
 SSRG International Journal of Computer Science and Engineering Volume 11 Issue 9, 26-38, September 2024

ISSN: 2348–8387 / https://doi.org/10.14445/23488387/IJCSE-V11I9P104 © 2024 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Augmenting Association Rule Mining in Apriori

Algorithm using Cuckoo Search with Opposition

Parameters-Based Learning

N. Bhanu Prakash1, E. Kesavulu Reddy2

1,2Department of Computer Science, S.V.University College of CM&CS, Tirupati, Andhra Pradesh, India.

Corresponding Author : ekreddysvu2008@gmail.com

Received: 22 July 2024 Revised: 30 August 2024 Accepted: 16 September 2024 Published: 30 September 2024

Abstract - Data mining extracts hidden patterns from large datasets, making the information extracted useful for improving

decisions and, hence, business outcomes. Among these methods, frequent itemset mining is a very popular and core technique

within association rule mining The Apriori algorithm is one of the most popular algorithms in this area of frequent itemset and

association rule discovery. Applications include market basket analysis, educational course selection, stock management, and

medical data analysis. However, large datasets are exponentially increasing the computational burden of the Apriori algorithm,

and hence, execution on parallel-distributed environments can improve performance. The improved approach presented in this

paper integrates the Apriori algorithm with the Cuckoo Search algorithm using opposition parameters-based learning (CS-

OPBL). The Cuckoo Search mechanism with opposition-based learning efficiently prunes the transactions and items in each

transaction. It is an approach whose processing time is greatly reduced if executed on a Spark in-memory distributed

environment. The experimental results showed that the proposed CS-OPBL-based method outperforms the competing

algorithms; for example, at a minimum support threshold of 0.75%, the processing time of this approach is only about 5.8% of

that by using the state-of-the-art method on the retail dataset.

Keywords - Data Mining, Frequent Itemset Mining (FIM), Association Rule Mining, Apriori Algorithm, Cuckoo Search and

Spark.

1. Introduction
The data age is where we find ourselves today, wherein

many sources, including social media platforms, sensors,

search engines, medical records, and more, are constantly

producing data [1]. Supporting people in getting information

is needed right away(valuable stuff) from this data. In

databases, this procedure is known as discovery of knowledge

(KDD) [2]. "Data mining," or the act of identifying patterns

from huge datasets, is a crucial component of KDD.

Applications for data mining may be found in marketing,

finance, education, telecommunications, fraud detection, and

medicine. The Apriori method is incremental and operates

step by step. During each cycle, it systematically examines the

database to provide a vast quantity of potential candidates

derived from common itemsets. The typical execution takes

place on a solitary system, which cannot handle such a

substantial volume of data. In order to handle concerns such

as data duplication and synchronization, it is necessary to use

numerous computers and a parallel method. The Apriori

algorithm's significant limitations in terms of computing

complexity render it inefficient for usage with bigger data

sizes.

A detailed account of an empirical investigation into the

Apriori algorithm can be found in reference [4]. An

experiment was carried out using a sample of 2,000

transactions from a total of 2,064 hospital transactions. The

Apriori algorithm's runtime has a positive correlation with a

list of all the deals, indicating that as the data amount rises, the

method takes longer to execute. The following provides

essential context for our work.

1.1. Association Rule Mining

Association Rule Mining (ARM) is an approach to

mining data that is used to discover common definitions of

patterns and significant relationships between factors in

extensive datasets. It facilitates making choices by identifying

the correlation between various aspects of a database. There

are measurements of Rank and sort things by how interesting

they are in choosing highly intriguing regulations, such as

trust and help. In dataset D with N transactions D={T1, T2,.....,

TN}, A part of each transaction is made up of items from I,

which includes M items I={i1, i2,…., iM}. If Separate Z and

L subsets of I such that Z∩L = ∅and a rule Z =>L exists,

http://www.internationaljournalssrg.org/

N. Bhanu Prakash & E. Kesavulu Reddy / IJCSE, 11(9), 26-38, 2024

27

where Z is the precursor (or left side) and L is the result (or

right side).

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑍 =
𝑐𝑜𝑢𝑛𝑡(𝑍)

𝑁
 (1)

The proportion of transactions that include every item in

the itemset Z (number of transactions including Z/total the

number of transactions) is supporting for itemset Z. If an item

set’s support hits or goes above the minimum support level, it

is said to be common and is given as,

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑍 ⟶ 𝐿) =
𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑍𝐿)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑍)
 (2)

The confidence of a rule (Z🡪L) is determined by dividing

the number of transactions that include both Z and L by the

number of transactions containing Z. This shows how likely it

is that L will happen in a deal that has Z in it.

1.2. Apriori Algorithm

The goal of Apriori is to iteratively identify frequently

used item sets and Create rules for how to connect different

things. For any integer k greater than or equal to 1, the kth

iteration of Apriori produces sets of frequently occurring

items. The method begins by constructing frequent itemsets,

referred to as L1, which consist of single items (1-itemsets).

The algorithm can recursively generate a frequency of 2-

itemsets (L2) frequent of 3-itemsets (L3) until there are no

more sets of things that meet the predefined minimum support

threshold. Each iteration builds upon the results of the

previous one to generate a new set of candidate itemsets. It

follows that {A} and {B} must likewise be common itemsets

if {AB} is found to be one. This is due to the principle that

frequent itemsets must be derived from other frequent

itemsets.

➢ Finding the sets of objects that appear most often in the

database with little help

➢ Association rules are generated by using collections of

objects that appear frequently.

There are two main parts to the process of creating

Apriori frequent itemsets:

➢ In each iteration k, the join phase involves joining Lk-1

with itself to create a candidate set Ck.

➢ The pruning phase is utilized to eliminate k-itemsets

whose support count is below the target threshold. This

process results in generating collections of frequently

occurring itemsets, Lk, from Ck.

Fig. 1 Working flow of apache spark

Spark Driver

Spark Context

Cluster

Manager

Worker

•Executer

•Cache

•Task x2

Worker

•Executer

•Cache

•Task x2

Worker

•Executer

•Cache

•Task x2

Data

Node
Data

Node

Data

Node

H D F S

N. Bhanu Prakash & E. Kesavulu Reddy / IJCSE, 11(9), 26-38, 2024

28

1.3. Apache Spark Utilization

According to [5], Apache Spark is a powerful and

general-purpose open-source framework for cluster

computing that processes large volumes of data more

efficiently than Hadoop MapReduce. Spark is reported to be

ten times better in memory usage and one hundred times better

in storage. This advantage arises because Hadoop

MapReduce, which reads and writes data for the Hadoop

distributed file system (HDFS), faces challenges with

algorithmic iterations due to the high I/O strain, leading to

increased processing times. It offers compatibility with

Hadoop, Mesos, cloud environments, and standalone setups,

unlike MapReduce, which is limited to Hadoop. It supports

various databases such as HBase, Cassandra, and HDFS and

is compatible with multiple programming languages,

including Scala, Python, and Java. At its core, Spark utilizes

the RDDs as the fundamental data structure for its

programming interface.

 Spark manages the automatic partitioning and distribution

of RDD information spanning the cluster and performs actions

on them at the same time [17]. While Hadoop achieves fault

tolerance by replicating each data block three times, Spark

ensures fault tolerance by tracking the lineage of each RDD.

To ensure fault tolerance, Spark monitors the lineage of each

RDD, maintaining references to parent RDDs when new ones

are created. This lineage information is represented as a

lineage graph, which records the dependencies of each RDD.

This graph is useful for recomputing and recovering lost data

when needed.

 Additionally, Spark can cache RDDs in memory if they are

accessed frequently, which accelerates subsequent operations.

These distinctive features of Spark enhance where iterative

programming is executed. In Spark, a central coordinator

called the driver communicates with several distributed

workers, or slave nodes, to execute application code. This

setup is shown in Figure 1. Spark functions utilizing a

master/slave architecture. Executors are responsible for data

storage and computation, and the driver asks the manager of

the cluster to start them with resources. Assigning tasks to

executors, the driver decomposes Spark jobs. Executors report

back to the driver with the outcomes of their work after it is

over.

1.4. Cuckoo Filter Assembly

Probabilistic data structures like cuckoo filters and Bloom

filters offer efficient time and space performance. They enable

rapid and accurate membership checks for large datasets.

These filters allow you to quickly determine if an item is part

of a set and also to add items to the set. The following points

show why a cuckoo filter is superior over a Bloom:

➢ The Bloom filter does not support deleting existing items

without reconstructing the entire filter, a process that

requires O(1) time. However, it does support efficient

deletion, also with an O(1) time complexity.

➢ Enhancing lookup efficiency in a cuckoo filter requires

only O(1) time and involves checking just two locations.

➢ When the target false-positive rate is below 3%, the space

requirements will be reduced.

Figure 2 illustrates the construction of the cuckoo filter.

In this filter, each of the m buckets. There are two distinct hash

functions used by the cuckoo hash table, which allows it to

hold b objects.

➢ When inserting or searching for an item, the appropriate

location is ascertained via

➢ The hash functions h1(x) and h2(x)A cuckoo filtered

maintains only the value of fingerprint data, generated by

the hashing function = fingerprint(x).

Fig. 2 CS-OPBL with two hashes with four entries each

The cuckoo filter Saves only the f-bit products'

fingerprints rather than the products themselves. Both the size

of each bucket b and the length of the fingerprints f in bits

impact the filter's false-positive rate. The required length of

the fingerprint, f, is approximately estimated in [3].

𝐹 ≥ ⌈𝑙𝑜𝑔2 (
2𝑎

𝜀
)⌉ = ⌈𝑙𝑜𝑔2 (

1

𝜀
) + 𝑙𝑜𝑔2(2𝑎)⌉ bits (3)

An empirical study of the cuckoo filter with a = 2, 4, and

8 bucket sizes is described in reference [20]. The findings

indicate that the cuckoo filter when using a = 4, achieves a low

false-positive rate and excellent space efficiency.

1.5. Research Gaps

While various methods have been proposed to enhance an

Apriori method for massive data, certain issues remain

unaddressed. CS-OPBL seeks to address these gaps and

improve the efficiency of the Apriori method as data volumes

increase. Table 1 outlines these deficiencies and how CS-

OPBL addresses them. The CS-OPBL algorithm addresses the

limitations of the original Apriori method. It is designed to

work with distributed data management platforms that support

parallel storage, access, and processing of large datasets, such

as ecosystems, such as Hadoop and Spark.

The CS-OPBL method ditches candidate generation of

the priori algorithm's stage for a more efficient and less

computationally intensive alternative. Instead, it uses the

N. Bhanu Prakash & E. Kesavulu Reddy / IJCSE, 11(9), 26-38, 2024

29

cuckoo filter to keep only the most frequently occurring items

and employs these to prune transactions, thereby enhancing

performance. The paper is organized as follows: Part 2

reviews key research on association rule mining. Part 3

provides an overview of the suggested techniques. Part 4

Provides the experimental outcome and discusses their

alignment with previous findings. Finally, Part 5 concludes

with a summary and forecast directions.

2. Related Works
Extensive research in the field of association rule mining

in recent decades has resulted in numerous proposals for

improving the Apriori algorithm. Agrawal and Shafer [5]

proposed parallelizing the Apriori algorithm, but it struggles

with performance due to timing and communication

challenges as data volume increases. Using the MapReduce

structure to perform Apriori was suggested by Li et al. [6].

There are two steps to this process: planning and lowering.

During the mapping stage, the data is turned into pairs of keys

and values, and possible candidate sets are found. In the

lowering stage, the outcomes of different mappers are added

together to make a final result. This result includes sets of

things whose support counts meet or go above the minimum

level. This step is repeated until there are no more frequent

item sets to be found.

Singh and Miri [7] developed a parallel Apriori algorithm

that leverages a Bloom filter to minimize the time required for

subsequent runs. This algorithm is divided into three stages.

Initially, the mapper and reducer identify singleton frequent

items. In the next stage, the Bloom filter stores these

individual items, and each transaction is pruned to include

only items Contained within the Bloom filter. The Spark

RDD-based parallel Apriori algorithm known as YAFIM (Yet

Another Frequents Item set of Mining) [8] operates in two

different phases. The initial phase identifies individual

Recurring items, while another phase iteratively produces

(k+1)-frequent data from k-frequent data. To expedite the

process of finding (k+1)-frequent data, YAFIM uses a hash-

based tree structure for managing candidate (k+1)-data, which

must first meet the minimum support threshold. However,

when dealing with a large number of potential item groups,

YAFIM may not be as efficient as the approach proposed by

Li et al. [6].

Using the Spark RDD, Rathee et al. [9] developed R-

Apriori, a high-speed parallel Apriori consisting of three

different stages. In the first stage, singleton frequent items are

generated. The second phase involves using these singleton

items stored in a Bloom filter to prune transactions, retaining

only items present in the Bloom filter. In the third phase, the

algorithm uses the singleton items from the previous phase to

create a list of all possible item pairs and identifies the 2-

frequent itemsets. The third phase then iteratively generates k-

frequent item sets and candidate storage from (k+1)-frequent

item sets of (k+1)-items in a hash tree, which speeds up

searching.

Regarding YAFIM, this approach offers improved

performance. "EAFIM [10] is a sophisticated frequent item set

mining technique tailored for Spark, relying on the Apriori

method. It works in two main stages: first, it creates candidate

itemsets and determines their favourable ratings; second, it

iteratively refines the collection of data by removing items and

transactions that are not important. When compared to R-

Apriori and YAFIM, EAFIM performs better. Furthermore,

HFIM, a hybrid typical itemset mining technique designed

specifically for Spark, was suggested by the researchers in

[11]. HFIM follows a two-step process: first, it transforms the

dataset into a vertical format (consisting of items and IDs) to

pinpoint unique frequent items. Then, it distributes this

vertical dataset across all nodes. The adaptive-miner

approach, proposed by Rathee and Kashyap [12], consists of

two different phases. This dynamic programming approach

adapts to the dataset’s structure, enhancing the identification

of frequent item groups. Furthermore, Gao et al. [13]

suggested enhanced Apriori techniques for Spark to tackle

scalability challenges present in the original Apriori method.

The suggested method minimizes both the event count

and data processing time. Castro et al. [14] assessed different

Apriori algorithms on Hadoop MapReduce and Spark using

various datasets with minimal intervention. A Spark-based

Apriori approach was introduced by Raj et al. [15]; it improves

efficiency and scalability by minimizing the costs coming

from RDD shuffle tasks during each iteration that follows.

Kumar and Mohbey [16,17] introduced the CEUPM

(communications for the cost-effective utility-based patterns

mining) algorithm, designed, which utilizes a search space

division strategy to distribute tasks evenly across cluster

nodes. This approach reduced communication costs during the

shuffle process. The algorithm proved to be more efficient

overall, as it ran faster, used less memory, and offered better

scalability. They explored various methods for pattern mining

in large-scale data using Hadoop, and Spark's ability to

process data in parallel and distribute tasks efficiently was

evaluated through four key types of itemset mining: highly-

utility itemset mining, parallel frequent itemset, sequential

pattern, and frequent itemset datasets (like sensor data or

experimental data).

Gawwad et al. [18] introduced techniques for frequent

databases that can be executed in parallel and designed to

handle large datasets by utilizing the multiple cores of the

hardware. Their method involved using prime numbers to

determine the largest common factor among transactions, with

each item in the transactions assigned a unique prime number.

Meanwhile, Kumar and Mohbey [19,20] introduced the

UBDM (Uncertain Big Data Mining) method, which

performed effectively within the Spark framework.

Furthermore, the Stellar Mass Black Hole Optimizing

N. Bhanu Prakash & E. Kesavulu Reddy / IJCSE, 11(9), 26-38, 2024

30

approach was introduced by Kannimuthu and Premalatha

[21]. This method eliminates the need for an initial minimum

benefit barrier by extracting the top k high-utility collections

from transaction networks. This method enhances processing

efficiency and reduces memory consumption by incorporating

a trimming technique that eliminates unnecessary search

regions.

Furthermore, the Stellar Mass Black Hole Optimizing

approach was introduced by Kannimuthu and Premalatha

[21]. This method eliminates the need for an initial minimum

benefit barrier by extracting the top k high-utility collections

from transaction networks.

This addresses a major key difficulty in mining high-

utility itemsets is determining the appropriate minimum utility

threshold, which defines the level of utility required for an

itemset to be considered significant that varies depending on

the database.

By using a combined evolutionary method for identifying

high-utility itemsets in internet service design, Kannimuthu

and Chakravarthy [22] were able to enhance processing speed

and memory efficiency significantly. In addition, itemsets

with negative utility ratings are a common challenge for the

present algorithms. In order to get over these restrictions,

Kannimuthu and Premalatha [23] developed a useful pattern-

growth technique that worked well in contrast to previous

methods for managing sets of items with zero values. Chiclana

et al. [24] suggested a new association rule mine technique

inspired by animal behaviour optimized strategies. This

approach aims to decrease the quantity of generated rules, as

well as to lower processing time and memory usage. It

eliminates unnecessary or low-support rules and retains only

the frequent rules for optimization within the animal motion

framework. Meanwhile, Rajagopal et al. [25] developed a crop

selection strategy that outperformed other methods by

enabling the selection of the most profitable crop.

2.1. Performance Comparisons of the Apriori Algorithm and its Evaluations [4]

Table 1. Analysis

S.No Properties Apriori Apriori TID Apriori hybrid Tertius

1
Candidate

generation

Apriori produces

candidate item sets

from of previous pass

by not taking the

transaction in the

database.

Once the first pass is

completed, the database is

not considered for

counting support of

candidate itemsets

It generates Candidate

item sets by using Apriori

but later jumps to Apriori

TID.

Candidates are

generated by

considering attribute

pairs for the rule

generation.

2 Methodology
Join and prune

phases/steps

Considers Join and Prune

in combination with TIDS

Combination ofapriori

and aprioritid

First-order logic

presentation is

preferred

3 Database scan
Needs many scans of

databases
Needs only one scan

Addition of Apriori and

aprioritid

Scan depends on the

count of literals in

rules

4 Memory usage

It occupies high

memory space for the

process of candidate

generation

In the first pass, this

algorithm needs memory

for Lk-1 and Ci-1

candidate generation. It

indulges extra cost in case

it does not fit in memory.

It infers extra memory

when sliding from

Apriori to Apriori TID

Consumes

considerable time and

printsout rules when

the program runs short

of memory and

messages

5 Execution time
Mainly spends more on

Candidate Generation

Executes fast in contrast

to Apriori for small

problems but incurs more

time for large ones.

Preferably better than

Apriori and Apriori TID

Consumes a

considerably long time

for larger sets, i.e. even

hours

6 Data support Limited Nearly large sets Very Large datasets Limited

7 Accuracy Less Better than Apriori
Increased Accuracy

compared to Apriori TID

Considerable, not

high, ie Average

8 Applications

It can be mainly

preferred for closed

Item sets.

Preferred for small

problems.

Well suited for closed

sets.

Most generally

preferred.

9
Privacy-preserving

approach preferred
Heuristic approach Exact approach Heuristic approach

Cryptographic

approach

N. Bhanu Prakash & E. Kesavulu Reddy / IJCSE, 11(9), 26-38, 2024

31

Table. 2 Analysis

3. The Proposed Techniques
Apriori is a repetitive method that finds the most common

sets of things and builds association rules from them in a

certain order. It has two parts: first, making single-item sets of

frequent items; second, making sets of frequently used items

in an iterative way.

Because potential sets with all possible combos of

common item sets are made in the second part of each

repetition, the method is ineffective. It becomes higher priced

to run as the amount of the data grows. These sets of frequent

items come from earlier versions and are now being used to

choose common sets of items moving forward.

They are evaluated individually against each transaction

to determine the quantity of each new set of items. The main

goal of the CS-OPBL algorithm was to fix the main problems

with the preliminary Apriori algorithm. The answer looks into

using multiple computers and a parallel method to get around

the fact that Apriori's speed drops as data size grows.

If the original data is very big, the cuckoo filter can help

you quickly check if an item is a member. It makes it faster to

check for each transaction whether an item is often bought or

not so that you can decide whether to keep it or get rid of it if

it has not often been bought. There are two parts to the CS-

OPBL formula.

3.1. Stage 1

Program 1 describes a program that is in charge of making

all the individual common things in this phase. As a line graph

of RDDs, Figure 3 displays the processing flow. The results

of transactions are divided up and given to several worker

computers when they are uploaded into the RDD of Spark

from HDFS, allowing each worker to view them

independently. These transactions are read by the map()

function, which turns each one into a list of things. For every

transaction, which is a list of things, the fatMap() method is

used to split each item on its own. The map() method turns

each item on the list into a key-value pair of the form (item,

1). After that, the ReduceByKey() method guesses what every

item's function is. Then, the filter() method removes items

with frequencies less than the minimum support count

(min_sup), leaving only the 1-frequent itemsets with their

respective items and support values. Subsequently, the keys()

function is utilized to extract just the items, discarding the

counts, from these 1-frequent itemsets. These items are then

inserted into the cuckoo filter for further processing. The

things that are used a lot are stored in memory to quicken up

the next step. Once phase one is over, the cuckoo filter

structure is used to store the daily things. It is shared among

all of the nodes in the broadcast function with the use of a

cluster of the Spark framework. The ReduceByKey() method

cut down on the time needed to make the singleton common

items.

Sno Properties ECLAT FP Growth AIS PSO

1
Candidate

generation

Uses bit matrix

representation of

transactions and prefix

tree in DFS order.

Does not generate a

candidate set but takes

a few passes over the

database

Scans database each time

for generating

candidates.

Candidates are

generated when the db

scan is in progress.

2 Methodology

Bit matrix rep.& depth-

first search of prefix

tree construction from

bit matrix

Two phases of divide

and rule method

2 stages, first frequent

item set generation

Uses the concept of

‘neighbourhood.’

3 Database scan
Only once till matrix

construction

Scans fewer no of

times until the

construction of the fp-

tree.

Multiple scans Same as AIS

4 Memory usage

Considerably less as

prefix tree rep. Is

considered.

Comparatively

average
Occupies much space Less comparatively

5 Execution time
Faster initially and

average later
Average Long time Very fast

6 Data support Large Very large Less Very large

7 Accuracy Considerably better
High when compared

with Apriori TID
Too small or less Excellent

8 Applications
Mainly preferred for

free itemsets.

Preferred for large

applications

Well suited for small

problems

Large scale, including

closed sets and free

item sets, etc.

9
Privacy-preserving

approach preferred

Reconstruction based

approach

Reconstruction based

approach
Exact approach

Cryptographic

approach

N. Bhanu Prakash & E. Kesavulu Reddy / IJCSE, 11(9), 26-38, 2024

32

Fig. 3 CS-OPBL stage 1 flow

Fig. 4 CS-OPBL stage 2 flow

Input File

Transactions Items

(Item,1)

(Item, Count)

1-Frequent

itemsets
Items

.map (line offset, T)

flatmap (T: get items) .map (item: (item,1))

.reducBykey ()

.Keys () filter (findFrequent (min_sup))

Cuckoo filter (Cf)

Transactions

Transactions >=k

Pruned transactions

Pruned transactions

>=k

Lists of pairs

of k items

Pairs of k items

(Pair, 1)

Pruned (Pruned

transactions)

Pruned transactions

>=k

Pruned transactions

Differ

Tems exist in k-

frequent itemsets (F)

K-Frequent itemsets

(Pair, Count)

Frequent Items

Modified Cuckoo

filter (Cf)

.mapPartitions (delete non frequent items)

.filter (T:len (T)>=k)

.filter (T:len (T)>=k)

.flatmap (itemsets: get items).

distinct ()

.filter (findFrequent (min_sup)) .reducBykey (0) .map (pair: (pair,1))

.flatMap (List: pairs of k items)

.mapPartitions (MakePairofkItems)

.filter (T:len (T)>=k)

.mapPartitions (delete

non frequent items)

.filter (T:len (T)>=k)

N. Bhanu Prakash & E. Kesavulu Reddy / IJCSE, 11(9), 26-38, 2024

33

3.2. Stage 2

In this part, the method shown in method 2 works by

going through steps over and over again. This function creates

the k-frequent item sets (k > 1) from scratch. To clean up deals

and reduce the number of items in each one, CS-OPBL uses

the cuckoo filter structure. Instead of generating every

possible candidate itemset, the algorithm constructs candidate

sets by pruning transactions to include only those with at

least kk items, where kk denotes the length of the frequent

itemsets to be found. Transactions shorter than kk are

excluded, as they cannot produce kk-item candidates. The

execution flow, represented by the graph of RDDs Figure4,

demonstrates this method. Initially, transactions are filtered to

remove all non-frequent items, retaining only those that

appear in the cuckoo filter. Transactions with kk or more

items, starting with k=2k=2, are then kept. Because of this, the

collection has fewer deals and things. Second, the steps below

are done each time the loop goes around, as long as k>=2 and

k is the length of a common itemset:

➢ The `mapPartitions()` method works on individual

partitions (or blocks) of the RDD. Following this,

`flatMap()` is used to split these combinations into

individual items, with each combination being handled

separately.

➢ The `map()` function processes a list of k items and

creates key-value pairs for every item combination. The

`ReduceByKey()` method then applies a custom hash

function, murmur-hash3 (mmh3), to determine the

frequency of each composite key combination.

➢ If multiple k-frequent data are identified, the algorithm

advances for (k + 1)-data. If no k-frequent data are found,

the algorithm resets kk to 1 and concludes.

This process is carried out through the following steps:

1. The k-frequent itemsets are given the fatMap() method to

split the unique items that makeup F.

2. We then compare these items with those frequently used

and stored in the cuckoo filter.

3. If a discrepancy is identified, the subsequent actions are

taken.

4. The cuckoo filter structure is changed by removing the

items that were different in the previous step.

5. The RDD's mapPartitions () function executes on every

division (block). Deals with lengths more than or equal to

k are first trimmed down, and then those deals are

trimmed back one more until only things in the cuckoo

lens remain. In order to employ them more quickly in the

next round, it then saves them in storage.

6. The execution begins at step 1 in order to begin the

subsequent iteration. If there is no change, it is assumed

that the k-frequent item is set from the memory, and k is

increased. Step 1 is finally achieved to start the

subsequent cycle.

During this stage, the Apriori method's need for creating

candidates was effectively removed by the cuckoo filter

architecture. Consequently, there is no longer a need for

expensive evaluations because of the significant decrease in

their computational demands.

3.3. CS-OPBL Illustrations

For instance, consider a scenario with three data partitions

and a minimum support threshold of 3. The following phase

first, with A, B, D, and F have been identified as frequent, with

support values that satisfy or exceed the minimum support

criteria. The cuckoo filter stores these transactions. The

cuckoo filter prunes transactions with a length of at least 2 in

each partition during the initial iteration of the second phase.

Following this, the pruned transactions with a length of at least

2 generate combinations of 2 items. Every combination is

converted into the format. We analyze every partition

concurrently, using division 2 as an example (Figure 5(a)).

Next, we employ the filter() function to eliminate

combinations with a frequency less than 3, as illustrated in

Figure 5(b). The output consists of two frequent item sets.

Figure 5(b) shows that the number of 2-common item sets is

greater than 1, which means that we need to keep going by

raising k. We have changed the cuckoo filter to only store

items from the two most common sets.

This is shown in Figure 5(c). We use the cuckoo filter in

the second round (k = 3) to eliminate events in each section

that have a length of three or more. As seen in Figure 5(d), the

outcome for partition 2 is a single transaction with a duration

of 3 seconds. No combinations of three items may be formed

from a given transaction, and it will be eliminated if it is

included in a certain partition and its Length adjustments

before or after pruning in the cuckoo filteris less than 3. Figure

5(e) illustrates the calculation of the frequency of each

combination following the application of the reduceByKey()

function to all partitions. The filter() function subsequently

eliminates any sets of three items that occur less than three

times.
Algorithm 3.1: CS-OPBL For Enhancing Apriori Algorithm

Inputs:

Database: Transaction dataset

min_support: Minimum support threshold

Output:

1-frequent items: RDD of single-item frequent sets

For each entry in the processed Dataset

a. Perform_Mapping(offset_index, entry)

b. expand_Mapping(entry, extract_elements)

c. For each item in entry

i. Perform_Map(item, 1)

End For each

End expand_Mapping

End Perform_Mapping

End For each

End KeyAggregation

1-item_set =

filter(find_frequent_items(min_support_level))

items = 1-item_set.item_keys()

C_filter = CuckooHashTable(items)

shared_dataset = distribute(C_filter)

N. Bhanu Prakash & E. Kesavulu Reddy / IJCSE, 11(9), 26-38, 2024

34

Fig. 5(a) Partition using division of 2

Fig. 5(b) Number of 2-common item sets is greater than 1

Cuckoo filter

A, D, F, M

B, D, F

A, D, F

B, D, F

A,D,F

B, D, F

(A, D), (A. F), (D. F)

B, D, F

(A,D)

(A,F)

(D,F)

(B,D)

(B,F)

(D,F)

((A, D),1)

((A,F),1)

((D, F),1)

((B, D),1)

((B, F),1)

((D, F),1)

A

B

C

D

Partition 2

Pruned

Transaction
Transaction >2 Combinations of

2 items

Combinations

in each record

(combination, 1)

((B, D), 3)

((B, F), 4)

((B, D),3)

((B, F),4)

((D, F),4)

((A, B),1)

((A, D), 1)

((A, F), 2)

((A, B),1)

((A, F), 1)

((B, F), 1)

Partition 1

((A, D),1)

((A, F),1)

((D, F),1)

((B, D),1)

((B, F),1)

((D, F),1)

Partition 2

((B, D),1)

((B, F),1)

((D, F),1)

((B, D),1)

((B, F),1)

((D, F),1)

Partition 3

((B, D), 3)

((B, F), 4)

((D, F),4)

((D, F),4)

N. Bhanu Prakash & E. Kesavulu Reddy / IJCSE, 11(9), 26-38, 2024

35

Fig. 5(c) Cukofilter store items from two most common sets

Fig. 5(d) Output of partition 2

Fig. 5(e) The calculation of the frequency of each combination following the application of the reduceByKey() function to all partitions

((B, D),3)

((B, F),4)

((D, F),4)

B

D

F

A

B

D

F

B

D

F A

2-Frequent Itemsets Unique Items

Cuckoo filter

Modified Cuckoo filter

Different

(B, D, F)

A, D, F

B, D, F

B

D

F

D, F

B, D, F

B, D, F (B, D, F)

((B, D, F),1)

Pruned Transaction

(Partition 2)

Cuckoo Filter

Combinations in

each record

(Combination, 1)

Combinations of
3 items

Transaction>3

Pruned
Transaction

((B, D, F),1) ((B, D, F),1) ((B, D, F),1)

((B, D, F),3)

((B, D, F),3)

((B, D, F),3)

Partition 1 Partition 2 Partition 3

N. Bhanu Prakash & E. Kesavulu Reddy / IJCSE, 11(9), 26-38, 2024

36

4. Results and Discussions
This part evaluates the CS-OPBL efficiency. We compare

CS-OPBL with three Spark-based algorithms—HFIM,

YAFIM, and EAFIM. A Spark cluster, which CS-OPBL uses,

consists of four nodes. With three CPU cores and six GB of

RAM, every node can do its job. All of the nodes are running

the latest versions of Hadoop, Spark, and Python.

4.1. Dataset Utilized

The CS-OPBL algorithm operates on three distinct

datasets. IBM's information generator produced the first

dataset, T10I4D100K. The second dataset, known as the

commercial database, is made up of market basket information

that records distinct transactions from a mall. The third

dataset, known as the chess dataset, features end-game

scenarios involving kings and rooks in chess. Key statistics for

these datasets are detailed in Table 2.

4.2. Performance Assessment

In each second-phase repetition, the Apriori algorithm

creates a huge set of candidates. It then compares these

candidates to each transaction record to find the k-frequent

item sets. This process takes the most time and room,

especially for large files.

CS-OPBL works on the three datasets listed on a

collection of four nodes. Each node has its own three CPU

cores and 6 GB of RAM so that it can do its own thing. EAFIM

works with groups of five nodes. There are 4 CPU cores and

16 GB of RAM for each node. The first iteration creates k-

frequent item sets; the second iteration creates two frequent

item sets, and so on.

Figure 7 shows the time it takes to run each version of CS-

OPBL, HFIM, and YAFIM. In Figure 7(a), you can see how

long the T10I4D100K dataset takes to run each time with

0.25% minimum support. CS-OPBL goes through nine steps

to create eight frequent item sets. In every version, it does

better than HFIM and YAFIM. In the chess dataset

experiment, CS-OPBL requires 9 runs to identify 8 frequent

item sets with a minimum support level of 85%. It also does

better than HFIM and YAFIM, as seen in Figure 7(b). Figure

7(c) shows it does a better job. Table 3 shows how long it took

for each method to run on all of the datasets.

We use the minimum support numbers mentioned above

to test the performance of CS-OPBL on A group of three

interconnected nodes representing all three datasets. The

T10I4D100K dataset takes 72.2 seconds to run, with chess

taking 28.8 seconds and retail taking 11.5 seconds. This means

that CS-OPBL runs faster as the number of nodes grows. With

at least 85% confidence, we compare the CS-OPBL running

time to EAFIM on the chess dataset. The total time it took to

run EAFIM was 70s. Figure 8 shows that CS-OPBL

outperforms EAFIM in all trials.

Fig. 6 Important dataset statistics

4.3. Discussion

The HFIM method begins by aggregating transaction IDs

(TIDs) for each item, organizing data into (item, TID) pairs

using the groupByKey() function, which is time-consuming

due to the need for data movement across the network. HFIM

also requires significant time to analyze vertical data and

determine itemset frequencies. YAFIM, on the other hand,

struggles with efficiency when faced with numerous candidate

combinations, as it consumes substantial space and time to

scan the transactional data on each node and store candidate

itemsets in a hash tree for subsequent rounds. EAFIM attempts

to optimize by identifying frequent items and updating the

input database by removing redundant items and transactions.

However, this introduces additional costs when reloading the

revised input RDD for future iterations. OPCS surpasses

HFIM, YAFIM, and EAFIM by leveraging a cuckoo filter to

store frequent items, which are then used to prune

transactions, allowing for the generation of candidate itemsets

of size k or larger.

In contrast to Rathee et al., who improve efficiency using

a Bloom filter for 2-frequent itemset creation—though at the

cost of needing to rebuild the entire filter for data deletion and

with lookup time depending on the number of hash

functions—OPCS utilizes a cuckoo filter for direct deletion

operations, achieving O(1) lookup performance with less than

3% space complexity. Moreover, while Rathee et al., like

YAFIM, use a hash tree to store candidate (k+1)-itemsets and

scan the entire dataset in each iteration, OPCS avoids this

inefficiency by pruning transactions and retaining only those

with lengths k+1 or less.

Dataset
CS-

OPBL (s)

HFIM

(s)

YAFIM

(s)

T10I4D1OOK 59.8 158 200

Retail 27.8 105 137

Chess 12.5 197 225
Fig. 7 Total implementation period for CS- OPBL, HFIMs,

and YAFIMs

4.4. Time Complexity

A dataset containing t items, n operations, and m

components; the biggest transaction is represented by the letter

D. First, we must analyze every interaction to find m rarely

used things. Under worst-case conditions, this process may

take O(n × m) time. The cuckoo filter is used to store up to ten

items, with the insertion process averaging O(1) time due to

the filter's known O(1) average insertion time [20, 23]. After

completing this initial phase, we prepare for the second phase

Database Number

of items

Number of transactions

T10I4D1O

OK

870 100000

Retail 16470 87988

Chess 75 3196

N. Bhanu Prakash & E. Kesavulu Reddy / IJCSE, 11(9), 26-38, 2024

37

by pruning transactions to retain only those containing items

with a frequency of at least k, where k ranges from 2 to n. We

then update each transaction to include only items present in

the cuckoo filter, which is the most time-consuming step,

taking O(n) time.

Since Phase 2 is incremental, we will determine the time

required to complete each ith cycle. To form groups of k items

from transactions that have >= k, we first need to reduce each

transaction. This reduction process will take no more than

O(N) time. After this, the number of transactions will be

reduced to N′, which is less than or equal to N. Each

transaction will then produce a distinct set of k items. The

potential number of item combinations within each transaction

is O(N^k). If the operation includes items a, b, and c, the

available permutations are O(N^k). To create k-frequent sets

of items with the fewest possible assistance counts, these sets

are then converted into (key, value) pairs. This operation will

not take more than O(N′ × C) time if there are C potential pairs

of k items per operation. We must confirm if the frequent

objects in each of the many k-frequent sets of items are

different when compared to those in the Cuckoo filter.

Next, we will change the cuckoo filter by getting rid of

the items that are not in the k-frequent item sets. The cuckoo

filter requires an O-time to delete and check values. We prune

each transaction, k = k+1, to retain only those that exceed k.

We remove all items that occur infrequently from each

transaction, ensuring that the next repeat begins in no more

than O(N′) time. In this

case,O(N)+O(N′^k)+O(N′×C)+O(F×k)+O(N′), says the time

complexity of the Phase 2The next repetition will then begin.

The amount of time needed for phase 2 will be

O(N)+O(N′^k)+O(N′×C)+O(F×k). Yes, the total difficulty of

CS-OPBL is equal to phase 1 plus the step of getting ready for

Phases 1 and 2.

5. Conclusion
This work improves Apriori by adding a Cuckoo Search

algorithm using opposition parameters-based learning. This

method optimizes the original Apriori technique as the

database's size or quantity of items increases. It consists of two

parts. The initial stage is in charge of making 1-frequent item

sets. Phase two involves the iterative creation of k-frequent

item sets. We can summarize the CS-OPBL's efforts as

follows:

➢ The cuckoo filter structure is used to prune transactions.

The cuckoo filter trims each transaction to include only

frequently used items. This decreases the quantity of

items in each purchase.

➢ Every time, CS-OPBL cuts down on the total amount of

transactions by getting rid of all transactions with a length

of less than k, in which k represents the length of the

regular item sets that will be made. Instead of making all

possible candidate sets in each cycle, it makes candidate

sets from each trimmed transaction whose length is atleast

k. This cuts down on the number of potential sets.

➢ The algorithm saves the trimmed transaction information

and the k-frequent sets of items, which may be employed

to create k+1-frequent itemsets in the next cycle. This

process notably accelerates subsequent operations.

➢ We put into practice the parallel-distributed Spark's

technology. With several benefits, using in-memory

processing. Because of these features, Spark outperforms

other environments when it comes to iterative algorithms.

➢ When running on a cluster of four nodes, CS-OPBL, with

minimum support of 0.75%, completes 5.8% of the HFIM

on the commercial dataset. On the chess dataset, it only

gets 25% of HFIM and 38.1% of EAFIM, with a

minimum support of 85%. With a minimum support

threshold of 0.25% on the T10I4D100K dataset, the

HFIM algorithm achieves only 3.3%Testing with various

datasets confirms that CS-OPBL enhances the Apriori

algorithm’s performance.

The findings indicate that CS-OPBL consistently

surpasses both HFIM and YAFIM across all datasets,

regardless of the minimum support levels. By substituting the

candidate selection process with a method for choosing the

optimal candidates in each iteration, CS-OPBL streamlines

the computations. Applications of CS-OPBL include market

basket analysis, class selection on e-learning sites, and stock

management. Future research in biology will utilize CS-

OPBL, as the majority of tasks in this field require identifying

frequently connected elements. Additionally, these

applications are constantly faced with a vast array of features.

It will also be tested against additional algorithms for mining

group regulations, such as FP-growth and Buddy Prima.

References
[1] Made Leo Radhitya et al., “Product Layout Analysis Based on Consumer Purchasing Patterns Using Apriori Algorithm,” Journal of

Computer Networks, Architecture and High-Performance Computing, vol. 6, no. 3, pp. 1701-1711, 2024. [CrossRef] [Google Scholar]

[Publisher Link]

[2] D. Padmini Bai, and P. Preethi, “Security Enhancement of Health Information Exchange Based on Cloud Computing System,”

International Journal of Scientific Engineering and Research, vol. 4, no. 10, pp. 79-82, 2016. [Google Scholar] [Publisher Link]

[3] M. Supriyamenon, and P. Rajeswari “A Review on Association Rule Mining Techniques with Respect to their Privacy Preserving

Capabilities,” International Journal of Applied Engineering Research, vol. 12, no. 24, pp. 15484-5488, 2017. [Google Scholar] [Publisher

Link]

https://doi.org/10.47709/cnahpc.v6i3.4400
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Product+Layout+Analysis+Based+on+Consumer+Purchasing+Patterns+Using+Apriori+Algorithm&btnG=
https://www.jurnal.itscience.org/index.php/CNAPC/article/view/4400
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Security+enhancement+of+health+information+exchange+based+on+cloud+computing+system&btnG=
https://www.ijser.in/archives/v4i10/v4i10.php
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Review+on+Association+Rule+Mining+Techniques+with+Respect+to+their+Privacy+Preserving+Capabilities&btnG=
https://www.ripublication.com/Volume/ijaerv12n24.htm
https://www.ripublication.com/Volume/ijaerv12n24.htm

N. Bhanu Prakash & E. Kesavulu Reddy / IJCSE, 11(9), 26-38, 2024

38

[4] P. Preethi, and R. Asokan, “Modelling LSUTE: PKE Schemes for Safeguarding Electronic Healthcare Records Over Cloud

Communication Environment,” Wireless Personal Communications, vol. 117, pp. 2695-2711, 2021. [CrossRef] [Google Scholar]

[Publisher Link]

[5] R. Agrawal, and J.C. Shafer, “Parallel Mining of Association Rules,” IEEE Transactions on Knowledge and Data Engineering, vol. 8, no.

6, pp. 962–969, 1996. [CrossRef] [Google Scholar] [Publisher Link]

[6] Ning Li et al., “Parallel Implementation of Apriori Algorithm Based on MapReduce,” International Journal of Networked and Distributed

Computing, vol. 1, pp. 89-96, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[7] Brijendra Singh, and Rohit Miri, “An Efficient Parallel Association Rule Mining Algorithm Based on MapReduce Framework,”

International Journal of Engineering Research, vol. 5, no. 6, pp. 236–240, 2016. [Google Scholar] [Publisher Link]

[8] Hongjian Qiu et al., “YAFIM: A Parallel Frequent Itemset Mining Algorithm with Spark,” 2014 IEEE International Parallel & Distributed

Processing Symposium Workshops, Phoenix, AZ, USA, pp. 1664–1671, 2014. [CrossRef] [Google Scholar] [Publisher Link]

[9] Sanjay Rathee, Manohar Kaul, and Arti Kashyap, “R-Apriori: An Efficient Apriori Based Algorithm on Spark,” Proceedings of the 8th

Workshop on Ph.D. Workshop in Information and Knowledge Management, New York, NY, USA, pp. 27–34, 2015. [CrossRef] [Google

Scholar] [Publisher Link]

[10] Shashi Raj et al., “EAFIM: Efficient Apriori-Based Frequent Itemset Mining Algorithm on Spark for Big Transactional Data,” Knowledge

and Information Systems, vol. 62, pp. 3565–3583, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[11] Krishan Kumar Sethi, and Dharavath Ramesh, “HFIM: A Spark-Based Hybrid Frequent Itemset Mining Algorithm for Big Data

Processing,” The Journal of Supercomputing, vol. 73, pp. 3652–3668, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[12] Sanjay Rathee, and Arti Kashyap, “Adaptive-Miner: An efficient Distributed Association Rule Mining Algorithm on Spark,” Journal of

Big Data, vol. 5, pp. 1–17, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[13] Fei Gao, Ashutosh Khandelwal, and Jiangjiang Liu, “Mining Frequent Itemsets Using Improved Apriori on Spark,” Proceedings of the

2019 3rd International Conference on Information System and Data Mining, Houston, TX, USA, pp. 87–91, 2019. [CrossRef] [Google

Scholar] [Publisher Link]

[14] Eduardo P.S. Castro et al., “Review and Comparison of Apriori Algorithm Implementations on Hadoop-MapReduce and Spark,” The

Knowledge Engineering Review, vol. 33, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[15] Shashi Raj, Dharavath Ramesh, and Krishan Kumar Sethi, “A Spark-Based Apriori algorithm with Reduced Shuffle Overhead,” The

Journal of Supercomputing, vol. 77, pp. 133–151, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[16] Sunil Kumar, and Krishna Kumar Mohbey, “A Utility-Based Distributed Pattern Mining Algorithm with Reduced Shuffle Overhead,”

IEEE Transactions on Parallel and Distributed Systems, vol. 34, no. 1, pp. 416–428, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[17] Sunil Kumar, and Krishna Kumar Mohbey, “A Review on Big Data Based Parallel and Distributed Approaches of Pattern Mining,”

Journal of King Saud University-Computer and Information Sciences, vol. 34, no. 5, pp. 1639–1662, 2022. [CrossRef] [Google Scholar]

[Publisher Link]

[18] Mohamed A. Gawwad, Mona F. Ahmed, and Magda B. Fayek, “Frequent Itemset Mining for Big Data Using Greatest Common Divisor

Technique,” Data Science Journal, vol. 16, pp. 1-10, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[19] Sunil Kumar, and Krishna Kumar Mohbey, “UBDM: Utility-Based Potential Pattern Mining Over Uncertain Data Using Spark

Framework,” 5th International Conference, Emerging Technologies in Computer Engineering: Cognitive Computing and Intelligent IoT,

Jaipur, India, pp. 623–631, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[20] Sunil Kumar, and Krishna Kumar Mohbey, “Memory-Optimized Distributed Utility Mining for Big Data,” Journal of King Saud

University-Computer and Information Sciences, vol. 34, no. 8, pp. 6491– 6503, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[21] Subramanian Kannimuthu, and Kandhasamy Premalatha, “Stellar Mass Black Hole Optimisation for Utility Mining,” International

Journal of Data Analysis Techniques and Strategies, vol. 11, no. 3, pp. 222–245, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[22] S. Kannimuthu, and D. Gowtham Chakravarthy, “Discovery of Interesting Itemsets for Web Service Composition Using Hybrid Genetic

Algorithm,” Neural Processing Letters, vol. 54, no. 5, pp. 3913–3939, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[23] Kannimuthu Subramanian, and Premalatha Kandhasamy, “UP-GNIV: An Expeditious High Utility Pattern Mining Algorithm for Itemsets

with Negative Utility Values,” International Journal of Information Technology and Management, vol. 14, no. 1, pp. 26–42, 2015.

[CrossRef] [Google Scholar] [Publisher Link]

[24] Le Hoang Son et al., “ARM–AMO: An Efficient Association Rule Mining Algorithm Based on Animal Migration Optimization,”

Knowledge-Based Systems, vol. 154, pp. 68–80, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[25] Aghila Rajagopal et al., “A Novel Approach in Prediction of Crop Production Using Recurrent Cuckoo Search Optimization Neural

Networks,” Applied Sciences, vol. 11, no. 21, pp. 1-13, 2021. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1007/s11277-019-06932-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Modelling+LSUTE%3A+PKE+schemes+for+safeguarding+electronic+healthcare+records+over+cloud+communication+environment&btnG=
https://link.springer.com/article/10.1007/s11277-019-06932-8
https://doi.org/10.1109/69.553164
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=R+Agrawal%2C+JC+Shafer%2C+Parallel+mining+of+association+rules&btnG=
https://ieeexplore.ieee.org/abstract/document/553164
https://doi.org/10.2991/ijndc.2013.1.2.3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&as_rr=1&q=Parallel+implementation+of+apriori+algorithm+based+on+mapreduce&btnG=
https://link.springer.com/article/10.2991/ijndc.2013.1.2.3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&as_rr=1&q=An+efcient+parallel+association+rule+mining+algorithm+based+on+MapReduce+framework&btnG=
https://www.ijert.org/an-efficient-parallel-association-rule-mining-algorithm-based-on-map-reduce-framework
https://doi.org/10.1109/IPDPSW.2014.185
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&as_rr=1&q=YAFIM%3A+a+parallel+frequent+itemset+mining+algorithm+with+spark&btnG=
https://ieeexplore.ieee.org/abstract/document/6969575
https://doi.org/10.1145/2809890.2809893
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&as_rr=1&q=R-Apriori%3A+an+efcientapriori+based+algorithm+on+spark&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&as_rr=1&q=R-Apriori%3A+an+efcientapriori+based+algorithm+on+spark&btnG=
https://dl.acm.org/doi/10.1145/2809890.2809893
https://doi.org/10.1007/s10115-020-01464-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&as_rr=1&q=EAFIM%3A+efcientapriori-based+frequent+itemset+mining+algorithm+on+Spark+for+big+transactional+data&btnG=
https://link.springer.com/article/10.1007/s10115-020-01464-1
https://doi.org/10.1007/s11227-017-1963-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&as_rr=1&q=HFIM%3A+a+spark-based+hybrid+frequent+itemset+mining+algorithm+for+big+data+processing&btnG=
https://link.springer.com/article/10.1007/s11227-017-1963-4
https://doi.org/10.1186/s40537-018-0112-0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&as_rr=1&q=Adaptive-Miner%3A+an+efcient+distributed+association+rule+mining+algorithm+on+spark&btnG=
https://link.springer.com/article/10.1186/s40537-018-0112-0
https://doi.org/10.1145/3325917.3325925
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&as_rr=1&q=Mining+frequent+itemsets+using+improved+apriori+on+spark&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&as_rr=1&q=Mining+frequent+itemsets+using+improved+apriori+on+spark&btnG=
https://dl.acm.org/doi/abs/10.1145/3325917.3325925
https://doi.org/10.1017/S0269888918000127
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&as_rr=1&q=Review+and+comparison+of+apriori+algorithm+implementations+on+hadoop-mapreduce+and+spark&btnG=
https://www.cambridge.org/core/journals/knowledge-engineering-review/article/abs/review-and-comparison-of-apriori-algorithm-implementations-on-hadoopmapreduce-and-spark/C107B6A1243CB63770C6089EE201CC5C
https://doi.org/10.1007/s11227-020-03253-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&as_rr=1&q=A+Spark-based+Apriori+algorithm+with+reduced+shufe+overhead&btnG=
https://link.springer.com/article/10.1007/s11227-020-03253-7
https://doi.org/10.1109/TPDS.2022.3221210
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&as_rr=1&q=A+utility-based+distributed+pattern+mining+algorithm+with+reduced+shufe+overhead&btnG=
https://ieeexplore.ieee.org/abstract/document/9944926
https://doi.org/10.1016/j.jksuci.2019.09.006
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&as_rr=1&q=A+review+on+big+data+based+parallel+and+distributed+approaches+of+pattern+mining&btnG=
https://www.sciencedirect.com/science/article/pii/S131915781930905X
https://doi.org/10.5334/dsj-2017-025
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&as_rr=1&q=Frequent+itemset+mining+for+big+data+using+greatest+common+divisor+technique&btnG=
https://account.datascience.codata.org/index.php/up-j-dsj/article/view/dsj-2017-025
https://doi.org/10.1007/978-3-031-07012-9_52
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&as_rr=1&q=UBDM%3A+utility-based+potential+pattern+mining+over+uncertain+data+using+spark+framework&btnG=
https://link.springer.com/chapter/10.1007/978-3-031-07012-9_52
https://doi.org/10.1016/j.jksuci.2021.04.017
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&as_rr=1&q=Memory-optimized+distributed+utility+mining+for+big+data&btnG=
https://www.sciencedirect.com/science/article/pii/S1319157821001038
https://doi.org/10.1504/IJDATS.2019.101155
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&as_rr=1&q=Stellar+mass+black+hole+optimisation+for+utility+mining&btnG=
https://www.inderscienceonline.com/doi/abs/10.1504/IJDATS.2019.101155
https://doi.org/10.1007/s11063-022-10793-x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&as_rr=1&q=Discovery+of+interesting+itemsets+for+web+service+composition+using+hybrid+genetic+algorithm&btnG=
https://link.springer.com/article/10.1007/s11063-022-10793-x
https://doi.org/10.1504/IJITM.2015.066056
https://scholar.google.com/scholar?q=UP-GNIV:+an+expeditious+high+utility+pattern+mining+algorithm+for+itemsets+with+negative+utility+values&hl=en&as_sdt=0,5&as_rr=1
https://www.inderscienceonline.com/doi/abs/10.1504/IJITM.2015.066056
https://doi.org/10.1016/j.knosys.2018.04.038
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&as_rr=1&q=ARM%E2%80%93AMO%3A+an+efcient+association+rule+mining+algorithm+based+on+animal+migration+optimization&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0950705118302090
https://doi.org/10.3390/app11219816
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&as_rr=1&q=A+novel+approach+in+prediction+of+crop+production+using+recurrent+cuckoo+search+optimization+neural+networks&btnG=
https://www.mdpi.com/2076-3417/11/21/9816

