Research Methodology on Offline and Online Signature Verification and Forgery Detection

International Journal of Computer Science and Engineering
© 2017 by SSRG - IJCSE Journal
Volume 4 Issue 11
Year of Publication : 2017
Authors : Haritha Damarla

pdf
How to Cite?

Haritha Damarla, "Research Methodology on Offline and Online Signature Verification and Forgery Detection," SSRG International Journal of Computer Science and Engineering , vol. 4,  no. 11, pp. 19-22 , 2017. Crossref, https://doi.org/10.14445/23488387/IJCSE-V4I11P104

Abstract:

This research review paper discusses about Offline and Online Signature Verification and Forgery Detection.In this paper we discuss various methods used in offline signature verification like DTW,HMM,GMM and Fuzzy Modellig. We propose to use SVC2004 Database of online signatures, making use of various measurements a digital signature tablet provides for the modelling of verification and forgery detection system.

Keywords:

Signature Verification, Forgery Detection, Offline and Online Design.

References:

[1] Kour, M. Hanmandlu, and Ansari, A. Q. Ansari, “Online signature verification using GA-SVM” International Conference on Image Information Processing, pp. 1-4, 2011. 
[2] S. Bhatia, P. Bhatia, D. Nagpal, S. Nayak, “Online Signature Forgery Prevention”, International Journal of Computer Applications (0975 – 8887), Vol. 75, No.13, August 2013. 
[3] A.K. Jain, Friderike D. Griess, Scott D. Connell, “On-signature verification”, Pattern Recognition, Vol.35, No.12, pp. 2963--2972, Dec 2002. 
[4] H. Lei, V. Govindaraju, “A Comparative Study on the Consistency of Features in On-line Signature Verification”, Pattern Recognition Letters, Vol. 26, Issue 15, November 2005. 
[5] S. A. Daramola and T.S Ibiyemi, “Efficient on-line signature verification system”, International Journal of Engineering & Technology, Vol. 10, No.4, August 2010. 
[6] B. Yanikoglu, A. Kholmatov “An Improved decision criterion for genuine/forgery classification in on-line signature verification” Sabanci University, Tuzla, Istanbul, 34956, Turkey. 
[7] M. Hanmandlu, M. Hafiz, V. K. Madasu, “Offline Signature Verification and forgery detection using fuzzy modeling”, Pattern Recognition 38 ,pp. 341-356,2005. 
[8] Dong, L.; Yun-Jian, G.; Xue-Yong, Z., 2010 International Conference on Computer application and System Modeling (ICCASM), On-Line Signature verification based on template matching approach and support vector data description , Vol. 12,pp. 681-685, 2010. 
[9] R. S. A. Araujo, G. D. C. Cavalcanti, and E. C. D. B. C. Filho, “On-line verification for signatures of different sizes,” presented at the 10th Int.Workshop Front. Handwriting Recognition, La Baule, France, Oct. 2006. 
[10] A. Kholmatov, “Biometric Authentication using online signature”, MS Thesis, Sabanci University, June 2002. 
[11] D. Impedovo, G. Pirlo, R. Plamondon “Handwritten Signature Verification: New Advancements and OpenIssues”, International Conference on Frontiers in Handwriting Recognition (ICFHR), 2012, 18-20 Sept. 2012, Bari, pp. 367-372. 
[12] Zhang, Z., Wang, K., Wang, Y., “A Survey of On-line Signature Verification” C. Allgrove, M. C. Fairhurst, “Majority voting for improved signature verification,” in Proc. Inst. Elect. E Colloq. Vis. Biometrics, London, U.K., pp. 9-1–9-4, 2000. 
[13] P. Jain, J. Gangrade, “Online Signature Verification using Energy Angle and Directional Gradient Feature with Neural Network”, International Journal of Innovative Research in Science Engineering and Technology,Vol.2,Issue 9, September 2013. 
[14] J. Fierrez, J. Ortega-Garica, D. Ramos, J. Gonzalez-Rodriguez, “HMM-based on-line signature verification: feature extraction and signature modeling”, Pattern Recognition Letters, Vol.28, No.16, pp.2325-2334, December 2007. 
[15] Chang, W., Shin, J., “DPW Approach for Random Forgery Problem in Online Handwritten Signature Verification”,Fourth International Conference on NetworkedComputing and Advanced Information Management, Vol.1, pp. 347-352, 2008. 
[16] M. Hanmandlu, "Information Sets and Information Processing," Defence Science Journal, vol. 61, no. 5, pp. 405–407, 2011. 
[17] M. Hanmandlu and Anirban Das, “Content-based Image Retrieval by Information Theoretic Measure”, Defense Science Journal, Vol. 61, No. 5, pp. 415-430, Sept. 2011. 
[18] http://www.cse.ust.hk/svc2004/download.html