
SSRG International Journal of Computer Science and Engineering Volume 12 Issue 1, 11-15, January 2025

ISSN: 2348–8387 / https://doi.org/10.14445/23488387/IJCSE-V12I11P103 © 2025 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Modernizing Banking Systems: A Strategic Shift from

Mainframes to Agile Infrastructure

Tarun Mathur

Senior Architect, New Jersey, United States.

Corresponding Author : tarunmathur@live.in

Received: 17 November 2024 Revised: 23 December 2024 Accepted: 12 January 2025 Published: 30 January 2025

Abstract - Since the 1960s and 1970s, mainframe systems have been at the heart of core banking operations, automating

processes and carrying out high-volume transactional work. Using legacy systems has reliably served customers’ needs but also

presents major concerns: operational costs, a lack of scalability, and fewer resources specializing in COBOL. The need for a

smooth, secure, and fast customer experience through digital banking encounters keeps the struggling aged infrastructure out of

pace, which demands modernization as an absolute necessity. The present paper looks at the methodology for gradual, step-by-

step shifting dependency on mainframes without breaking operational continuity. Based on workload segregation, the paper

identifies operations under three categories of critical, semi-critical, and noncritical for prioritization of modernization efforts.

Critical workloads, such as real-time customer transactions, use caching solutions and secondary databases to optimize

performance with consistency in data. Semi-critical workloads, such as batch processing, are migrated to secondary systems

with periodic synchronization, while non-critical workloads, such as the retrieval of archival data, are migrated to lower-cost

platforms. The proposed framework provides secondary databases for reading purposes, synchronized in real-time through tools

like Apache Kafka, RabbitMQ or NATS, and caching solutions to reduce the further load on the mainframes. In due course of

time, all write operations can be routed slowly to the secondary database, thus gradually retiring the mainframe systems. This

is a step-by-step methodology of minimizing disruption, preserving data integrity, reducing risk, and providing a scalable, cost-

efficient infrastructure. The framework not only solves issues like Million Instructions Per Second (MIPS) costs and integration

of newer technologies but also positions financial institutions for evolving customer demand, innovation, and operational

excellence, instilling a sense of optimism and hope for the future of banking systems.

Keywords - Mainframe modernization, COBOL dependency, Banking systems, Resiliency, Caching solutions, MIPS cost

reduction.

1. Introduction
The banking industry has relied heavily on mainframe

systems for core operations since the 1960s and

1970s, automating routine tasks to save manual labor

costs. Revolutionizing the sector, these COBOL applications

with DB2 databases replaced paper-based records with digital

storage, bringing faster data access and better data accuracy—

supporting high-volume transaction processing [1].

Mainframes were instrumental in introducing revolutionary

services like Electronic Funds Transfer (EFT), increasing the

speed and security of transactions, and laying the foundation

for future developments like Automated Teller Machines

(ATM) and online banking. However, in this increasingly

digitized financial landscape, banks are under heavy pressure

to revamp their technology infrastructure as clients demand

frictionless, efficient, and safe banking via mobile devices and

online platforms. Since most of the existing mainframe

systems are aging and not designed to handle the demands of

a modern digital banking ecosystem, transformation is

urgently needed without disrupting critical operations [2].

This continued reliance on legacy systems is a barrier to

innovation and growth, which is further compounded by the

gradually dwindling reservoir of COBOL and FORTRAN

expertise as seasoned developers are retiring. Younger

generations are not getting trained in these technologies.

Integration with cloud-based technologies and API-driven

innovations—needs for scalability and flexibility—is also

quite cumbersome for mainframes. Most institutions cannot

make any changes to the mainframe software without

adequate documentation in place. High operating costs, fueled

by MIPS pricing models and ever-increasing transaction

volumes from mobile and online banking, compound these

issues [3, 4]. While financial institutions acknowledge the

challenges of aging mainframe systems, the need for

pragmatic and incremental modernization solutions is more

urgent than ever. Most of the literature focuses on

comprehensive system overhauls, which can be prohibitively

costly and risky for organizations reliant on legacy

http://www.internationaljournalssrg.org/
mailto:tarunmathur@live.in

Tarun Mathur / IJCSE, 12(1), 11-15, 2025

12

infrastructure. For instance, an expensive 'big-bang'

mainframe modernization program could disrupt operations in

a way that would make incremental approaches more

attractive for cost reduction and mitigation of operational

risks. The "big-bang approach," where the entire mainframe

system is replaced at once, is generally referred to as high-risk,

which can cause disruption, budget overrun, and unforeseen

technical problems. With incremental modernization, this

approach provides a step-by-step, iterative process where

specific components of the mainframe ecosystem are slowly

updated and improved.

While the advantages of an incremental approach, for

example, have been deliberated upon at several platforms,

much research and case studies have not been conducted on

such approaches. This indicates that further probes in phase

modernization methodologies become indispensable. In such

ways, it is essential that the banking industry continuously

upgrade the systems by maintaining stability and reducing

risks related to operations. This paper introduces a novel

approach to incrementally modernize the aging mainframe

systems of the banking sector, considering all associated

challenges with such legacy systems. Unlike conventional

methods involving complete overhauls, this study emphasizes

practical, low-risk solutions for modernizing specific

components. It provides key innovations: secondary database

integration, offloading data processing, innovative caching

mechanisms that manage high-frequency requests much more

effectively, and the development of hybrid models for

enabling mainframes towards modern cloud-based and API-

driven platforms. Finally, it should also offer various cost

optimization approaches, such as alleviating the costs linked

with MIPS pricing and disaster recovery. The paper presents

a unique, phased modernization plan, balancing innovation

with the realities of maintaining critical banking operations

through the lens of operational continuity and minimal

disruption.

2. Methodology
A three-phase approach to deal with the complexities in

mainframe systems and for progressive reduction of the

dependence on them is being discussed here. The solution

includes secondary databases for reading operations to be

performed, plus caching for critical applications, with both

providing improvement in performance and scalability while

decreasing related mainframe operational costs—those that

pertain mainly to MIPS charges.

2.1. Introducing a Secondary Database for Read Operations

The first step is to create a second database to handle read

operations like customer logins, ATM withdrawals, and

service inquiries. Write operations will continue in the

primary database due to compatibility issues related to the

existence of legacy systems and backend processes, most of

which are neither documented nor well understood by the

developers and architects involved. A secondary database will

be maintained in sync with the primary one by a daily batch

process, ensuring it has the most recent data. Besides, there

will also be real-time updates whenever data gets written to

the primary database. This will be achieved using distributed

messaging systems such as Apache Kafka, RabbitMQ and

NATS as a transport layer to ensure efficient and reliable data

replication [5].

2.2. Implementing a Caching Solution for Critical Use Cases

The system is implemented first to seek data from the

cache for fast retrieval. Implementing a caching system can

improve performance and reduce mainframe dependency for

mission-critical applications. If the required data is not found,

corrupted, or outdated in the cache, the system will send a

query to a secondary database. The system rarely resorts to the

primary database in case there are technical problems with the

secondary database. The layered approach, therefore, brings

about a minimization of the direct calls made to the mainframe

database; it reduces the load on mainframes and decreases

MIPS costs. More recently, performance can also be enhanced

further using distributed caching systems that keep repeatedly

accessed data memory-based and nearer to the applications,

reducing latencies and backend burdens, generally adding to

operational efficiencies. This structured caching method leads

an organization through a resilient data-retrieval process that

optimizes performance and cost-effectiveness efficiently.

2.3. Workload Segmentation

Modernization of mainframe systems involves a careful

categorization of workloads based on needs and operational

priorities [6]. There are three major categories that a workload

can fit into: critical, semi-critical, or non-critical. Critical

workloads, including real-time customer transactions and

fraud detection, will demand high availability, low latency,

and strong data consistency. This kind of workload is

offloaded to caching solutions and secondary databases for

best performance while taking the load off the mainframes.

Semi-critical workloads, like report generation and batch

processing, can be offloaded to secondary databases that

synchronize periodically to maintain data consistency without

swamping the system. Non-critical workloads, such as

retrieving archived data and infrequent queries, are the best-

suited ones for offloading to cloud-based systems or other

cost-effective storage platforms. This classification allows

financial institutions to focus modernization efforts in a

manner that ensures critical services are maintained while

optimizing resources for less demanding operations.

2.4. Monitoring and Optimization

It is now time to monitor the system's transactions for

some months to see how the new architecture behaves. First,

the check will ensure that the secondary database or cache is

serving mainly read traffic. Monitoring tools will be placed to

measure the number of calls, together with the successes at

each layer, to understand the performance and savings

occurring and further optimizations to be performed. From

Tarun Mathur / IJCSE, 12(1), 11-15, 2025

13

this analysis, further system improvement can be made, and/or

legacy flows can be progressively retired when the assurance

in the secondary database and caching layers increases. This

type of iteration will make the cutover painless and limit the

associated risk of disrupting ongoing business operations.

2.5. Transitioning Write Operations to the Secondary

Database

Once the secondary database and caching layers prove

reliable for read operations, developers will start identifying

all write flows in the system systematically. The developers

and architects will document these flows and then

prioritize those that can be transitioned to the secondary

database with the least impact on operations. The write flows

will gradually be shifted to the secondary database, which

continues to synchronize with the primary for continuity. As

more write operations are transitioned and trust in the

secondary database builds, it will be able to reduce

dependency on the mainframe database. Finally, the primary

or mainframe database can be deprecated to reduce costs and

dependency on legacy mainframes significantly. This step-by-

step process ensures a smooth transition to modern

infrastructure, minimizes risks, and assures the integrity of

data with no disruption in services to end-users.

This architecture outlines a step-by-step approach to

reduce mainframe dependency. Step (1) involves applications

initiating data requests, which pass through the API

layer (2) that determines the appropriate data source. The API

first queries the distributed cache (3) for critical use cases to

retrieve data quickly. If the cache is unavailable or outdated,

the request is forwarded to the secondary database (4), which

handles most read operations. Real-time synchronization

between the primary database (5) and the secondary database

is facilitated using Kafka to ensure consistency. The primary

database handles all write operations and legacy flows as a

fallback for rare data retrieval cases. Finally, step (6) involves

a batch reconciliation process at the end of each business day

to update the secondary database with any changes from the

primary database, maintaining consistency across the system.

(7) Legacy applications or systems continue writing into

mainframe systems to avoid disruption.

Fig. 1 Proposed architecture for gradual mainframe dependency reduction in banking systems

Fig. 2 Final phase architecture for eliminating mainframe dependency in banking systems

This diagram represents the final phase of transitioning

from mainframe dependency in banking systems. In this

phase, applications (1) interact with APIs (2), which direct

requests to a distributed cache (3) for critical and frequently

accessed data. The secondary database (4) now serves as the

primary source for all read-and-write operations, completely

replacing the original mainframe database. Real-time data

consistency is maintained within the modernized

infrastructure, eliminating reliance on legacy applications and

the mainframe database (5). This architecture demonstrates an

entirely modernized system that is cost-efficient, scalable, and

capable of meeting evolving customer demands without the

constraints of legacy systems.

Applications API Distributed Cache
Secondary
Database

Primary Database
(Mainframe)

Batch Reconciliation
Process

Read operation

Write operation

Read
Write

Write

1 2 3 4 5

6

Legacy
Applications

7

Applications API

Distributed Cache

Secondary Primary
Database

Primary Database
(Mainframe)

Read and Write
operation

Read

Write

Legacy
Applications

1 2

3

4 5

synchronize

6

Tarun Mathur / IJCSE, 12(1), 11-15, 2025

14

3. Results and Discussion
This architectural strategy slashes the cost of mainframes

in the financial institution world without giving up system

reliability and performance. A bank, for instance, would

conventionally rely on its mainframe to process millions of

customer transactions on any given day. Using a caching layer

between clients and the organization's backend systems,

frequently accessed data, such as account balances and recent

transaction history, could be cached. Caching offloaded more

than 60% of read operations from the bank's mainframe, thus

shaving mainframe transaction processing costs by

approximately $2 million annually. Additionally, the bank

used a second-tier distributed database to store historical

transaction data older than two years. The migration freed

expensive mainframe storage and improved analytics and

regulatory reporting query performance. For instance,

compliance reporting is faster and cheaper, pulling data from

the second-tier distributed database instead of the mainframe.

4. Conclusion
Financial institutions cannot afford to lag in mainframe

use to remain competitive in an increasingly dynamic and

technology-driven environment. This paper presents a

strategic framework for legacy system modernization,

focusing on workload segmentation, secondary databases, and

caching solutions that will help increase performance while

reducing costs and ensuring scalable efficiency. Segmentation

into critical, semi-critical, and non-critical workloads will

enable effective prioritization of modernization work while

ensuring service continuity for the mission-critical operations

of the institution. It offers a structured methodology towards

modernization in steps. It also brings significant relief for the

mainframes by offloading the read operations to the secondary

databases with the appropriate caching solutions, which

thereby reduces operational costs, including the MIPS

charges. When the functionality supports writing on

secondary, it can be sustainable in the long term while

reducing dependence on legacy infrastructure piece by piece.

The hybrid model presents a no-risk strategy that maintains

data integrity and allows financial institutions to meet

customer and regulatory demands. This, in turn, leads to the

final stage when the financial organizations move to a

modernized infrastructure where the mainframes are replaced

in all operations by secondary databases and caching

solutions. This sets the stage for a cost-effective, flexible

architecture to support scalability for future innovations. In

this respect, by applying the given framework for

modernization, financial institutions will be able to reach

operational excellence, increase customer satisfaction, and

become leaders in a volatile technology environment.

However, the study does acknowledge a number of

limitations. One of the key challenges is assuming that all

financial institutions or banks are equally ready to implement

secondary database and caching solutions. Technological

maturity, resource availability, and organizational priorities

vary greatly. Smaller banks or those with very tight budgets

may find it hard to allocate resources for incremental

modernization, which may delay or complicate the process.

Another limitation involves potential integration

challenges. Seamlessly shifting workloads from

mainframes into modern systems requires full compatibility

between legacy systems and new technologies. For

example, keeping primary and secondary databases in real-

time sync can be complicated and error-prone, especially

within high-transaction environments. Furthermore, basing

one’s system on caching systems introduces vulnerabilities

such as cache consistency issues and single points of failure,

leading to interruption of operations.

Another limitation is the assumption that workload

segmentation can be sharply divided into critical, semi-

critical, and non-critical. Operations may fall within more than

one category or even change in criticality over time, thus

requiring constant re-evaluation and re-adjustment, which

may be burdensome for the organization.

In the future, the framework would need comprehensive

case studies involving the number of financial or banking

institutions to assess its real-world applicability and

effectiveness in terms of implementation. The development of

adaptive strategies for overcoming integration challenges and

the refinement of workload segmentation methods would also

contribute to strengthening the robustness and applicability of

the proposed framework. Adding these directions would fine-

tune the approach to the divergent needs of financial

institutions, allowing for a seamless transition into

modernized systems.

References
[1] Gloria Mentonelli, Why COBOL Still Dominates Banking—and How to Modernize, Castsoftware, 2024. [Online]. Available:

https://www.castsoftware.com/pulse/why-cobol-still-dominates-banking-and-how-to-modernize

[2] Alvaro Ruiz, Key Strategies and Approaches for Mainframe and Core Banking Modernization, Accenture Banking Blog, 2024. [Online].

Available: https://bankingblog.accenture.com/strategies-mainframe-core-banking-modernization

[3] Spas Tyurkedzhiev, Migrating the COBOL Legacy to Modern Systems and Their Challenges, Dreamix, 2022. [Online]. Available:

https://dreamix.eu/insights/migrating-the-cobol-legacy-to-modern-systems-and-their-challenges/

[4] Million of Instruction Per Second, ScienceDirect. [Online]. Available: https://www.sciencedirect.com/topics/computer-science/million-

of-instruction-per-second#

Tarun Mathur / IJCSE, 12(1), 11-15, 2025

15

[5] T. Sharvari, and K. Sowmya Nag, "A study on Modern Messaging Systems- Kafka, RabbitMQ and NATS Streaming," Arxiv, pp. 1-5,

2019. [CrossRef] [Google Scholar] [Publisher Link]

[6] Bing Hu, and Nicholas Mason, "Large Scale Analytics for Workload Segmentation," Journal of Management & Engineering Integration,

vol. 16, no. 1, pp. 19-26, 2023. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.48550/arXiv.1912.03715
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+study+on+Modern+Messaging+Systems-+Kafka%2C+RabbitMQ+and+NATS+Streaming&btnG=
https://arxiv.org/abs/1912.03715
https://doi.org/10.62704/10057/25984
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Large+scale+analytics+for+workload+segmentation&btnG=
https://www.journalmei.com/_files/ugd/f76c8e_450541301d5f4cdaad617c23b45be0a5.pdf

