A Study and Analysis of Energy Efficiency Techniques in Heterogeneous Multi-Core Architectures
International Journal of Computer Science and Engineering |
© 2017 by SSRG - IJCSE Journal |
Volume 4 Issue 6 |
Year of Publication : 2017 |
Authors : Y. ShebbirAli |
How to Cite?
Y. ShebbirAli, "A Study and Analysis of Energy Efficiency Techniques in Heterogeneous Multi-Core Architectures," SSRG International Journal of Computer Science and Engineering , vol. 4, no. 6, pp. 36-40, 2017. Crossref, https://doi.org/10.14445/23488387/IJCSE-V4I6P107
Abstract:
Heterogeneous Multi-core architectures are using widely for improving energy aware without degrading efficiency of the system. Current many energy aware techniques are there in Heterogeneous Multi-core architectures but it is not reaching as much as user’sexpectations. Now our study is conducting by comparing the various techniques on Heterogeneous Multi-core architectures and how they are efficiency in fullfilling their existing needs of the Heterogeneous Multi-core architectures,here we are producing the Comparative result analysis and study on existing various energy aware techniques for the Heterogeneous Multi-core architectures.
Keywords:
Comparative result analysis and study on existing various energy aware techniques for the Heterogeneous Multi-core architectures.
References:
[1] M. Showerman, J. Enos, A. Pant, V. Kindratenko, C. Steffen,R. Pennington, and W.-m. Hwu, ―QP: A heterogeneousmulti-accelerator cluster, in Proc. 10th LCI Int. Conf. HighPerform.ClusteredComput., 2009, pp. 1–8.
[2] V. V. Kindratenko, J. J. Enos, G. Shi, M. T. Showerman, G. W.Arnold, J. E. Stone, J. C. Phillips, and W. -M. Hwu, ―Gpuclustersfor high-performance computing, in Proc. IEEE Int. Conf.ClusterComput. Workshops, 2009, pp. 1–8.
[3] ORNL. (2012, Dec.).Titan project timeline.[Online].Available:http://www.olcf.ornl.gov/titan/
[4] Federal Energy Management Program, ―Quick start guide toincrease data center energy efficiency, U.S. Department ofEnergy, Tech. Rep., 2012. [Online]. Available: http://hightech.lbl.gov/documents/data_centers/Quick-Start- Guide.pdf
[5] C. Lefurgy, X. Wang, and M. Ware, ―Power capping: A prelude topower shifting, Cluster Comput., vol. 11, no. 2, pp. 183–195, 2008.
[6] X. Wang, M. Chen, C. Lefurgy, and T. W. Keller, ―SHIP: A scalablehierarchical power control architecture for large-scale data centers,IEEE Trans. Parallel Distrib. Syst., vol. 23, no. 1, pp. 168–176,Jan. 2012.
[7] R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and K. W. Cameron,―PowerPack: Energy profiling and analysis of highperformancesystems and applications, IEEE Trans. Parallel Distrib. Syst.,vol. 21, no. 5, pp. 658–671, May 2010.
[8] M. Y. Lim, V. W. Freeh, and D. K. Lowenthal, ―Adaptive, transparentfrequency and voltage scaling of communication phases inMPI programs, in Proc. ACM/IEEE Conf. Supercomput., 2006, p. 14.
[9] N. Kappiah, V. W. Freeh, and D. K. Lowenthal, ―Just in timedynamic voltage scaling: Exploiting inter-node slack to saveenergy in mpi programs, in Proc. ACM/IEEE Conf. Supercomput.,2005, p. 33.
[10] C.-H. Hsu and W.-C. Feng, ―A power-aware run-time system forhigh-performance computing, in Proc. ACM/IEEE Conf. Supercomput.,2005, p. 1.
[11] K. H. Kim, R. Buyya, and J. Kim, ―Power aware scheduling of bagof-tasksapplications with deadline constraints on DVS-enabledclusters, in Proc. 7th IEEE Int. Symp. Cluster Comput. Grid, 2007,pp. 541– 548.
[12] X. Wang and M. Chen, ―Cluster-level feedback power control forperformance optimization, in Proc. IEEE 14th Int. Symp.High Perform.Comput. Archit., 2008, pp. 101–110.
[13] M. Etinski, J. Corbalan, J. Labarta, and M. Valero, ―Parallel jobscheduling for power constrained HPC systems, Parallel Comput.,vol. 38, pp. 615–630, 2012.
[14] B. Lin, A. Mallik, P. Dinda, G. Memik, and R. Dick, ―Userandprocess- driven dynamic voltage and frequency scaling, in Proc.IEEE Int. Symp. Perform. Anal. Syst. Softw., 2009, pp. 11–22.
[15] W. L. Bircher and L. K. John, ―Core-level activity prediction formulticore power management, IEEE J. Emerging Select. Topics CircuitsSyst., vol. 1, no. 3, pp. 218–227, Sep. 2011.
[16] H. Ltaief, P. Luszczek, and J. Dongarra, ―Profiling high performancedense linear algebra algorithms on multicore architecturesfor power and energy efficiency, Comput. Sci.- Res.Develop.,vol. 27, no. 4, pp. 277–287, 2012.
[17] E. Anderson, LAPACK Users‘ Guide. SIAM, Philadelphia, PA,USA, vol. 9, 1999.
[18] PLASMA—Parallel linear algebra software for multicore architectures,Version 2.4.5, 2011.
[19] C. Lively, X. Wu, V. Taylor, S. Moore, H.-C. Chang, C.- Y.Su, andK.Cameron, ―Power-aware predictive models of hybrid (MPI/OpenMP) scientific applications on multicore systems, Comput.Sci.-Res. Develop., vol. 27, no. 4, pp. 245–253, 2012.
[20] Y. Hotta, M. Sato, H. Kimura, S. Matsuoka, T. Boku, and D.Takahashi, ―Profile-based optimization of power performanceby using dynamic voltage scaling on a PC cluster, in Proc.20th Int. Parallel Distrib.Process.Symp., 2006, pp. 298–298.
[21] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin, ―Thedesign and use of simplepower: A cycle-accurate energy estimationtool, in Proc. 37th ACM Annu. Desi.Autom. Conf., 2000,pp. 340–345.
[22] D. Brooks, V. Tiwari, and M. Martonosi, ―Wattch: A frameworkfor architectural-level power analysis and optimizations, ACMSIGARCH Comput. Archit. News, vol. 28, no. 2, pp. 83–94, 2000.
[23] R. Suda and D. Q. Ren, ―Accurate measurements and precisemodeling of power dissipation of CUDA kernels toward poweroptimized high performance CPU-GPU computing, in Proc. Int.Conf.Parallel Distrib.Comput., Appl. Technol., 2009, pp. 432–438.
[24] X. Ma, M. Dong, L. Zhong, and Z. Deng, ―Statistical power consumptionanalysis and modeling for GPU-based computing, inProc. ACM SOSP Workshop Power Aware Comput. Syst., 2009,pp. 1–6.
[25] P. Bohrer, E. N. Elnozahy, T. Keller, M. Kistler, C. Lefurgy, C.McDowell, and R. Rajamony, ―The case for power management inweb servers, in Power Aware Computing, New York, NY, USA:Springer-Verlag, 2002, pp. 261–289.
[26] ‗Nvidia CUDA Programming Guide, Nvidia, Santa Clara, CA, USA,2011.
[27] F. Ries, T. De Marco, and R. Guerrieri, ―Triangular matrix inversionon heterogeneous multicore systems, IEEE Trans. ParallelDistrib. Syst., vol. 23, no. 1, pp. 177–184, Jan. 2012.
[28] A. Krampe, J. Lepping, and W. Sieben, ―A hybrid Markov chainmodel for workload on parallel computers, in Proc. 19th ACMInt.Symp. High Perform. Distrib.Comput., 2010, pp. 589–596.
[29] N. Sharifimehr and S. Sadaoul, ―Markovian workload modelingfor enterprise application servers, in Proc. 2nd Canadian Conf.Comput. Sci. Softw. Eng., 2009, pp. 161– 168.
[30] J. Heo, P. Jayachandran, I. Shin, D. Wang, T. Abdelzaher, and X.Liu, ―OptiTuner: On performance composition and server farmenergy minimization application, IEEE Trans. Parallel Distrib.Syst., vol. 22, no. 11, pp. 1871–1878, Nov. 2011.