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Abstract - An advanced prediction of power generation is necessary for renewable systems to achieve optimal efficiency 

and output. This paper explores advanced deep learning models: Long Short-Term Memory (LSTM), 1D Convolutional 

Neural Network (1D-CNN), and a combined LSTM-1DCNN model to predict output solar power using historical time series 

climatic data. The feature consists of the main characteristics, namely temperature, air pressure, sun radiation, and humidity 

of the solar power. Several evaluation metrics were used to better assess each model's performance and the extent to which 

it has addressed research questions. The best model that showed high accuracy and good generalization of the output data 

was chosen as the LSTM-1DCNN hybrid model. Regarding the projections, each feature's contribution was evaluated using 

SHAP values with the "SHAP" package. The analysis carried out by the study revealed that models were influenced most by 

sun radiation. As the three models are analyzed, the call for multiple deep-learning techniques increases the forecast level. 

This paper focuses on the potential of using hybrid deep learning models to enhance the accuracy of the power output 

predictions while, by SHAP analysis, underlining the requirement for the model explainability. However, such work offers 

significant viewpoints and room for other developments that can use more prominent datasets and elaborate details. 
However, the results also highlight the areas to learn about the possibility of increasing the reliability and interpretability 

of the model's outcomes while underlining the necessity to apply advanced modelling approaches to optimize energy systems. 

Keywords - Deep learning, Explainability, Forecasting, Solar power, SHAP. 

1. Introduction  
Due to their great capacities for electricity generation, 

Photovoltaic (PV) cells are one of the most sought and 
applied types of renewable energy resources. Incorporating 

PV systems with smart grids requires precise prediction of 

the electricity produced by the PV systems. Whenever many 

MW scale PV systems are interconnected with the utility or 

if a multitude of small-scale PV systems are connected at 

the utility side, having the ability to forecast the PV system's 

power output becomes crucial. Little attention has been 

focused on the present research topic, whereby a very 

limited number of research studies are available on 

forecasting the power generated by PV [1]. The 

overwhelming portion of the published literature is 

concentrated on estimating solar radiation. However, sun 
irradiance is just one factor determining a PV module's 

output power, which depends on several other features. 

Such factors may consist of the physical states of the cells, 

the kind of solar cells together with the electrical layout of 

the module, the angle of the incident rays, temperature, and 

so on. Solar power can be classified as one of the most 

important elements for the shift towards sustainable power 

resources. Today, against the backdrop of such negative 

consequences of climate change and the reduction in fossil 

fuels, the need for effective and stable solar energy 

generation has become especially pertinent. Several 

parameters, such as environmental conditions like 

temperature, humidity, irradiance, and atmospheric 

conditions, directly impact the efficiency of solar power 

systems. There is a need to comprehend how these factors 

affect the performance of solar power and make a correct 
prognosis of the phenomenon since the declination of those 

aspects ensures the effectiveness of the solar power output 

and the stability of the solar power system [2]. 

Over the last few years, huge improvements in deep 

learning have redefined data analysis and interpretation in 

many fields of science and industry. As part of deep learning 

methods, the neural network approach has shown good 

results when applied to image classification, speech 

recognition, and the prediction of time series data. Such 

approaches have a huge capability of capturing relationships 

and patterns in the data and, therefore, are most preferable 
for use in nonlinear models such as solar power forecasting. 

Nevertheless, contrary to their high predictive quality, deep 

learning models have been criticized for being "black 

http://www.internationaljournalssrg.org/
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boxes" and, therefore, having poor explainability of how 

inputs are translated into outputs [3, 4]. Another drawback 

of implementing deep learning models is the non-

interpretable feature, which becomes problematic, 

particularly in crucial domains such as renewables 

forecasting. Engineers, policymakers, grid operators, and 
other stakeholders need simple and understandable models 

for decision-making regarding electricity generation, 

transmission, and investment in electricity networks. In this 

context, the emerging research field of Explainable 

Artificial Intelligence (XAI) intends to increase the safety of 

AI. XAI aims to explain the functioning of deep learning 

models or explain how particular input variables affect a 

model and which factors matter most in such decisions [5]. 

Out of all of the techniques that belong to the field of 

XAI, the most promising one appears to be SHapley 

Additive exPlanations (SHAP). SHAP is also derived from 

cooperative game theory and is claimed to give a clear 
interpretation of the prediction of models. It provides every 

feature with an important value for a specific prediction, 

therefore showing the effect of every environmental factor 

on the result of solar power generation. The values of SHAP 

are reliable and less sensitive to the model; therefore, the 

explanations are reliable and locally relevant. This 

technique is also useful for understanding the behaviour, 

improving the model's interpretations, and investigating 

possible biases in the data set or the chosen model [4]. 

Though conventional statistical and machine learning 

methods have been used in energy forecasting, they 
frequently fail to capture environmental data's intricate 

temporal and nonlinear relationships. Deep learning models 

are becoming increasingly useful because they can record 

minute patterns and correlations in huge datasets, making 

them powerful instruments. LSTMs and CNNs are two 

deep-learning architectures with great potential in feature 

learning and temporal forecasting. Several earlier 

techniques like linear regression, time series analysis 

(example: ARIMA), support vector machines (SVM), and 

random forest have been in prior use. Thus, simple and clear 

linear regression cannot detect nonlinear patterns and 

interactions between features [6, 7]. ARIMA models show 
fairly high accuracy for short-term forecasts but have 

several limitations for nonlinear relations and long-term 

dependencies. It is best applied in high dimensional space, 

but large data sets with complex patterns consume a lot of 

time. Although ensemble learning makes classification 

more accurate, random forests present the problem of 

handling them with high-dimensional data and might 

neglect temporal dependencies. The following are the 

disadvantages that bolster the necessity for superior 

methods to tackle the complex relations of renewable energy 

information [8, 9]. Because these algorithms can identify 
complex patterns, the predictions are very accurate. Alas, 

adopting these models in important decision-making 

processes remains somewhat impracticable, as often, a 

number of these pinpoints are shrouded in the veil of limited 

interpretability, resulting from the models' complexity. 

Explainability techniques such as SHAP values have been 

used to mitigate this problem. SHAP values improve the 

openness and confidence in the results produced by these 

models by clarifying the contributions of particular 

environmental conditions to the model's predictions. 

Machine learning models are interpreted, and feature 

importance is understood using a number of other 
techniques, such as Partial Dependence Plots (PDPs), 

Feature Ablation, and Permutation Feature Importance. The 

measure of a feature's relevance in permutation feature 

importance is the reduction in model performance caused by 

randomly shuffled feature values.  

It might not, however, thoroughly capture feature 

interactions and can be computationally costly. By 

averaging the model predictions over a range of feature 

values, PDPs show the impact of a single feature on the 

projected outcome, but they frequently ignore feature 

interactions. Feature ablation is methodically eliminating 

characteristics from the model to see how it affects 
performance; nevertheless, for models with a lot of features, 

this approach can be problematic and, in the case of highly 

correlated features, may produce biased results. Such 

imposed limitations highlight the usefulness of SHAP, 

which provides a sound and comprehensive analysis of the 

allocation, interactions and importance of features [10]. This 

study employed the SHAP and advanced deep learning 

models to predict the output power of a solar power system. 

Three models were implemented: - LSTM model in this 

research, LSTM, 1D-CNN, and a combination of the two 

models LSTM-1DCNN will be used. The models ACC, AV, 
CTL, PAC, and PRC were trained using a dataset that 

included critical environmental parameters such as 

temperature, sunlight intensity, relative humidity, and 

atmospheric pressure. Finally, after training the models, the 

explanations of the patterns were given through SHAP, 

which revealed the contribution of each feature. This 

methodological approach 'solved' interpretability problems 

associated with complex machine learning techniques and 

presented secure future values with a better understanding 

of factors that define the output power [11–13]. 

The current research proposes an effective method to 

forecast solar power generation with the help of deep 
learning techniques, including LSTM, 1D-CNN, and 

LSTM-1DCNN with SHAP, improving interpretability. 

Unlike the traditional models, these approaches can miss the 

dynamic and nonlinear character of the environmental 

variables; thus, this study employs SHAP to identify the 

relevant features and leverages the advantages of deep 

learning in creating precise approaches. In this respect, there 

are beneficial implications of stressing accuracy and 

comprehensibility throughout the present research utilizing 

a systemic approach that identifies the determiners of solar 

power yield and offers high-performance metrics, thus 
filling a research gap in forecasting renewable energy. 

2. Problem Identification 
2.1. Predictive Deep Learning Models for Solar Power  

Many models are already under development for the 

purpose of solar energy prediction due to the recent 
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improvements in deep learning. The complexity of these 

models is growing. Compared to other techniques, these 

models are more accurate because they can identify complex 

patterns in the surroundings in which they are now 

immersed. Several instances have been given to show the 

benefits of deep learning models and their possible 
applications in solar power forecasting. Yaojian Xu et al. 

[14]. For example, the short-term power produced by solar 

cells in Beijing was predicted using a CNN-LSTM hybrid 

model. It was done from the viewpoint of the city. The idea 

exhibits significant gains over more conventional methods 

regarding future forecast accuracy. We used the already 

accessible weather data together with the historical power 

output to accomplish this aim. Deep learning developments 

recently have resulted in the development of ever more 

complex models for solar production predictions. Because 

these models can identify fine patterns in environmental 
data, accuracy levels that are higher than conventional 

techniques can be achieved; similarly, Kim et al. [15] 

demonstrated how efficient parallel processing is and how 

well transformer models can manage huge datasets by using 

them for real-time solar power control. 

Table 1. Recent research on deep learning models for solar power forecasting 

Ref Method Objective Key Findings 

[16] COA-CNN-LSTM 
PV/wind Power Forecasting in 

Smart Grid Applications 

COA-CNN-LSTM model outperforms other 

techniques in terms of the Granger causality test and 

Nash-Sutcliffe analysis, showing precise and definitive 

wind power predictions for renewable energy 

management. 

[17] CEEMDAN-LSTM 

Forecasting Total Electron 

Content (TEC) for GNSS 

Applications 

The CEEMDAN-LSTM model demonstrated 50% and 

70% better accuracy in RMSE and MAE, respectively, 

compared to LSTM and Neural Network models. 

[18] ARIMA-LSTM 

Modelling and Forecasting 

CO2 Emissions in China and 

its Regions 

ARIMA-LSTM model is more accurate in predicting 

CO2 emissions trends in China, providing valuable 

insights for carbon reduction policies. 

[19] 
Attention-based 

LSTM 

Petroleum Production 

Forecasting 

Attention-based LSTM network improved prediction 

accuracy and computational efficiency compared to 

traditional methods. 

[20] IWOA-LSTM 
IoT Temperature and 

Humidity forecasting 

The IWOA-LSTM model showed high accuracy, 

which is better than other forecasting models. 

[21] LSTM 
Streamflow forecasting over a 

Canadian catchment 

LSTM model forecasted streamflows are more reliable 

and accurate for lead times up to 7 and 9 days, 

respectively, compared to a process-based distributed 
hydrological model. 

[22] Optimized LSTM 
Forecasting hourly PM2.5 

concentration 

The optimized LSTM model performed efficient and 

satisfactory forecasts within a 15 km radius, showing 

significant improvements in prediction accuracy over 

previous models. 

[23] LSTM-TCN 

Accurate one-step and 

multistep forecasting of very 

short-term PV power 

The LSTM-TCN model significantly reduced the Mean 

Absolute Error (MAE) compared to standalone LSTM 

and TCN models across different seasons and periods. 

[24] Merton-LSTM 
Forecasting and trading Credit 

Default Swap (CDS) indices 

The Merton-LSTM model achieved the lowest RMSE 

values and highest annualized Sharpe ratios, 

outperforming other models in forecasting accuracy 

and trading performance. 

[25] 
Improved Stacking 

Ensemble 
Multi-timescale photovoltaic 

power forecasting 
The improved Stacking ensemble model enhanced 
accuracy across multiple time scales. 

[26] LSTM 
Regional groundwater 

sequential forecasting 

The local LSTM models provided nearly identical 

performance compared to global models, with further 

improvements through Transfer Learning (TL) in 

coastal areas. 

[27] ConvLSTM-LSTM 

Weather image-based short-

term dense wind speed 

forecasting 

The ConvLSTM-LSTM model significantly improved 

MAE, RMSE, and R² values, effectively forecasting 

wind speed with large amplitude variations and rapid 

frequency changes. 
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Table 2. Pros and cons of the deep learning model 

Model Pros Cons 

CNN 
Effective in capturing local spatial patterns and 

handling multiple input sequences 

Struggles with long-term dependencies and 

complex temporal relationships 

LSTM 
Excellent for capturing long-term temporal 

dependencies in time series data 

Computationally intensive, especially for large 

datasets 

GRU 
Simplified architecture with fewer parameters 

than LSTM, leading to faster training 

May not capture long-term dependencies as 

effectively as LSTM 

Transformer 
Excels in parallel data processing and capturing 

long-range dependencies 

High computational cost and complexity in 

model training 

Hybrid Models 
Combines the strengths of different architectures, 

offering comprehensive pattern recognition 

More complex to train and optimize, with 

potential overfitting due to multiple model 

integration 

 

Xu et al. [14] used Gated Recurrent Units (GRUs) in a 

separate work to forecast solar radiation over the long term. 

The development of RNNs and GRUs has shown promise 

because of their quicker training periods and more 
straightforward construction than LSTMs. Taiwanese 

researchers found that GRU models offered precise and 

effective projections, qualifying them for long-term solar 

power plant planning. 

 

The deep learning models covered similar research 

areas, compared in Table 2 [28–30]. The advantages and 

disadvantages of the several deep learning models applied 

to solar power forecasting are listed in this table and their 

limits. 

 

2.1.1. LSTM (Long Short-Term Memory) Networks 
A kind of recurrent neural network, LSTM networks 

operate especially well for managing sequential input and 

capturing long-term dependencies. Because these networks 

are excellent at time-series forecasting, they are perfect for 

anticipating solar power output from past environmental 

data. Several parts of an LSTM cell's design cooperate to 

control the hidden and cell states, enabling the network to 

pick up temporal patterns. An LSTM cell's input, output, 

forget, and cell state gates are its essential components. 

Equations such as these can characterize them: 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1 ,  𝑥𝑡] + 𝑏𝑓)                              (1)     
                                                                                                                                                                                                                                                                                

𝑖𝑡 = 𝜎(𝑊𝑖  ∙ [ℎ𝑡−1 , 𝑥𝑡] + 𝑏𝑖)                                (2)    
                                                                                     

�̃�𝑡 = 𝑡𝑎𝑛ℎ (𝑊𝑐  ∙ [ℎ𝑡−1 , 𝑥𝑡] + 𝑏𝑐)                                (3)        
                                                                               

𝑐𝑡 = 𝑓𝑡 ⋅ 𝑐𝑡−1 + 𝑖𝑡 ⋅ �̃�𝑡                                (4)           
                                                       

     𝑜𝑡 = 𝜎(𝑊𝑜  ∙ [ℎ𝑡−1 , 𝑥𝑡] + 𝑏𝑜)                               (5)  
                                                                           

ℎ𝑡 = 𝑜𝑡 ⋅ 𝑡𝑎𝑛ℎ(𝑐𝑡)                               (6) 

 
Where input, recurrent data, and output of each cell at 

time t can be presented by 𝑥𝑡, ℎ𝑡, and 𝑜𝑡 respectively. The 

forget gate is represented by 𝑓𝑡 , 𝑐𝑡  represents the status of 

the LSTM's cell. 𝑊𝑓 𝑊𝑖, 𝑊𝑐, and 𝑊𝑜 represent the network 

weights, the operator'⋅' used for the multiplication of two 

pointwise vectors and 𝑏𝑓, 𝑏𝑖, 𝑏𝑐 are the system's bias [31, 

32]. 

2.1.2. Convolutional Neural Networks of One Dimension 

(1D-CNN) 

Time series are processed by convolutional operations 

applied over 1D-CNNs. Particularly good at detecting local 

patterns and characteristics in time-series data, these 

networks are appropriate for signal processing and time-

series forecasting, including predicting solar power output 

depending on environmental conditions. A 1D convolution 

essentially applies a kernel (or filter) to the input data to 

generate an output feature map [33]. This is the numerical 

equation procedure: 

𝑥𝑘
𝑙 = 𝑏𝑘

𝑙 + ∑  
𝑁𝑙−1
𝑖=1 con 𝑣1𝐷(𝑤𝑖𝑘

𝑙−1, 𝑠𝑖
𝑙−1)             (7) 

𝑦𝑘
𝑙 = 𝑓(𝑥𝑘

𝑙 ) and 𝑠𝑘
𝑙 = 𝑦𝑘

𝑙 ↓ 𝑠𝑠              (8) 

Where the input data can be defined by 𝑥𝑘
𝑙 , the bias of 

the 𝑘th  neuron at layer 𝑙 can be defined by 𝑏𝑘
𝑙 , 𝑠𝑖

𝑙−1 

represents the 𝑖th  output of each neuron at 𝑙 − 1 layer, the 

kernel from the 𝑖th  neuron at layer 𝑙 − 1 is represented by 

𝑤𝑖𝑘
𝑙−1 to the 𝑘th  neuron at layer 𝑙. 

 

The intermediate output, 𝑦𝑘
𝑙 , can be expressed by 

passing the input 𝑥𝑘
𝑙  through the activation function as 

expressed in equation (2). Where 𝑠𝑘
𝑙  represents the output of 

the 𝑘th  the neuron of the layer 𝑙, and " ↓ 𝑠𝑠" represents the 

down-sampling operation with a scalar factor, ss. 

 

As an overview, the backpropagation algorithm is as 

follows. Error back propagation begins at the output MLP 
layer. Assume that the input layer is 1 and the output layer 

is 𝑙 = 𝐿. Then, for an input vector 𝑝, and its target and output 

vectors, 𝑡𝑝 [𝑦1
𝐿, ⋯ , 𝑦𝑁𝐿

𝐿 ], respectively. Let 𝑁𝐿  be the number 

of classes in the database. Thus, the mean-squared error 

(MSE), 𝐸𝑝, for the input p in the output layer, NL can be 

expressed as follows: 

𝐸𝑝 = MSE (𝒕𝑝, [𝑦1
𝐿 , ⋯ , 𝑦𝑁𝑙

𝐿 ]
′
) = ∑  

𝑁𝑙
𝑖=1

(𝑦𝑖
𝐿 − 𝑡𝑖

𝑝)
2
       (9) 
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2.1.3. LSTM-CNN Hybrid Models 

Strong points of the LSTM and CNN architectures are 

combined in hybrid LSTM-CNN models. Since CNN layers 

can extract spatial information from the input data and 

LSTM layers can capture temporal dependencies, these 

models perform exceptionally well in challenging time-
series forecasting applications such as solar power 

production predictions [34]. 

When an LSTM-CNN model is used, the CNN layers 

are first applied to the sent data. The main job of these CNN 

layers is to find patterns and features in the nearby area. The 

CNN layers send their output, and then the LSTM layers 

look at the sequential input and find the temporal 

correlations that show up. This is what happens after the 

CNN layers are done working. This mixed method, which 

looks at time and space, lets a deeper look at the data. Given 

are some mathematical examples that show how the hybrid 

model is put together, where 𝑥𝑡 represents the data that is 
being entered at a certain time: 

𝑦𝑡 = LSTM(𝐶𝑁𝑁(𝑥𝑡))                        (10) 

 

2.2. Explainability in Deep Learning Models  

Due to their quick acceptance in solar power 

forecasting, deep learning models have been perceived as 

difficult to interpret. Although these models are pretty 

accurate, their black-box design makes understanding how 

predictions are made challenging. Explainability techniques 

aim to close this gap by providing details about how these 
models make their decisions, thus improving their 

transparency and reliability [35]. One commonly used 

approach for characterizing the output of machine learning 

models is SHAP. Cooperative game theory-based SHAP 

values consider the role of each feature in the model's 

predictions across a range of scenarios to produce a single 

measure of feature relevance. The difficulty of model 

interpretability is resolved by this method, which quantifies 

the impact of specific characteristics on the prediction 

results.  

The SHAP value for a feature 𝒊 can be defined as 
follows within the framework of a prediction f(x): 

 

𝜙𝑖 = ∑  𝑆⊆𝑁∖{𝑖}
|𝑆|!(|𝑁|−|𝑆|−1)!

|𝑁|!
[𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)]        (11) 

 

Where f(s) expressed the model prediction, N is the 

complete set of features, whereas S represents a subset of 

those features that do not contain 𝒊. This equation provides 

a complete evaluation of the feature importance by 

estimating the marginal feature worth and then taking the 

average of the worth by all possible feasible features.  

Thus, certain classes of models, including deep learning 

networks, complicate the identification of the contribution 

of individual input attributes. Due to the complexity of these 
models, this becomes a tough task. It is in such a situation 

where applying SHAP principles helps solve the problem. 

Understanding the relevance of SHAP values is critical for 

improving the interpretability and trustworthiness of the 

model's predictive outcomes. These values help in decision-

making about features and contribute to distinguishing the 

most important of them, as well as giving a more accurate 

assessment than data visualization at the same time.  

 In the following sections, we will examine how the 
LSTM, 1D-CNN, and Hybrid LSTM-CNN models use 

SHAP values for their explanation. Thus, using the SHAP 

data, it is possible to find out to what extent the predictions 

concerning solar power generation depend on different 

factors of the environment. These include heat, intensity of 

light received from the sun, humidity and pressure in the 

atmosphere. In this way, the disposition of the models 

becomes more apparent, and identifying the most significant 

factors affecting solar energy production becomes easier.  

As shown in Figure 1, we can identify the working 

process of the SHAP values in the analysis of the model 

results. The figure helps show several parameters of the 
environment regarding the results of a solar power 

prediction model, such as temperature, humidity, solar 

irradiance, atmospheric pressure, etc. Knowing how each 

element impacts the adjustment of the forecast is important 

to determine whether the forecast will be less than or more 

than the base rate. Thus, in this case, productivity increases 

with higher temperatures and amounts of sunlight while it 

decreases with higher humidity and air pressure. The 

characteristics illustrated in the above figure are very 

informative of this model's decision-making factors, which 

are greatly influenced by these aspects. This figure assists in 
identifying the parameters that exert the most significant 

impact on the model's decision [36]. 

Therefore, this work employs SHAP values to 

effectively explain how various environmental factors 

influence the forecasts of solar power generation by 

applying adequate interpretations to the problem of model 

interpretability. Ensuring transparency is the key to 

confirming the dependability of the model when making 

informed decisions regarding the enhancement of solar 

power systems. 

 

3. Methodology 
3.1. Models Setup  

3.1.1. LSTM Model Setup 

Some time series forecasting activities are solar power 

output, which depends on the environmental conditions 

likely to have a temporal relationship that the LSTM model 

grasps. An input layer in the model's design consists of 
feature sequences: temperature, solar irradiance, humidity, 

and atmospheric pressure. A 50-unit first LSTM layer with 

a ReLU activation function returns sequences that enable 

later LSTM layers. To avoid overfitting, a second 50-unit 

LSTM layer without sequence return and another 20% rate 

dropout layer are added. Eventually, a dense layer of one 

unit produces the anticipated solar power. MSE is used as 

the loss function in the Adam optimizer-compiled model, 

which is trained for 500 epochs with a batch size of 32 and 

verified using a different validation set [37–39]. 
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Fig. 1 SHAP value explanation graph 

 

3.1.2. 1D-CNN Model Setup 

Enhancing feature extraction for time series 

forecasting, the 1D-CNN model detects spatial correlations 

and patterns in the input data. An input layer of feature 
sequences—temperature, solar irradiance, humidity, and 

atmospheric pressure—makes up the model's architecture. 

The input is downsized by a max pooling layer with a pool 

size of 2 after a first convolutional layer applying 64 filters 

with a kernel size of 2 and a ReLU activation function. 

Another max pooling layer with a pool size of 2 comes after 

the second convolutional layer, which once more applies 64 

filters with a kernel size of 2 and a ReLU activation 

function. A layer flattened the input to feed it into the fully 

connected layers. Then comes a 50-unit dense layer with a 

ReLU activation function, a 50% rate dropout layer to stop 
overfitting, and a 1-unit output layer to forecast solar power. 

The model is trained for 500 epochs with a batch size of 32 

after being constructed with the help of the Adam optimizer 

and MSE as the function of loss. [7]. 

 

3.1.3. Hybrid LSTM-CNN Model Setup 

The hybrid LSTM-CNN model integrates temporal and 

spatial dependency of data where LSTM captures temporal 

dependency, and CNN captures spatial dependency from 

the data. One of the model's inputs is the feature sequences, 

which include temperature, solar irradiance, humidity, and 

pressure. A max pooling layer with pool size 2 to 
downsample the input follows it. A flattened layer is used 

to prepare the data for LSTM layers: A convolutional layer 

that applies 64 filters with a kernel size of 2 and ReLU 

activation function follows it. Next is a 50-unit first LSTM 

layer with a ReLU activation function that sends sequences 

back for later LSTM layers to use. To avoid overfitting, a 

second LSTM layer of 50 units that does not return 

sequences and another dropout layer of 20% rate are 

introduced. Eventually, a dense layer of one unit produces 

the anticipated solar power. The model is built with MSE as 

the loss function and the Adam optimizer. It is trained for 
500 epochs with a batch size of 32 and verified with a 

different validation set [40]. 

 

3.2. SHAP Analysis 

The impact of temperature, solar irradiance, humidity, 

and atmospheric pressure on the solar power output 

estimates was identified and quantified using SHAP to 

improve the interpretability of the deep learning models. 

SHAP values give insights into the model's decision-

making process by giving each feature an important value 

for a certain prediction, providing a consistent measure of 
feature relevance. 

First trained on the training dataset were the models 

(LSTM, 1D-CNN, and Hybrid LSTM-CNN) for the SHAP 

analysis. The trained AL and QM prompts were followed 

by using SHAP to interpret these models' results. 

Specifically, based on the comparison of suitability for the 

utilized model and computational complexity, the 

DeepExplainer was used for the 1D-CNN model as well as 

LSTM and the Hybrid LSTM-CNN models. Some test data 

generated SHAP values per the requirements for summary 

and feature importance charts to depict how each played in 
concluding the model's output. 

The distribution of the SHAP values for each 

characteristic overall forecast was shown in the summary 

charts, emphasizing the most important variables in solar 

power production prediction.  

Additionally, the relative permutation importance 

scores derived from the average of the absolute SHAP 

values over the test dataset gave a worldwide outlook of 

feature importance as depicted in the importance plots. That 

the prediction models are clear, solid and consistent was 

made certain; in large measure paradoxically, the noted 

visuals and quantitative investigations authenticated the 
extent of the model's pointers to the relevant environment 

parameters [35]. 

3.3. Data Description 

A specific distributed photovoltaic system dataset is 

chosen, and the PV system is installed on the rooftop of a 

factory located in a city in southern China. The dataset 

consists of historical measurements of PV power production 

(kW), temperature (℃), solar radiation (W/m2), and 

meteorological data, including air pressure (hPa) and 

humidity (%) [38, 41].  

 
Figures 2 and 3 illustrate the output power, solar 

radiation, temperature, humidity, and air pressure 

performance over time.  
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Fig. 2 Output power over time 

 
Fig. 3 Features performance over time, (a) Solar radiation (W/m²), (b) Atmospheric pressure (hPa), (c) Temperature (°C), and (d) Humidity (%). 

 

3.4. Working Structure  

As Figure 4 and the next paragraphs show, the study's 

work structure follows a systematic methodology: 

 Gathering and condensing the data: Your 

responsibilities during this stage will be to collect 

information from the distributed PV system and 

thoroughly explain the operational features being used. 

Data was gathered from an operational distributed 

photovoltaic (PV) system perched atop a factory in a 
southern Chinese city. The dataset contains many 

meteorological parameters, such as air pressure and 

humidity. The compilation also contains historical 

statistics on solar radiation, temperature, and 

photovoltaic power generation. 

 Data pretreatment: At this point, several cleaning and 

preparation procedures are applied to the collected data 

to maintain consistency and enhance the general 

performance of the model. This area of accountability 

is devoid of value management, data standards, and 

data preparation for analysis.  

 The process of adding or changing features to a model 

to improve its overall performance is known as feature 

engineering. This stage is crucial if the models are to 

understand the connections between climatic 

conditions and solar power production.  

 Instruction in Models Using preprocessed data, the 

research builds and trains three distinct models. The 

first model, a network, can capture temporal 

dependencies in the data well. The second model, a one-

dimensional CNN, finds and analyses local trends in the 

temporal data. To capitalize on both temporal and local 

trends, the third model, a hybrid LSTM-CNN, 
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combines the best aspects of both LSTM and CNN 

architectures. All models use restricted input features, 

including temperature, humidity rate, air pressure, and 

sun radiation intensity. The forecasts of the power 

generated by the sun are made probable through these 

features. 

 Model Evaluation: R2, MAE, MSE, and RMSE, which 

are generally used measures for evaluating the 

performance of build models, are incorporated here. 

These actions can also effectively determine the 

reliability of the developed models in forecasting the 

level of solar power depending on various 

environmental conditions. Therefore, the application of 

SHAP Analysis is to analyze deep learning model 

predictions. In this case, the method that has been 

selected especially is the SHAP method. SHAP values 

provide information about the individual contribution 

of each feature (temperature, humidity, atmospheric 

pressure, and solar radiation) to the model's predictions. 

The relevant components can be determined from the 

above to identify the components most related to the 

model's forecast. This explainability approach is useful 
for interpreting the factors that affect the predictions 

and increases the clarity of deep learning models. 

 In the last step, "Results and Discussion," we carefully 

review the results, compare how well different models 

work, and have a deep conversation about our opinions. 

Therefore, the purpose of this part is to gain sufficient 

knowledge on how different environmental factors 

impact solar electricity generation and the performance 

of the deep learning techniques used.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Workflow for analyzing solar power output using deep learning and SHAP 
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4. Results and Discussions  
4.1. Deep Learning Models Performance 

As Table 3 explains, the performance indicators 

provide a comprehensive view of the predictive capacity of 

the three models—LSTM, 1D-CNN, and LSTM-1DCNN. 

With the LSTM model, the MAE between the predicted and 

real values is 0.0584.  

On average error, however, the 1D-CNN model 

performs better than the LSTM model with a reduced MAE 

of 0.0495. With an average error of 0.0377, the hybrid 

model LSTM-1DCNN outperforms the other two models. 

The LSTM model produces an MSE of 0.00834 when 

considering the MSE. Compared to the LSTM model, the 
1D-CNN model performs better with an MSE of 0.00788. 

Both are much beaten by the LSTM-1DCNN hybrid 

model, which has an MSE of 0.0053. Less squared 

discrepancies between predicted and actual values indicate 

that the hybrid model fits the data more precisely, as this 

lower MSE value shows. 

In a similar vein is the RMSE. The 1D-CNN model has 

better average squared differences performance with an 

RMSE of 0.08872 compared to the LSTM model's 0.09133. 

Once more, leading with the lowest RMSE of 0.0728, the 

LSTM-1DCNN hybrid model demonstrates how well it 
reduces prediction errors. 

The R² values show even more how well the models 

account for the variation in the data. At R² of 0.862, the 

LSTM model explains 86.2% of the variation in the output 

power. A little improvement is indicated by the R² of 0.865 

for the 1D-CNN model. With an R² of 0.924, which 

indicates that it can explain 92.4% of the variance, the 

LSTM-1DCNN hybrid model shines and shows its better 

ability to capture the underlying patterns in the data. 

Table 3. Prediction models performance 

Model MAE MSE RMSE R2 

LSTM 0.0584 0.00834 0.09133 0.862 

1D-CNN 0.0495 0.00788 0.08872 0.865 

LSTM-

1DCNN 
0.0377 0.00535 0.07281 0.924 

 

The correlation matrix among the parameters employed 

in this work, such as temperature, solar radiation, humidity, 
atmospheric pressure, and output power, is shown on the 

heatmap in Figure 5. Perfect positive correlations are 

indicated by 1, perfect negative correlations by -1, and no 

correlation by 0. Output power and solar radiation show a 

substantial positive connection (0.9), indicating that 

increased solar radiation greatly increases power output. 

The somewhat positive correlation (0.3) between 

temperature and output power suggests a smaller but no less 

significant effect. In contrast, at -0.5 and -0.06, respectively, 

humidity and atmospheric pressure have smaller negative 

correlations with output power, suggesting that increases in 

these variables somewhat reduce power output. 
Furthermore, insights are revealed by the inter-feature 

correlations: While humidity has a little positive correlation 

with atmospheric pressure (0.2) and a moderate negative 

association with solar radiation (-0.5), temperature and 

atmospheric pressure are considerably negatively correlated 

(-0.6). This study makes the dynamics of environmental 

elements and their combined effect on solar power output 
easier to grasp. 

The best loss reduction performance is shown by the 

hybrid model LSTM-1DCNN. Throughout the training 

phase, the validation loss remains extremely near to the 

training loss, and both training and validation losses drop off 

quickly. This behaviour suggests that the hybrid model 

captures the intricate relationships in the dataset and 

maintains a low error rate on unseen data in addition to 

learning fast and generalizing very well, as illustrated in 

Figure 6. 

 
Fig. 5 Correlation matrix of environmental features and solar output 

power 

4.2. Explainability in Deep Learning Models 

This section explores how explainable the deep 

learning models employed in the study area are, stressing 

the need to comprehend how these intricate models generate 
their predictions. Using SHAP values allows one to analyze 

the models' decision-making processes, which improves 

openness and confidence in their results.  

A single measure of feature relevance, SHAP values 

enable a consistent interpretation of the contribution of each 

feature to the predictions of the model across many models. 

Hence, in this work, three models, namely LSTM, 1D-CNN 

and Hybrid LSTM-CNN, are under consideration. The 

forecast of the output power of a distributed PV system 

depends on factors like temperature, solar radiation, 

humidity, and pressure.  

Several techniques are then employed to explain the 
models' interpretability, thus comparing and contrasting the 

results. These visualizations include waterfall, bar, 

beeswarm, and scatter plots; each offers a unique view of 

the models' behavior and some factors' significance. 
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Fig. 6 Training and validation loss for (a) LSTM model, (b) 1D-CNN model, and (c) Hybrid LSTM-1DCNN model. 

 

4.2.1. Interpreting Predictions with Waterfall Plots 

To facilitate the understanding of how several 

characteristics influence the outcome, the plots lift the veil 

of the contributions made by each feature to the model's 

prediction of a specific case. f(x)=0.682 with an expected 

value E[f(x)]=0.202 for the LSTM model is mostly 
influenced by +0.48 solar radiation, as illustrated in Figure 

7.  

This suggests a considerable favourable impact on the 

forecast. With +0.02, the temperature has a little positive 

impact; -0.02 and -0.01, respectively, atmospheric pressure 

and humidity provide small negative contributions, 

respectively. This implies that other factors are but modest 

contributors to the prediction, mostly driven by solar 

radiation. 

With an expected value of E[f(x)]=0.193, the 

prediction f(x)=0.642 in the 1D-CNN model further 

emphasizes the important contribution of solar radiation, as 
illustrated in Figure 8, which is +0.39.  

Further factors, including temperature, humidity, and 

atmospheric pressure, each have a slightly positive impact 

of +0.02. This distribution shows that the other features 

together make a balanced contribution to the prediction, 

even if solar radiation continues to be the major 

component. 

As illustrated in Figure 9, solar radiation makes the 

largest contribution, +0.52, to the prediction f(x)=0.76 with 

an expected value E[f(x)]=0.202. Following with a little 
contribution of +0.04, temperature, atmospheric pressure, 

and humidity all contribute a little positive influence of 

+0.01. Like the earlier models, this one emphasizes the 

significant influence of solar radiation and also shows a 

balanced integration of temperature and atmospheric 

pressure, implying a useful fusion of the advantages of the 

LSTM and 1D-CNN models. 

To sum up, solar radiation always shows up as the 

most important factor in all models, greatly affecting the 

forecasts. Compared to solar radiation, which is essential 

for forecasting PV system output, the different 

contributions of temperature, atmospheric pressure, and 
humidity among the models show their comparatively 

small roles. The hybrid model especially shows a good 

balance by combining the advantages of 1D-CNN and 

LSTM and offering a thorough comprehension of the 

feature contributions to the predictions. 

(a) (b) 

(c) 
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Fig. 7 Waterfall plot for LSTM model 

 
Fig. 8 Waterfall plot for 1D-CNN model 

 

 
Fig. 9 Waterfall plot for hybrid LSTM-1DCNN model
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4.2.2. Ranking Feature Importance Using Mean SHAP 

Values 

A clear ranking of feature significance is provided by 

the Mean SHAP values for each model, as shown in Figure 

10: LSTM, 1D-CNN, and the hybrid LSTM-1DCNN. With 

a Mean SHAP value of +0.23, solar radiation is shown to 
be the most important predictor of the output power for all 

three models. This agreement across multiple models 

emphasizes the crucial significance of Solar Radiation in 

estimating the output power of the PV system.  

With Mean SHAP values of +0.01, temperature, 

atmospheric pressure, and humidity in the LSTM model 

contribute to predictions somewhat but equally to solar 

radiation. Comparably, the Mean SHAP value of +0.23 for 

solar radiation is the most important feature in the 1D-CNN 

model; the other three characteristics stay at +0.01. At a 

Mean SHAP value of +0.23, the hybrid LSTM-1DCNN 

model also highlights solar radiation. However, it gives 

temperature a little greater weight at +0.02, indicating that 

it picks up more subtleties in the data. Solar radiation is the 

most important predictor of output power in every model. 

Overall, the Mean SHAP values, which consistently 
indicate the highest importance across all models, confirm 

that solar radiation is the main driver for estimating the 

output power of the PV system. Though important, the 

other factors, temperature, atmospheric pressure, and 

humidity, support the prediction process. This consistent 

ranking among several models gives strong proof of the 

vital significance of solar radiation in the model 

predictions.

 

 
Fig. 10 Mean SHAP values for feature importance across models: (a) LSTM model, (b) 1D-CNN model, and (c) Hybrid LSTM-1DCNN model. 

 

4.2.3. Visualizing Feature Effects through Beeswarm 

Analysis 

A data visualization technique called beeswarm 

analysis or beeswarm plot shows how data points are 

distributed along a single axis, usually for discrete or 

categorical variables. Each model exhibits unique patterns 

in the Beeswarm analysis regarding the SHAP value's 

impact on the output. Solar radiation has a major effect on 

the output of the LSTM model (Figure 11-a), tending to 

produce positive SHAP values. Higher temperature SHAP 

values are skewed left, with a concentration near the centre. 
About the centre, atmospheric pressure shows a roughly 

symmetrical distribution with a greater concentration of 

positive SHAP values. Humidity SHAP values are centred, 

with larger values extending to the extremes. 

Furthermore, solar radiation is dominatingly positive 

in the 1D-CNN model (Figure 11-b). Nearly symmetrical, 

the temperature and atmospheric pressure SHAP values are 

gathered around the centre. Values of humidity SHAP 

exhibit a centred distribution with extremes of high and low 

values. Solar radiation has a significant favourable effect 

on the hybrid LSTM-1DCNN model (Figure 11-c). High-

temperature SHAP values spread to the left and right from 

the centre. The atmospheric pressure values are more 

positively skewed and almost symmetrical. High values of 

humidity SHAP are located on the right, and low values on 

the left. Solar radiation consistently has a major positive 

effect in all models, although the other factors have 

different patterns of effects. 

4.2.4 Analyzing Feature Influence with Scatter Plots 

This section uses scatter plots to illustrate the feature 

interactions for the hybrid LSTM-1DCNN model, which 
outperformed the LSTM and 1D-CNN models. The 

strongest contender for in-depth interaction analysis, the 

hybrid model's better metrics, lower MAE, MSE, RMSE, 

and higher R² indicate its capacity to capture complicated 

relationships within the data. 

With temperature as a colour-coded interaction 

feature, Figure 12 illustrates the connection between solar 

radiation and its effect on the model's output. Higher 

temperatures show a linear trend in the plot, which suggests 
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that solar radiation consistently affects the output power 

and that temperature adds a continuous interaction effect. 

The interaction feature between solar radiation and 

humidity is seen in Figure 12-b. High humidity levels have 

a concentrated effect when solar radiation is low; this 

influence decreases as solar radiation increases. The 
relationship between solar radiation and atmospheric 

pressure is examined in Figure 12-c, demonstrating that 

although solar radiation substantially impacts output 

power, atmospheric pressure's effect is more equally 

dispersed over the various solar radiation levels. The 

interactions from temperature, humidity, and atmospheric 

pressure add different degrees of complexity to the model's 

output. However, these scatter plots taken together show 

that solar radiation is the main component impacting it. The 

hybrid model was chosen for this in-depth investigation 
because of its capacity to capture these subtle interactions, 

which also emphasizes its robustness in comprehending 

and using several feature interactions to produce reliable 

predictions.

 
Fig. 11 Beeswarm plots of shap values for: (a) LSTM, (b) 1D-CNN, and (c) LSTM-1DCNN models. 

 
Fig. 12 Feature influence with scatter plots of the hybrid model for the solar radiation verse: (a) Temperature, (b) Humidity, and                                              

(c) Atmospheric pressure.
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4.3. Experiment Analysis 

This paper presents a new method for output power 

measurement by comparing the performance of three 

distinct deep learning models: LSTM, 1D-CNN, and a 

hybrid LSTM-1DCNN. This effort attempts to improve 

forecasting skills. This work is exceptional since numerous 
advanced deep learning techniques are integrated and 

compared, particularly those applied to environmental data 

that influence the output power. Using SHAP values for 

explainability provides a more detailed understanding of 

how each feature contributes to the model predictions for 

the interpretability of complicated models.  

The primary contribution of this work is the 

comprehensive evaluation of model performance using 

multiple metrics, including MAE, MSE, RMSE, and R. 

Using SHAP values. Further in-depth investigations of the 

importance of features and their interactions are conducted. 

The results suggest that, for all parameters, the hybrid 
LSTM-1DCNN model outperforms the individual LSTM 

and 1D-CNN models in terms of accuracy and 

generalization. More precisely, the hybrid model's highest 

R2 and lowest MAE and MSE demonstrated robustness in 

capturing the complex interactions between environmental 

elements. 

Very importantly, comparing the three models 

highlights the benefits and drawbacks of each strategy. 

Understanding sequential data allows the LSTM model to 

provide a knowledge of time-dependent patterns. A 

standard one-dimensional convolutional neural network 
model with a well-known learning speed implemented 

produces the spatial hierarchies. Compared between the 

two, the proposed hybrid LSTM-1DCNN model achieves 

better accuracy and more effectively learns the feature 

interactions and relation. The outcome of this compare and 

contrast study offers an adequate manual for future 

examinations and real-life implementations of selecting the 

right models for similar types of tasks.  

 While reflecting on the results, it is observed that the 

amount of solar radiation remained at the forefront for all 

the models, signifying that it has the maximum impact in 

delivering output power. The hybrid model might be able 
to express relations other than those of the existing one. 

Other parameters like temperature, air pressure, and 

humidity were affected to a certain extent. This knowledge 

is needed to increase the effectiveness of energy systems 

and fine-tune the power output forecast.  

 It is necessary to find the best method and understand 

the peculiarities of the models' work in order to compare 

them. This comprehensive analysis helps improve the 

hybrid model's performance over the others and underlines 

the importance of explaining the model's outcomes. This 

study probably means that, to affirm and extend the 

findings even further, future studies will investigate the 

capability of incorporating additional environmental 

elements, employing advanced ensemble methods into this 

framework, or applying these models to different datasets.  

5. Conclusion 
In this work, advanced deep learning models, such as 

LSTM, 1D-CNN, and a hybrid LSTM-1DCNN, are 

beneficial by proving their ability to predict output power 

based on environmental data. The purpose of this work was 

to demonstrate the usefulness of these models. The hybrid 

model showed better accuracy and generalization over a 

broad range of criteria than the separately built LSTM and 
1D-CNN models. The most important element affecting 

output power is solar radiation, found using SHAP values. 

Providing helpful information about the importance of 

features and their relationships helped achieve this. This 

work will show the potential of hybrid deep learning 

models for enhancing power output forecast optimization 

and energy system efficiency. Future research must 

integrate more environmental components to record more 

comprehensive data exchanges. Furthermore, improving 

the accuracy and robustness of the model might involve 

studying complex ensemble methods or including data 
sources from outside the model. Moreover, using these 

models on various datasets to confirm the outcomes and 

assess their degree of generalization is recommended. A 

more in-depth understanding of the contributions and 

interactions of features would eventually result from 

improving the interpretability and explainability of model 

predictions by the application of advanced SHAP analysis 

or other techniques. 
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