this approach is only about 5.8% of 

that by using the state-of-the-art method on the retail dataset. 

 

Keywords - Data Mining, Frequent Itemset Mining (FIM), Association Rule Mining, Apriori Algorithm, Cuckoo Search and 

Spark. 
 

1. Introduction  
The data age is where we find ourselves today, wherein 

many sources, including social media platforms, sensors, 

search engines, medical records, and more, are constantly 

producing data [1]. Supporting people in getting information 

is needed right away(valuable stuff) from this data. In 

databases, this procedure is known as discovery of knowledge 

(KDD) [2]. "Data mining," or the act of identifying patterns 

from huge datasets, is a crucial component of KDD. 

Applications for data mining may be found in marketing, 

finance, education, telecommunications, fraud detection, and 

medicine. The Apriori method is incremental and operates 

step by step. During each cycle, it systematically examines the 

database to provide a vast quantity of potential candidates 

derived from common itemsets. The typical execution takes 

place on a solitary system, which cannot handle such a 

substantial volume of data. In order to handle concerns such 

as data duplication and synchronization, it is necessary to use 

numerous computers and a parallel method. The Apriori 

algorithm's significant limitations in terms of computing 

complexity render it inefficient for usage with bigger data 

sizes. 

 

A detailed account of an empirical investigation into the 

Apriori algorithm can be found in reference [4]. An 

experiment was carried out using a sample of 2,000 

transactions from a total of 2,064 hospital transactions. The 

Apriori algorithm's runtime has a positive correlation with a 

list of all the deals, indicating that as the data amount rises, the 

method takes longer to execute. The following provides 

essential context for our work. 

 

1.1. Association Rule Mining  

Association Rule Mining (ARM) is an approach to 

mining data that is used to discover common definitions of 

patterns and significant relationships between factors in 

extensive datasets. It facilitates making choices by identifying 

the correlation between various aspects of a database. There 

are measurements of Rank and sort things by how interesting 

they are in choosing highly intriguing regulations, such as 

trust and help. In dataset D with N transactions D={T1, T2,....., 

TN}, A part of each transaction is made up of items from I, 

which includes M items I={i1, i2,…., iM}. If Separate Z and 

L subsets of I  such that Z∩L = ∅and a rule Z =>L  exists, 

http://www.internationaljournalssrg.org/
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where  Z is the precursor (or left side) and L is the result (or 

right side).  

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑍 =
𝑐𝑜𝑢𝑛𝑡(𝑍)

𝑁
         (1) 

 

The proportion of transactions that include every item in 

the itemset Z (number of transactions including Z/total the 

number of transactions) is supporting for itemset Z. If an item 

set’s support hits or goes above the minimum support level, it 

is said to be common and is given as, 

 

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑍 ⟶ 𝐿) =
𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑍𝐿)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑍)
          (2) 

 

The confidence of a rule (Z🡪L) is determined by dividing 

the number of transactions that include both Z and L by the 

number of transactions containing Z. This shows how likely it 

is that L will happen in a deal that has Z in it. 

  

1.2. Apriori Algorithm 

The goal of Apriori is to iteratively identify frequently 

used item sets and Create rules for how to connect different 

things. For any integer k greater than or equal to 1, the kth 

iteration of Apriori produces sets of frequently occurring 

items. The method begins by constructing frequent itemsets, 

referred to as  L1, which consist of single items (1-itemsets). 

The algorithm can recursively generate a frequency of 2-

itemsets  (L2) frequent of 3-itemsets (L3) until there are no 

more sets of things that meet the predefined minimum support 

threshold. Each iteration builds upon the results of the 

previous one to generate a new set of candidate itemsets. It 

follows that {A} and {B} must likewise be common itemsets 

if {AB} is found to be one. This is due to the principle that 

frequent itemsets must be derived from other frequent 

itemsets. 

➢ Finding the sets of objects that appear most often in the 

database with little help 

➢ Association rules are generated by using collections of 

objects that appear frequently. 

 

There are two main parts to the process of creating 

Apriori frequent itemsets: 

➢ In each iteration k, the join phase involves joining Lk-1 

with itself to create a candidate set Ck. 

➢ The pruning phase is utilized to eliminate k-itemsets 

whose support count is below the target threshold. This 

process results in generating collections of frequently 

occurring itemsets,  Lk, from Ck. 

 

 
 

                                          
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Working flow of apache spark 
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1.3. Apache Spark Utilization  

According to [5], Apache Spark is a powerful and 

general-purpose open-source framework for cluster 

computing that processes large volumes of data more 

efficiently than Hadoop MapReduce. Spark is reported to be 

ten times better in memory usage and one hundred times better 

in storage. This advantage arises because Hadoop 

MapReduce, which reads and writes data for the Hadoop 

distributed file system (HDFS), faces challenges with 

algorithmic iterations due to the high I/O strain, leading to 

increased processing times. It offers compatibility with 

Hadoop, Mesos, cloud environments, and standalone setups, 

unlike MapReduce, which is limited to Hadoop. It supports 

various databases such as HBase, Cassandra, and HDFS and 

is compatible with multiple programming languages, 

including Scala, Python, and Java. At its core, Spark utilizes 

the RDDs as the fundamental data structure for its 

programming interface. 

 

 Spark manages the automatic partitioning and distribution 

of RDD information spanning the cluster and performs actions 

on them at the same time [17]. While Hadoop achieves fault 

tolerance by replicating each data block three times, Spark 

ensures fault tolerance by tracking the lineage of each RDD. 

To ensure fault tolerance, Spark monitors the lineage of each 

RDD, maintaining references to parent RDDs when new ones 

are created. This lineage information is represented as a 

lineage graph, which records the dependencies of each RDD. 

This graph is useful for recomputing and recovering lost data 

when needed. 

 

 Additionally, Spark can cache RDDs in memory if they are 

accessed frequently, which accelerates subsequent operations. 

These distinctive features of Spark enhance where iterative 

programming is executed. In Spark, a central coordinator 

called the driver communicates with several distributed 

workers, or slave nodes, to execute application code. This 

setup is shown in Figure 1. Spark functions utilizing a 

master/slave architecture. Executors are responsible for data 

storage and computation, and the driver asks the manager of 

the cluster to start them with resources. Assigning tasks to 

executors, the driver decomposes Spark jobs. Executors report 

back to the driver with the outcomes of their work after it is 

over. 

 

1.4. Cuckoo Filter Assembly 

Probabilistic data structures like cuckoo filters and Bloom 

filters offer efficient time and space performance. They enable 

rapid and accurate membership checks for large datasets. 

These filters allow you to quickly determine if an item is part 

of a set and also to add items to the set. The following points 

show why a cuckoo filter is superior over a Bloom: 

➢ The Bloom filter does not support deleting existing items 

without reconstructing the entire filter, a process that 

requires O(1) time. However, it does support efficient 

deletion, also with an O(1) time complexity. 

➢ Enhancing lookup efficiency in a cuckoo filter requires 

only O(1) time and involves checking just two locations. 

➢ When the target false-positive rate is below 3%, the space 

requirements will be reduced. 

 

Figure 2 illustrates the construction of the cuckoo filter. 

In this filter, each of the m buckets. There are two distinct hash 

functions used by the cuckoo hash table, which allows it to 

hold b objects. 

➢ When inserting or searching for an item, the appropriate 

location is ascertained via 

➢ The hash functions h1(x) and  h2(x)A cuckoo filtered 

maintains only the value of fingerprint data, generated by 

the hashing function  = fingerprint(x). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 CS-OPBL with two hashes with four entries each 

 

The cuckoo filter Saves only the f-bit products' 

fingerprints rather than the products themselves. Both the size 

of each bucket b  and the length of the fingerprints f in bits 

impact the filter's false-positive rate. The required length of 

the fingerprint, f, is approximately estimated in [3]. 

 

𝐹 ≥ ⌈𝑙𝑜𝑔2 (
2𝑎

𝜀
)⌉ = ⌈𝑙𝑜𝑔2 (

1

𝜀
) + 𝑙𝑜𝑔2(2𝑎)⌉ bits        (3) 

An empirical study of the cuckoo filter with a = 2, 4, and 

8 bucket sizes is described in reference [20]. The findings 

indicate that the cuckoo filter when using a = 4, achieves a low 

false-positive rate and excellent space efficiency. 

 

1.5. Research Gaps  

While various methods have been proposed to enhance an 

Apriori method for massive data, certain issues remain 

unaddressed. CS-OPBL seeks to address these gaps and 

improve the efficiency of the Apriori method as data volumes 

increase. Table 1 outlines these deficiencies and how CS-

OPBL addresses them. The CS-OPBL algorithm addresses the 

limitations of the original Apriori method. It is designed to 

work with distributed data management platforms that support 

parallel storage, access, and processing of large datasets, such 

as ecosystems, such as Hadoop and Spark.  

 

The CS-OPBL method ditches candidate generation of 

the priori algorithm's stage for a more efficient and less 

computationally intensive alternative. Instead, it uses the 
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cuckoo filter to keep only the most frequently occurring items 

and employs these to prune transactions, thereby enhancing 

performance. The paper is organized as follows: Part 2 

reviews key research on association rule mining. Part 3 

provides an overview of the suggested techniques. Part 4 

Provides the experimental outcome and discusses their 

alignment with previous findings. Finally, Part 5 concludes 

with a summary and forecast directions. 

 

2. Related Works 
Extensive research in the field of association rule mining 

in recent decades has resulted in numerous proposals for 

improving the Apriori algorithm. Agrawal and Shafer [5] 

proposed parallelizing the Apriori algorithm, but it struggles 

with performance due to timing and communication 

challenges as data volume increases. Using the MapReduce 

structure to perform Apriori was suggested by Li et al. [6]. 

There are two steps to this process: planning and lowering. 

During the mapping stage, the data is turned into pairs of keys 

and values, and possible candidate sets are found. In the 

lowering stage, the outcomes of different mappers are added 

together to make a final result. This result includes sets of 

things whose support counts meet or go above the minimum 

level. This step is repeated until there are no more frequent 

item sets to be found.  

 

Singh and Miri [7] developed a parallel Apriori algorithm 

that leverages a Bloom filter to minimize the time required for 

subsequent runs. This algorithm is divided into three stages. 

Initially, the mapper and reducer identify singleton frequent 

items. In the next stage, the Bloom filter stores these 

individual items, and each transaction is pruned to include 

only items Contained within the Bloom filter. The Spark 

RDD-based parallel Apriori algorithm known as YAFIM (Yet 

Another Frequents Item set of Mining) [8] operates in two 

different phases. The initial phase identifies individual 

Recurring items, while another phase iteratively produces 

(k+1)-frequent data from k-frequent data. To expedite the 

process of finding (k+1)-frequent data, YAFIM uses a hash-

based tree structure for managing candidate (k+1)-data, which 

must first meet the minimum support threshold. However, 

when dealing with a large number of potential item groups, 

YAFIM may not be as efficient as the approach proposed by 

Li et al. [6]. 

 

Using the Spark RDD, Rathee et al. [9] developed R-

Apriori, a high-speed parallel Apriori consisting of three 

different stages. In the first stage, singleton frequent items are 

generated. The second phase involves using these singleton 

items stored in a Bloom filter to prune transactions, retaining 

only items present in the Bloom filter. In the third phase, the 

algorithm uses the singleton items from the previous phase to 

create a list of all possible item pairs and identifies the 2-

frequent itemsets. The third phase then iteratively generates k-

frequent item sets and candidate storage from (k+1)-frequent 

item sets of (k+1)-items in a hash tree, which speeds up 

searching. 

 

Regarding YAFIM, this approach offers improved 

performance. "EAFIM [10] is a sophisticated frequent item set 

mining technique tailored for Spark, relying on the Apriori 

method. It works in two main stages: first, it creates candidate 

itemsets and determines their favourable ratings; second, it 

iteratively refines the collection of data by removing items and 

transactions that are not important. When compared to R-

Apriori and YAFIM, EAFIM performs better. Furthermore, 

HFIM, a hybrid typical itemset mining technique designed 

specifically for Spark, was suggested by the researchers in 

[11]. HFIM follows a two-step process: first, it transforms the 

dataset into a vertical format (consisting of items and IDs) to 

pinpoint unique frequent items. Then, it distributes this 

vertical dataset across all nodes. The adaptive-miner 

approach, proposed by Rathee and Kashyap [12], consists of 

two different phases. This dynamic programming approach 

adapts to the dataset’s structure, enhancing the identification 

of frequent item groups. Furthermore, Gao et al. [13] 

suggested enhanced Apriori techniques for Spark to tackle 

scalability challenges present in the original Apriori method.  

 

The suggested method minimizes both the event count 

and data processing time. Castro et al. [14] assessed different 

Apriori algorithms on Hadoop MapReduce and Spark using 

various datasets with minimal intervention. A Spark-based 

Apriori approach was introduced by Raj et al. [15]; it improves 

efficiency and scalability by minimizing the costs coming 

from RDD shuffle tasks during each iteration that follows. 

Kumar and Mohbey [16,17] introduced the CEUPM 

(communications for the cost-effective utility-based patterns 

mining) algorithm, designed, which utilizes a search space 

division strategy to distribute tasks evenly across cluster 

nodes. This approach reduced communication costs during the 

shuffle process. The algorithm proved to be more efficient 

overall, as it ran faster, used less memory, and offered better 

scalability. They explored various methods for pattern mining 

in large-scale data using Hadoop, and Spark's ability to 

process data in parallel and distribute tasks efficiently was 

evaluated through four key types of itemset mining: highly-

utility itemset mining, parallel frequent itemset, sequential 

pattern, and frequent itemset datasets (like sensor data or 

experimental data).  

 

Gawwad et al. [18] introduced techniques for frequent 

databases that can be executed in parallel and designed to 

handle large datasets by utilizing the multiple cores of the 

hardware. Their method involved using prime numbers to 

determine the largest common factor among transactions, with 

each item in the transactions assigned a unique prime number. 

Meanwhile, Kumar and Mohbey [19,20] introduced the 

UBDM (Uncertain Big Data Mining) method, which 

performed effectively within the Spark framework. 

Furthermore, the Stellar Mass Black Hole Optimizing 
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approach was introduced by Kannimuthu and Premalatha 

[21]. This method eliminates the need for an initial minimum 

benefit barrier by extracting the top k high-utility collections 

from transaction networks. This method enhances processing 

efficiency and reduces memory consumption by incorporating 

a trimming technique that eliminates unnecessary search 

regions.  

 

Furthermore, the Stellar Mass Black Hole Optimizing 

approach was introduced by Kannimuthu and Premalatha 

[21]. This method eliminates the need for an initial minimum 

benefit barrier by extracting the top k high-utility collections 

from transaction networks.  

 

This addresses a major key difficulty in mining high-

utility itemsets is determining the appropriate minimum utility 

threshold, which defines the level of utility required for an 

itemset to be considered significant that varies depending on 

the database. 

By using a combined evolutionary method for identifying 

high-utility itemsets in internet service design, Kannimuthu 

and Chakravarthy [22] were able to enhance processing speed 

and memory efficiency significantly. In addition, itemsets 

with negative utility ratings are a common challenge for the 

present algorithms. In order to get over these restrictions, 

Kannimuthu and Premalatha [23] developed a useful pattern-

growth technique that worked well in contrast to previous 

methods for managing sets of items with zero values. Chiclana 

et al. [24] suggested a new association rule mine technique 

inspired by animal behaviour optimized strategies. This 

approach aims to decrease the quantity of generated rules, as 

well as to lower processing time and memory usage. It 

eliminates unnecessary or low-support rules and retains only 

the frequent rules for optimization within the animal motion 

framework. Meanwhile, Rajagopal et al. [25] developed a crop 

selection strategy that outperformed other methods by 

enabling the selection of the most profitable crop. 

2.1. Performance Comparisons of the Apriori Algorithm and its Evaluations [4]
 

Table 1. Analysis 

 
 

 

 

S.No Properties Apriori Apriori TID Apriori hybrid Tertius 

1 
Candidate 

generation 

Apriori produces 

candidate item sets 

from of previous pass 

by not taking the 

transaction in the 

database. 

Once the first pass is 

completed, the database is 

not considered for 

counting support of 

candidate itemsets 

It generates Candidate 

item sets by using Apriori 

but later jumps to Apriori 

TID. 

Candidates are 

generated by 

considering attribute 

pairs for the rule 

generation. 

2 Methodology 
Join and prune 

phases/steps 

Considers Join and Prune 

in combination with TIDS 

Combination ofapriori 

and aprioritid 

First-order logic 

presentation is 

preferred 

3 Database scan 
Needs many scans of 

databases 
Needs only one scan 

Addition of Apriori and 

aprioritid 

Scan depends on the 

count of literals in 

rules 

4 Memory usage 

It occupies high 

memory space for the 

process of candidate 

generation 

In the first pass, this 

algorithm needs memory 

for Lk-1 and Ci-1 

candidate generation. It 

indulges extra cost in case 

it does not fit in memory. 

It infers extra memory 

when sliding from 

Apriori to Apriori TID 

Consumes 

considerable time and 

printsout rules when 

the program runs short 

of memory and 

messages 

5 Execution time 
Mainly spends more on 

Candidate Generation 

Executes fast in contrast 

to Apriori for small 

problems but incurs more 

time for large ones. 

Preferably better than 

Apriori and Apriori TID 

Consumes a 

considerably long time 

for larger sets, i.e. even 

hours 

6 Data support Limited Nearly large sets Very Large datasets Limited 

7 Accuracy Less Better than Apriori 
Increased Accuracy 

compared to Apriori TID 

Considerable, not 

high, ie Average 

8 Applications 

It can be mainly 

preferred for closed 

Item sets. 

Preferred for small 

problems. 

Well suited for closed 

sets. 

Most generally 

preferred. 

9 
Privacy-preserving 

approach preferred 
Heuristic approach Exact approach Heuristic approach 

Cryptographic 

approach 
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Table. 2 Analysis 

 

3. The Proposed Techniques  
Apriori is a repetitive method that finds the most common 

sets of things and builds association rules from them in a 

certain order. It has two parts: first, making single-item sets of 

frequent items; second, making sets of frequently used items 

in an iterative way.  

 

Because potential sets with all possible combos of 

common item sets are made in the second part of each 

repetition, the method is ineffective. It becomes higher priced 

to run as the amount of the data grows. These sets of frequent 

items come from earlier versions and are now being used to 

choose common sets of items moving forward.  

 

They are evaluated individually against each transaction 

to determine the quantity of each new set of items. The main 

goal of the CS-OPBL algorithm was to fix the main problems 

with the preliminary Apriori algorithm. The answer looks into 

using multiple computers and a parallel method to get around 

the fact that Apriori's speed drops as data size grows.  

 

If the original data is very big, the cuckoo filter can help 

you quickly check if an item is a member. It makes it faster to 

check for each transaction whether an item is often bought or 

not so that you can decide whether to keep it or get rid of it if 

it has not often been bought. There are two parts to the CS-

OPBL formula. 

3.1. Stage 1 

Program 1 describes a program that is in charge of making 

all the individual common things in this phase. As a line graph 

of RDDs, Figure 3 displays the processing flow. The results 

of transactions are divided up and given to several worker 

computers when they are uploaded into the RDD of Spark 

from HDFS, allowing each worker to view them 

independently. These transactions are read by the map() 

function, which turns each one into a list of things. For every 

transaction, which is a list of things, the fatMap() method is 

used to split each item on its own. The map() method turns 

each item on the list into a key-value pair of the form (item, 

1). After that, the ReduceByKey() method guesses what every 

item's function is. Then, the filter() method removes items 

with frequencies less than the minimum support count 

(min_sup), leaving only the 1-frequent itemsets with their 

respective items and support values. Subsequently, the keys() 

function is utilized to extract just the items, discarding the 

counts, from these 1-frequent itemsets. These items are then 

inserted into the cuckoo filter for further processing. The 

things that are used a lot are stored in memory to quicken up 

the next step. Once phase one is over, the cuckoo filter 

structure is used to store the daily things. It is shared among 

all of the nodes in the broadcast function with the use of a 

cluster of the Spark framework. The ReduceByKey() method 

cut down on the time needed to make the singleton common 

items.

Sno Properties ECLAT FP Growth AIS PSO 

1 
Candidate 

generation 

Uses bit matrix 

representation of 

transactions and prefix 

tree in   DFS order. 

Does not generate a 

candidate set but takes 

a few passes over the 

database 

Scans database each time 

for generating 

candidates. 

Candidates are 

generated when the db 

scan is in progress. 

2 Methodology 

Bit matrix rep.& depth-

first search of prefix 

tree construction from 

bit matrix 

Two phases of divide 

and rule method 

2 stages, first frequent 

item set generation 

Uses the concept of 

‘neighbourhood.’ 

3 Database scan 
Only once till matrix 

construction 

Scans fewer no of 

times until the 

construction of the fp-

tree. 

Multiple scans Same as AIS 

4 Memory usage 

Considerably less as 

prefix tree rep. Is 

considered. 

Comparatively 

average 
Occupies much space Less comparatively 

5 Execution time 
Faster initially and 

average later 
Average Long time Very fast 

6 Data support Large Very large Less Very large 

7 Accuracy Considerably better 
High when compared 

with Apriori TID 
Too small or less Excellent 

8 Applications 
Mainly preferred for 

free itemsets. 

Preferred for large 

applications 

Well suited for small 

problems 

Large scale, including 

closed sets and free 

item sets, etc. 

9 
Privacy-preserving 

approach preferred 

Reconstruction based 

approach 

Reconstruction based 

approach 
Exact approach 

Cryptographic 

approach 



N. Bhanu Prakash & E. Kesavulu Reddy  / IJCSE, 11(9), 26-38, 2024 

 

32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 CS-OPBL stage 1 flow 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4 CS-OPBL stage 2 flow 
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3.2. Stage 2 

In this part, the method shown in method 2 works by 

going through steps over and over again. This function creates 

the k-frequent item sets (k > 1) from scratch. To clean up deals  

and reduce the number of items in each one, CS-OPBL uses 

the cuckoo filter structure. Instead of generating every 

possible candidate itemset, the algorithm constructs candidate 

sets by pruning transactions to include only those with at 

least kk items, where kk denotes the length of the frequent 

itemsets to be found. Transactions shorter than kk are 

excluded, as they cannot produce kk-item candidates. The 

execution flow, represented by the graph of RDDs Figure4, 

demonstrates this method. Initially, transactions are filtered to 

remove all non-frequent items, retaining only those that 

appear in the cuckoo filter. Transactions with kk or more 

items, starting with k=2k=2, are then kept. Because of this, the 

collection has fewer deals and things. Second, the steps below 

are done each time the loop goes around, as long as k>=2 and 

k is the length of a common itemset: 

➢ The `mapPartitions()` method works on individual 

partitions (or blocks) of the RDD. Following this, 

`flatMap()` is used to split these combinations into 

individual items, with each combination being handled 

separately. 

➢ The `map()` function processes a list of k items and 

creates key-value pairs for every item combination. The 

`ReduceByKey()` method then applies a custom hash 

function, murmur-hash3 (mmh3), to determine the 

frequency of each composite key combination.  

➢ If multiple k-frequent data are identified, the algorithm 

advances for (k + 1)-data. If no k-frequent data are found, 

the algorithm resets kk to 1 and concludes.  
 

This process is carried out through the following steps: 

1. The k-frequent itemsets are given the fatMap() method to 

split the unique items that makeup F. 

2. We then compare these items with those frequently used 

and stored in the cuckoo filter.  

3. If a discrepancy is identified, the subsequent actions are 

taken. 

4. The cuckoo filter structure is changed by removing the 

items that were different in the previous step.  

5. The RDD's mapPartitions () function executes on every 

division (block). Deals with lengths more than or equal to 

k are first trimmed down, and then those deals are 

trimmed back one more until only things in the cuckoo 

lens remain. In order to employ them more quickly in the 

next round, it then saves them in storage.  

6. The execution begins at step 1 in order to begin the 

subsequent iteration. If there is no change, it is assumed 

that the k-frequent item is set from the memory, and k is 

increased. Step 1 is finally achieved to start the 

subsequent cycle. 
 

During this stage, the Apriori method's need for creating 

candidates was effectively removed by the cuckoo filter 

architecture. Consequently, there is no longer a need for 

expensive evaluations because of the significant decrease in 

their computational demands. 
 

3.3. CS-OPBL Illustrations 

For instance, consider a scenario with three data partitions 

and a minimum support threshold of 3. The following phase 

first, with A, B, D, and F have been identified as frequent, with 

support values that satisfy or exceed the minimum support 

criteria. The cuckoo filter stores these transactions. The 

cuckoo filter prunes transactions with a length of at least 2 in 

each partition during the initial iteration of the second phase. 

Following this, the pruned transactions with a length of at least 

2 generate combinations of 2 items. Every combination is 

converted into the format. We analyze every partition 

concurrently, using division 2 as an example (Figure 5(a)). 

Next, we employ the filter() function to eliminate 

combinations with a frequency less than 3, as illustrated in 

Figure 5(b). The output consists of two frequent item sets. 

Figure 5(b) shows that the number of 2-common item sets is 

greater than 1, which means that we need to keep going by 

raising k. We have changed the cuckoo filter to only store 

items from the two most common sets.  
 

This is shown in Figure 5(c). We use the cuckoo filter in 

the second round  (k = 3) to eliminate events in each section 

that have a length of three or more. As seen in Figure 5(d), the 

outcome for partition 2 is a single transaction with a duration 

of 3 seconds. No combinations of three items may be formed 

from a given transaction, and it will be eliminated if it is 

included in a certain partition and its Length adjustments 

before or after pruning in the cuckoo filteris less than 3. Figure 

5(e) illustrates the calculation of the frequency of each 

combination following the application of the reduceByKey() 

function to all partitions. The filter() function subsequently 

eliminates any sets of three items that occur less than three 

times. 
Algorithm 3.1: CS-OPBL For Enhancing Apriori Algorithm 

Inputs: 

Database: Transaction dataset 

min_support: Minimum support threshold 

Output: 

1-frequent items: RDD of single-item frequent sets 

For each entry in the processed Dataset 

a. Perform_Mapping(offset_index, entry) 

b. expand_Mapping(entry, extract_elements) 

c. For each item in entry 

i. Perform_Map(item, 1) 

End For each 

End expand_Mapping 

End Perform_Mapping 

End For each 

End KeyAggregation 

1-item_set = 

filter(find_frequent_items(min_support_level)) 

items = 1-item_set.item_keys() 

C_filter = CuckooHashTable(items) 

shared_dataset = distribute(C_filter) 
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Fig. 5(a) Partition using division of 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5(b) Number of 2-common item sets is greater than 1 
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Fig. 5(c) Cukofilter store items from two most common sets 

 

 

 

 

 

 

 

 

 

Fig. 5(d) Output of partition 2 

  

 

 

 

 

 

 

 

 

Fig. 5(e) The calculation of the frequency of each combination following the application of the reduceByKey() function to all partitions 
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4. Results and Discussions 
This part evaluates the CS-OPBL efficiency. We compare 

CS-OPBL with three Spark-based algorithms—HFIM, 

YAFIM, and EAFIM. A Spark cluster, which CS-OPBL uses, 

consists of four nodes. With three CPU cores and six GB of 

RAM, every node can do its job. All of the nodes are running 

the latest versions of Hadoop, Spark, and Python.  

 

4.1. Dataset Utilized 

The CS-OPBL algorithm operates on three distinct 

datasets. IBM's information generator produced the first 

dataset, T10I4D100K. The second dataset, known as the 

commercial database, is made up of market basket information 

that records distinct transactions from a mall. The third 

dataset, known as the chess dataset, features end-game 

scenarios involving kings and rooks in chess. Key statistics for 

these datasets are detailed in Table 2. 

4.2. Performance Assessment 

In each second-phase repetition, the Apriori algorithm 

creates a huge set of candidates. It then compares these 

candidates to each transaction record to find the k-frequent 

item sets. This process takes the most time and room, 

especially for large files.  

CS-OPBL works on the three datasets listed on a 

collection of four nodes. Each node has its own three CPU 

cores and 6 GB of RAM so that it can do its own thing. EAFIM 

works with groups of five nodes. There are 4 CPU cores and 

16 GB of RAM for each node. The first iteration creates k-

frequent item sets; the second iteration creates two frequent 

item sets, and so on.  

Figure 7 shows the time it takes to run each version of CS-

OPBL, HFIM, and YAFIM. In Figure 7(a), you can see how 

long the T10I4D100K dataset takes to run each time with 

0.25% minimum support. CS-OPBL goes through nine steps 

to create eight frequent item sets. In every version, it does 

better than HFIM and YAFIM. In the chess dataset 

experiment, CS-OPBL requires 9 runs to identify 8 frequent 

item sets with a minimum support level of 85%. It also does 

better than HFIM and YAFIM, as seen in Figure 7(b). Figure 

7(c) shows it does a better job. Table 3 shows how long it took 

for each method to run on all of the datasets. 

We use the minimum support numbers mentioned above 

to test the performance of CS-OPBL on A group of three 

interconnected nodes representing all three datasets. The 

T10I4D100K dataset takes 72.2 seconds to run, with chess 

taking 28.8 seconds and retail taking 11.5 seconds. This means 

that CS-OPBL runs faster as the number of nodes grows. With 

at least 85% confidence, we compare the CS-OPBL running 

time to EAFIM on the chess dataset. The total time it took to 

run EAFIM was 70s. Figure 8 shows that CS-OPBL 

outperforms EAFIM in all trials. 

Fig. 6 Important dataset statistics 

4.3. Discussion  

The HFIM method begins by aggregating transaction IDs 

(TIDs) for each item, organizing data into (item, TID) pairs 

using the groupByKey() function, which is time-consuming 

due to the need for data movement across the network. HFIM 

also requires significant time to analyze vertical data and 

determine itemset frequencies. YAFIM, on the other hand, 

struggles with efficiency when faced with numerous candidate 

combinations, as it consumes substantial space and time to 

scan the transactional data on each node and store candidate 

itemsets in a hash tree for subsequent rounds. EAFIM attempts 

to optimize by identifying frequent items and updating the 

input database by removing redundant items and transactions. 

However, this introduces additional costs when reloading the 

revised input RDD for future iterations. OPCS surpasses 

HFIM, YAFIM, and EAFIM by leveraging a cuckoo filter to 

store frequent items, which are then used to prune 

transactions, allowing for the generation of candidate itemsets 

of size k or larger.  

 

In contrast to Rathee et al., who improve efficiency using 

a Bloom filter for 2-frequent itemset creation—though at the 

cost of needing to rebuild the entire filter for data deletion and 

with lookup time depending on the number of hash 

functions—OPCS utilizes a cuckoo filter for direct deletion 

operations, achieving O(1) lookup performance with less than 

3% space complexity. Moreover, while Rathee et al., like 

YAFIM, use a hash tree to store candidate (k+1)-itemsets and 

scan the entire dataset in each iteration, OPCS avoids this 

inefficiency by pruning transactions and retaining only those 

with lengths k+1 or less. 

Dataset 
CS-

OPBL (s) 

HFIM 

(s) 

YAFIM 

(s) 

T10I4D1OOK 59.8 158 200 

Retail 27.8 105 137 

Chess 12.5 197 225 
Fig. 7 Total implementation period for CS-   OPBL, HFIMs, 

and YAFIMs 

4.4. Time Complexity  

A dataset containing t items, n operations, and m 

components; the biggest transaction is represented by the letter 

D. First, we must analyze every interaction to find m rarely 

used things. Under worst-case conditions, this process may 

take O(n × m) time. The cuckoo filter is used to store up to ten 

items, with the insertion process averaging O(1) time due to 

the filter's known O(1) average insertion time [20, 23]. After 

completing this initial phase, we prepare for the second phase 

Database Number 

of items 

Number of transactions 

T10I4D1O

OK 

870 100000 

Retail 16470 87988 

Chess 75 3196 
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by pruning transactions to retain only those containing items 

with a frequency of at least k, where k ranges from 2 to n. We 

then update each transaction to include only items present in 

the cuckoo filter, which is the most time-consuming step, 

taking O(n) time.  

Since Phase 2 is incremental, we will determine the time 

required to complete each ith cycle. To form groups of k items 

from transactions that have >= k, we first need to reduce each 

transaction. This reduction process will take no more than 

O(N) time. After this, the number of transactions will be 

reduced to N′, which is less than or equal to N. Each 

transaction will then produce a distinct set of k items. The 

potential number of item combinations within each transaction 

is O(N^k). If the operation includes items a, b, and c, the 

available permutations are O(N^k). To create k-frequent sets 

of items with the fewest possible assistance counts, these sets 

are then converted into (key, value) pairs. This operation will 

not take more than O(N′ × C) time if there are C potential pairs 

of k items per operation. We must confirm if the frequent 

objects in each of the many k-frequent sets of items are 

different when compared to those in the Cuckoo filter. 

Next, we will change the cuckoo filter by getting rid of 

the items that are not in the k-frequent item sets. The cuckoo 

filter requires an O-time to delete and check values. We prune 

each transaction, k = k+1, to retain only those that exceed k. 

We remove all items that occur infrequently from each 

transaction, ensuring that the next repeat begins in no more 

than O(N′) time. In this 

case,O(N)+O(N′^k)+O(N′×C)+O(F×k)+O(N′), says the time 

complexity of the Phase 2The next repetition will then begin. 

The amount of time needed for phase 2 will be 

O(N)+O(N′^k)+O(N′×C)+O(F×k). Yes, the total difficulty of 

CS-OPBL is equal to phase 1 plus the step of getting ready for 

Phases 1 and 2. 

5. Conclusion 
This work improves Apriori by adding a Cuckoo Search 

algorithm using opposition parameters-based learning. This 

method optimizes the original Apriori technique as the 

database's size or quantity of items increases. It consists of two 

parts. The initial stage is in charge of making 1-frequent item 

sets. Phase two involves the iterative creation of k-frequent 

item sets. We can summarize the CS-OPBL's efforts as 

follows: 

➢ The cuckoo filter structure is used to prune transactions. 

The cuckoo filter trims each transaction to include only 

frequently used items. This decreases the quantity of 

items in each purchase. 

➢ Every time, CS-OPBL cuts down on the total amount of 

transactions by getting rid of all transactions with a length 

of less than k, in which k represents the length of the 

regular item sets that will be made. Instead of making all 

possible candidate sets in each cycle, it makes candidate 

sets from each trimmed transaction whose length is atleast 

k. This cuts down on the number of potential sets. 

➢ The algorithm saves the trimmed transaction information 

and the k-frequent sets of items, which may be employed 

to create k+1-frequent itemsets in the next cycle. This 

process notably accelerates subsequent operations. 

➢ We put into practice the parallel-distributed Spark's 

technology. With several benefits, using in-memory 

processing. Because of these features, Spark outperforms 

other environments when it comes to iterative algorithms. 

➢ When running on a cluster of four nodes, CS-OPBL, with 

minimum support of 0.75%, completes 5.8% of the HFIM 

on the commercial dataset. On the chess dataset, it only 

gets 25% of HFIM and 38.1% of EAFIM, with a 

minimum support of 85%. With a minimum support 

threshold of 0.25% on the T10I4D100K dataset, the 

HFIM algorithm achieves only 3.3%Testing with various 

datasets confirms that CS-OPBL enhances the Apriori 

algorithm’s performance. 

The findings indicate that CS-OPBL consistently 

surpasses both HFIM  and YAFIM across all datasets, 

regardless of the minimum support levels. By substituting the 

candidate selection process with a method for choosing the 

optimal candidates in each iteration, CS-OPBL streamlines 

the computations. Applications of CS-OPBL include market 

basket analysis, class selection on e-learning sites, and stock 

management. Future research in biology will utilize CS-

OPBL, as the majority of tasks in this field require identifying 

frequently connected elements. Additionally, these 

applications are constantly faced with a vast array of features. 

It will also be tested against additional algorithms for mining 

group regulations, such as FP-growth and Buddy Prima.  
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