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Abstract - Brain stroke is a serious medical condition that occurs when the brain’s blood supply is disrupted, either due to a 

blockage or the rupture of a blood vessel. This interruption results in a sudden loss of brain function, manifesting as symptoms 

like difficulty speaking, weakness or paralysis of the limbs, confusion, or altered consciousness. The severity of a stroke is 
influenced by both the duration of the blood flow disruption and the specific location of the damage within the brain. Immediate 

medical intervention is crucial for reducing damage and improving the chances of recovery. Key risk factors for stroke include 

hypertension, diabetes, obesity, a sedentary lifestyle, and smoking. Given the critical need for timely and accurate stroke 

diagnosis, this study introduces a novel Deep Learning (DL) model for detecting and classifying brain strokes using brain CT 

images. The proposed method combines DenseNet 201 and Capsule Network (CapsNet) models to enhance classification 

accuracy. Experimental results demonstrate that the model achieved an accuracy of 93.45%, a precision of 92.18%, a recall of 

92.56%, and an F1 score of 92.36%, underscoring its effectiveness in diagnosing and classifying strokes with high accuracy.   

Keywords - Brain Stroke, DenseNet 201, Capsule network, CT images, Medical imaging, Deep learning.

1. Introduction 
The brain is a highly complex and fascinating organ 

responsible for intelligence, emotion, memory, and creativity. 

It is divided into the frontal, occipital, parietal, and temporal 

lobes, which are connected to the rest of the body through the 

spinal cord [1]. Stroke, the second leading cause of death 
globally, demands immediate treatment to reduce the risk of 

death or severe long-term disability. Stroke occurs due to a 

rupture or blockage in blood vessels, leading to reduced blood 

flow to a specific brain area. Strokes are classified into two 

main types: ischemic and hemorrhagic. 

 

A hemorrhagic stroke, which accounts for 13% of all 

strokes, is a critical neurological condition caused by the 

rupture of a blood vessel in the brain. Symptoms typically 

include a sudden and severe headache, vomiting, weakness on 

one side of the body or face, and a rapid decline in 
neurological function or consciousness. This condition is 

especially dangerous when a Subarachnoid Hemorrhage 

(SAH) occurs.  
 

On the other hand, Ischemic Stroke (IS), which comprises 

87% of strokes, results from an insufficient blood supply due 

to a clot or blockage in an artery in the neck or brain. This 

blockage leads to a lack of oxygen reaching the brain. The 

gold standard treatment for IS, particularly within the first 

three hours, is administering a thrombolytic or clot-busting 

drug [2]. 

Magnetic Resonance Imaging (MRI) and Computed 

Tomography (CT) are indispensable diagnostic tools for 

identifying brain tissue damage. In clinical practice, 

Computer-Aided Diagnosis (CAD) technologies significantly 

enhance the accuracy of disease detection, interpretation, and 

decision-making, thereby streamlining the diagnostic process. 

CT scans, in particular, are critical in emergencies, where their 

use of multiple X-ray beams and detectors allows for the rapid 

diagnosis of life-threatening brain abnormalities. Compared to 

other imaging techniques, CT is superior in trauma situations, 

offering detailed bone images and greater sensitivity in 
detecting acute hemorrhages. As a cost-effective option, CT is 

often favored for early disease screening, especially in patients 

at high risk of stroke [3]. CT scans are frequently employed to 

diagnose conditions such as brain strokes, hemorrhages, and 

skull fractures, providing quicker scanning times and reliable 

results. 

Detecting and segmenting stroke lesions has traditionally 

relied on medical experts meticulously identifying lesion areas 

across multiple imaging slices. However, this manual process 

is often time-consuming, expensive, and prone to variability 

among different experts, which can compromise reliability 
and reproducibility. There is a growing demand in the medical 

field for efficient automated detection and classification 

methods to address these challenges. These methods can aid 

radiologists by providing quicker and more accurate stroke 

diagnoses, ultimately enhancing patient outcomes. This 

http://www.internationaljournalssrg.org/
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research seeks to meet this demand by introducing a novel 

deep learning-based model for automatically detecting and 

classifying brain strokes using CT images. The model’s 

performance is evaluated using accuracy, precision, recall, 

and F1 score metrics, demonstrating its effectiveness in 

identifying brain strokes. Key contributions of the proposed 
work include: 

 Developing a deep learning-based CAD system for 

detecting and classifying brain strokes. 

 Enhancing the performance evaluation parameters of the 

system. 

 Assessing the proposed system’s performance in 

comparison to current approaches. 

The rest of the paper is organized as follows: Section 2 

provides a summary of the literature, highlighting areas that 

indicate a need for more investigation. In Section 3, the 

methodology is explained in depth. Section 4 goes into great 
detail about the results that the suggested strategy produced. 

Finally, a summary of the findings is included in Section 5, 

which gives a conclusion to the paper. 

2. Related Works 
Tursynova et al. (2023) [4] proposed a CAD system to 

distinguish cerebral strokes using CT images. To enhance 

categorization accuracy, they employed horizontal flip data 
augmentation techniques. Utilizing an image data generator, 

the researchers enhanced the images in real time, incorporating 

random alterations during training. To mitigate the risk of 

overfitting, they implemented an early stopping method. 

Additionally, they developed a Python web application to 

showcase the findings of their Convolutional Neural Network 

(CNN) model, utilizing cloud-based development approaches. 

In their current implementation, the model achieved a 

commendable accuracy rate of 79% in recognizing the normal 

class. This automated diagnostic approach shows the potential 

to assist medical practitioners with the identification and 
categorization of brain strokes. 

 
 Tripura et al. (2023) [5] introduced a hybrid model called 

BrainNet (BrN), which integrates CNN and Support Vector 

Machine (SVM) techniques for classifying brain stroke 

diseases. Their methodology involved designing the BrainNet 
model through a Deep Neural Network (DNN), encompassing 

data collection, preprocessing, feature extraction, and 

subsequent classification using SVM. The dataset used for this 

classification task was sourced from Kaggle. The proposed 

BrainNet model demonstrated an impressive accuracy of 

91.91%, surpassing the performance of existing models. 

 
 Lee et al. (2023) [6] conducted a comprehensive study to 

evaluate the effectiveness of various CNN models for the 

detection and classification of Ischemic Strokes (IS) using 

hyperacute staged Diffusion-Weighted Images (DWI). Their 

research involved a dataset of 2,119 image slices, categorized 

into three groups: normal, Acute Cerebral Infarction (ACI), 

and Posterior Circulation Infarction (PCI). The researchers 

implemented two CNN models, EfficientNet-b0 and Inception-

v3, alongside a self-derived modified LeNet model. Among 

these, Inception-v3 achieved the highest accuracy of 86.3%, 

followed closely by LeNet at 85.2%. EfficientNet-b0 
demonstrated the lowest performance, with an accuracy of 

83.6%. Additionally, Grad-Cam activation maps provided 

insights into the models’ decision-making processes. The study 

identified key limitations, including the absence of a dedicated 

test set to comprehensively validate the CNN models’ 

performance and the relatively small size of the dataset. 

  

 Peng et al. (2022) [7] aimed to enhance the accuracy of 

automated stroke identification in CT images by employing a 

CNN. Their methodology involved preprocessing the CT 

images to improve tissue clarity, adjusting positions, 

performing spatial normalization to a CT template, and 
creating t-score maps for each patient. These t-score maps 

facilitated the selection of both non-infarcted and infarcted 

patches. The team then applied data augmentation to generate 

additional patches for training and testing the CNN. The 

network achieved a remarkable 93% accuracy in detecting 

patches on the test set, showcasing the effectiveness of CNNs 

in analyzing medical images for rapid and precise stroke 

identification. 

  

 Zhang et al. (2022) [8] introduced the AC-YOLOv5, an 

advanced detection algorithm specifically designed for IS. This 
algorithm improved the feature detection of IS in Non-Contrast 

Computed Tomography (NCCT) images and identified the 

Region of Interest (ROI) using YOLOv5. Tested against other 

popular detection algorithms, AC-YOLOv5 achieved an 

impressive accuracy of 91.7%, demonstrating its robustness, 

accuracy, and generalizability in detecting IS on NCCT 

images. 

  

 Omarov et al. (2022) [9] explored a modified 3D UNet 

architecture to enhance the segmentation quality of IS in 3D 

CT images. Utilizing the ISLES 2018 dataset for model 

training and testing, they employed evaluation metrics such as 
the Jaccard index and Dice coefficient to assess segmentation 

accuracy. Their modified architecture achieved a Dice/f1 score 

similarity coefficient of 58%, surpassing the performance of 

the standard 3D UNet model. This result highlighted the 

model’s effectiveness in accurately segmenting ischemic 

stroke lesions in CT images, indicating potential advancements 

in stroke diagnosis and treatment planning through improved 

medical imaging. 

  

 Gautam and Raman (2021) [10] aimed to categorize brain 

CT images into three distinct groups: IS, hemorrhagic stroke, 
and normal categories. They developed a CNN model that 

combined image fusion techniques with CNN methods, 

utilizing a recently proposed 13-layer CNN architecture to 

analyze preprocessed images. This classification process was 
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conducted using a real dataset of CT images collected from the 

Himalayan Institute of Medical Sciences (HIMS). After 

performing 10-fold cross-validation on the dataset, they 

achieved a classification accuracy of 92.22%. 

  

 To identify invisible ischemic strokes from NCCT scans, 
Wu et al. (2021) [11] introduced a two-stage CNN-based 

approach. Their method featured a cascaded structure with two 

coordinated networks designed to detect suspicious stroke 

regions and optimize localization details. In the initial step, an 

end-to-end U-net with adaptive thresholding combined 

symmetry, gray texture information, and global positioning to 

identify suspicious areas. This was followed by a ResNet-

based patch classification network aimed at reducing false 

positives by leveraging deeper image features. Finally, a MAP 

model optimized results by incorporating spatial constraint 

information from each patch’s classification outcomes. 

Validated using 277 cases from two hospitals, their model 
achieved identification accuracies of 91.89%, 87.21%, and 

85.71% across three experimental setups. This study highlights 

the potential of deep learning techniques in enhancing IS 

detection and localization on NCCT scans, marking significant 

progress in medical imaging technology. 

  

Lo et al. (2021) [12] proposed a method for the automatic 

identification of Acute Ischemic Stroke (AIS) using Deep 

Convolutional Neural Networks (DCNNs) trained on NCCT 

images. Their dataset comprised grayscale NCCT images from 

AIS patients and healthy subjects. Utilizing a gold standard for 
training, they implemented the original AlexNet along with 

ResNet-101 and Inception-v3 models. Testing results indicated 

that AlexNet, ResNet-101, and Inception-v3 achieved 

accuracies of 81.77%, 80.89%, and 85.78%, respectively, 

demonstrating the potential of DCNNs for AIS identification, 

with Inception-v3 outperforming the other models. 

  

Aishvarya et al. (2020) [13] tackled the issue of identifying 

ischemic stroke locations in MRI images, recognizing that the 

physical identification of lesions can be labor-intensive. Their 

work aimed to develop an automated stroke detection 

algorithm employing Machine Learning (ML) across six 
distinct stages. After preprocessing the images, they utilized 

Gabor filters for image enhancement and Adaptive Histogram 

Equalization (AHE) for further improvement. The fuzzy C-

means technique was used for image segmentation, and 

features were extracted with the Gray Level Co-occurrence 

Matrix (GLCM). The multiclass SVM classifier yielded an 

accuracy of 90%, demonstrating the effectiveness of their 

approach. 

  

Maya and Asha (2020) [14] proposed a method using 

various ML classification algorithms, including Decision Tree 
(DT), Maximum Expectation, Deep Neural Networks (DNN), 

Gaussian Naïve Bayesian Classifier, and Random Forest (RF), 

to assess stroke occurrence. They enhanced efficiency and 

scalability by employing Principal Component Analysis (PCA) 

to reduce features. Their results, comparing the DNN classifier 

to other ML methods regarding accuracy, specificity, and 

sensitivity, revealed performances of 86.42%, 88.49%, and 

74.89%, respectively. However, the absence of MRI image 

datasets was a noted limitation, indicating opportunities for 

future research. 
  

 Subudhi et al. (2020) [15] introduced a CAD system for 

detecting ischemic strokes in DWI. Their technique classified 

brain strokes into three categories: Total Anterior Circulation 

Stroke (TACS), Partial Anterior Circulation Syndrome 

(PACS), and Lacunar Syndrome (LACS). They used the 

Expectation-Maximization (EM) algorithm for lesion 

segmentation and enhanced detection accuracy with the 

Fractional-Order Darwinian Particle Swarm Optimization 

(FODPSO) method. Their evaluation of 192 MRI scans 

demonstrated that SVM and RF classifiers effectively 

identified stroke lesions, with the RF classifier showing 
exceptional efficiency. 

  

 Kanchana and Menaka (2020) [16] developed a novel 

histogram bin-based algorithm for segmenting ischemic stroke 

lesions in CT images, focusing on optimal feature group 

selection to differentiate between normal and abnormal brain 

regions. They extracted features such as gray level run length 

matrix, first-order statistics, Hu’s moments, and GLCM 

features for lesion characterization. The classification was 

carried out using Logistic Regression (LR), RF, Neural 

Network Classifier (NNC), and SVM classifiers. Their 
approach demonstrated effective IS lesion detection, 

underscoring the potential of advanced feature extraction and 

classification techniques in stroke diagnosis. 

  

 Gautam & Raman (2020) [17] introduced a new feature 

extraction method for classifying brain CT scan images, 

involving a multi-step process that compared neighboring 

pixels’ intensities and computed double gradients within local 

neighborhoods. Histograms of these computed codes were 

concatenated into a single feature vector. Nine experiments 

with various classifiers revealed their method outperformed 

seven other feature extraction techniques, highlighting its 
potential to enhance CT scan image analysis in medical 

diagnostics. 

  

 Singh et al. (2019) [18] proposed a technique for 

differentiating normal tissue from ischemic stroke-affected 

areas using texture analysis of CT images. They selected five 

Regions of Interest (ROI) from potentially affected and 

unaffected areas and calculated 22 texture parameters for 

classification. The innovative aspect of their study was the use 

of ratios of five texture features for CT image classification, 

aiming to assist neurologists in early stroke detection. 
Preliminary results showed that their algorithm achieved an 

accuracy of 92%, indicating the potential of texture analysis in 

enhancing ischemic stroke diagnostics. 
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Detecting and classifying brain strokes from CT images 

remains a critical and challenging task due to various factors 

affecting diagnostic accuracy and timeliness. The potential 

impact on treatment outcomes underscores the urgency for 

prompt stroke diagnosis, as delays can significantly affect 

recovery. The subtlety of stroke symptoms can lead to 
confusion with other medical conditions, complicating 

accurate diagnosis. Furthermore, the expertise of medical 

professionals, access to high-quality imaging technologies like 

CT and MRI, and variations in stroke presentations further 

complicate the diagnostic landscape. In low-resource settings, 

imaging technologies may be less accessible or insufficiently 

sensitive to detect smaller or less severe strokes. Misdiagnosis 

of strokes as Transient Ischemic Attacks (TIAs) or other 

conditions, especially in younger individuals, adds to the 

challenges. The effectiveness of classification methods, such 

as Support Vector Machines (SVM), hinges on selecting 

suitable kernel functions; inappropriate choices can lead to 
poor performance or overfitting. The task of distinguishing 

between TIAs and actual strokes introduces additional 

complexity, underscoring the need for robust diagnostic tools 

in clinical practice. 

 

3. Materials and Methods  
The proposed model presents a robust framework for 

detecting and classifying brain strokes from CT images by 

integrating advanced deep-learning techniques. Initially, CT 

images undergo preprocessing and augmentation to 

standardize and enhance the data, ensuring its suitability for 

analysis. These enhanced images are then processed using a 
DenseNet 201 pre-trained model, leveraging its extensive 

feature extraction capabilities developed from a 

comprehensive dataset of CT images. The extracted features 

capture complex patterns specific to stroke detection, 

reshaped for compatibility with the subsequent capsule 

network. This network encodes spatial relationships and 

hierarchical structures of objects within the images. The 

output from the capsule network is directed through a dense 

layer that performs the final classification, determining 

whether the CT images indicate a stroke or are normal. 

For interpretability, the model employs Gradient-weighted 

Class Activation Mapping (Grad-CAM) visualization, 
highlighting the regions in the CT images affected by stroke 

that influence the model’s decision. This approach ensures 

transparency in the classification process, allowing for a 

clearer understanding of the model’s outputs. The workflow 

for detecting and classifying brain strokes from CT images is 

illustrated in the block diagram shown in Figure 1. 

3.1. Dataset 

The dataset for the proposed research is sourced from a 

public repository, Kaggle [19]. It comprises a total of 2,515 

images organized into three primary folders: training, testing, 

and validation. Each folder is further divided into two classes, 

namely “normal” and “stroke.” Specifically, the dataset 
contains 1,843 images designated for training, 437 images 

allocated for testing, and 235 images reserved for validation. 

Figure 2 presents sample images from the dataset, showcasing 

examples from both the “normal” and “stroke” classes. 

3.2. Data Preprocessing and Augmentation 

In classifying brain strokes from CT images, 

preprocessing and data augmentation are crucial for 

improving the performance of Deep Learning (DL) models. 

Preprocessing involves standardizing the input data through 

various techniques to ensure consistency and enhance model 

efficiency. For this study, the ‘rescale’ parameter is used to 
normalize pixel values to a range between 0 and 1. This 

normalization step is essential as it adjusts the intensity values 

of the images, making the data more uniform and easier for 

the model to process. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Block diagram of proposed methodology 

Brain CT 

Images 

Preprocessing and 

Augmentation 
DenseNet 201 Model 

Convolutional 

Layer 

Reshape 

Layer 

Capsule 

Network 

Classification 

Layer 

Stroke 

Normal 

Visualization 

of Stroke 

Lesions 



Shahina A.R & I. Sowmy / IJECE, 11(10), 135-148, 2024 

 

139 

 
(a) Normal CT images 

 
(b) Stroke CT images 

Fig. 2 Sample images from the dataset 

Data augmentation, on the other hand, introduces 

variability into the training dataset by applying a range of 

random transformations. This process includes shearing, 

zooming, horizontal and vertical flipping, and random 

rotations up to 30 degrees. These augmentations are applied to 

the images during the training phase, increasing the dataset’s 

diversity. By simulating different possible variations of the 

input images, data augmentation helps the DL model to 

generalize better and become more robust to variations it may 

encounter in real-world scenarios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Basic architecture of DenseNet 201 
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The dataset is split into training and testing sets using an 

80:20 ratio, ensuring a substantial portion of data is reserved 

for training the model. In contrast, the remainder is used to 

evaluate its performance. This split is crucial for assessing the 

model’s ability to generalize to new, unseen data. 

 

3.3. Deep Learning Classifier 

3.3.1. DenseNet 201 

DenseNet is a deep learning architecture designed to 

improve information flow and gradients throughout the 

network. Unlike traditional architectures, each layer in 

DenseNet receives input from all preceding layers and 

contributes its own feature map to all subsequent layers. This 

approach enhances feature reuse and facilitates the learning of 

rich feature representations, which is crucial for tackling 

complex visual recognition tasks. 

 

The DenseNet-201 model, illustrated in Figure 3, is 
engineered to optimize feature reuse and gradient flow. It 

includes several key components: initial layers, dense blocks, 

transition layers, and classification layers [20]. The dense 

blocks are integral to the architecture, enabling efficient 

information propagation and reducing the number of 

parameters while maintaining high performance. Transition 

layers help control the dimensionality and smooth the learning 

process, while the classification layers are responsible for 

outputting the final prediction. This design makes DenseNet-

201 highly effective for a variety of visual recognition 

challenges. 

DenseNet-201 is a sophisticated neural network 

architecture designed for complex image classification tasks. 

This architecture features 201 layers, including convolutional, 

pooling, batch normalization, and activation layers, which 

collectively enhance its ability to extract and process intricate 

features from input images. 

The network begins with an input layer that accepts image 

data as pixel values. It then progresses through multiple dense 

blocks, each composed of several convolutional layers. Unlike 

traditional networks, each convolutional layer in DenseNet-

201 receives input from all preceding layers, allowing for a 

rich network of feature reuse. This dense connectivity 
facilitates smooth gradient flow, which enhances the 

network’s ability to transmit information effectively 

throughout its depth. 

Transition layers, which include convolutional and 

pooling operations, are strategically placed between dense 

blocks to manage the dimensionality of feature maps. These 

transitions help maintain computational efficiency while 

ensuring the network can handle complex features. At the end 

of the architecture, a global average pooling layer compresses 

the spatial dimensions of the feature maps into a single vector 

of feature values, summarizing the learned information before 
final classification. 

The 𝑚𝑡ℎ layer receives the feature maps from all previous 

layers. The output feature maps at the 𝑚𝑡ℎ  layer is given by 
Equqation (1). 

  𝑥𝑚 = 𝐻𝑚  [𝑥0, 𝑥1, … … … … 𝑥𝑚 − 1]                         (1) 

Where, [𝑥0, 𝑥1, … … … … 𝑥𝑚 − 1] refers to the feature map 

concatenation. The composite function 𝐻𝑚 consist of batch 

normalization, convolution and Rectified Linear Unit (ReLU).  

The batch normalization layer ensures a uniform 

distribution of activations across the network by normalizing 

the activations. 

                    𝑋𝑘 =
𝑥𝑘−𝜇𝑏

√𝜎𝑏
2+𝜖

                          (2) 

Where, 𝜇𝑏 is the mean and 𝜎𝑏
2 is the variance. The training 

accuracy is improved by applying the ReLU activation 

function, 

                           𝑓(𝑥) = max(0, 𝑥)                       (3) 

The convolutional layer extracts features by performing a 

convolution operation on the input representation using a 

kernel. This process involves sliding the kernel, or filter, over 

the input image or feature maps to produce a set of output 

features. The kernel, a small matrix of weights, multiplies with 

the local region of the input it is currently covering. The results 

of these multiplications are then summed to produce a single 

value in the output feature map. 

  𝐶(𝑠, 𝑡) = ∑ ∑ 𝐼(𝑠 − 𝑞, 𝑡 − 𝑟). 𝐾(𝑞, 𝑟) + 𝑏
𝑝
𝑟=−𝑝

𝑝
𝑞=−𝑝        (4) 

Where, 𝑏 represents the bias term. 

Bottleneck layers are employed to address the 
computational complexity associated with dense layers. These 

bottleneck layers utilize a 1 × 1 convolution, effectively 

reducing the number of parameters and computations required 

by compressing the feature maps before applying more 

complex operations. 

The hyperparameters of the network, such as kernel size, 

stride, and padding, are carefully chosen to ensure that the 

dimensions of the feature maps remain consistent within each 

dense block. This consistency is crucial for maintaining the 

integrity of feature representations as they pass through the 

network. 

Dimensionality reduction is managed by transition layers, 

which play a key role in controlling the size of feature maps 

between dense blocks. These transition layers typically 

include a 1 × 1 convolution to reduce the depth of the feature 

maps, followed by 2 × 2 average pooling layers to 
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downsample the spatial dimensions. Additionally, batch 

normalization is applied within these layers to stabilize and 

accelerate the training process by normalizing the feature 

maps.  

3.3.2. Capsule Network 

Capsule Networks (CapsNet), as illustrated in Figure 4, 
were developed to overcome some of the inherent limitations 

of traditional CNNs, particularly their challenges in managing 

hierarchical relationships among features. CapsNet introduces 

a dynamic routing mechanism that allows adaptive 

connections between capsules across different layers, 

enhancing the network’s ability to detect and classify brain 

tumors from CT scans. 

In CapsNet, each capsule in the higher layers predicts the 

output of lower-layer capsules by assessing the alignment of 

their spatial configurations. This approach helps the network 

grasp the spatial hierarchy of features more effectively, which 

is crucial for accurately interpreting complex patterns in 

medical images. The highest level of the network integrates 

digit capsules, with each capsule representing a distinct class 

of brain tumor or normal tissue. This integration improves the 

network’s capacity to recognize and categorize complex 
patterns with higher precision and interpretability than 

traditional CNN architectures, as highlighted by [21]. 

The dynamic routing algorithm enables the nonlinear 

mapping between two adjacent capsule layers. The capsule 𝑚 

in layer 𝑇 attempts to predict the output of capsules 𝑛 in layer 

𝑇 + 1. Equation (5) provides the method for obtaining the 

expected feature vector matrix 𝑥(𝑛|𝑚) by applying a linear 

weight to the output of the capsule 𝑥𝑚 in layer 𝑇. The 

weighting matrix 𝑊𝑚𝑛 is obtained through the process of back 

propagation. 

 

 

 

 

 

 

 

 

Fig. 4 Basic architecture of capsule network 

                         𝑥(𝑛|𝑚) = 𝑊𝑚𝑛 ∙ 𝑥𝑚                                     (5) 

 Equation (6) is used to calculate the output for capsule 𝑛 

in layer +1. 

                         𝑠𝑛 = ∑ 𝑐𝑚𝑛 ∙ 𝑥(𝑛|𝑚)𝑚                              (6) 

The coupling coefficient 𝑐𝑚𝑛  is determined using the 

softmax function, as outlined in Equation (7). This coefficient 

quantifies the strength of the connection between capsules in 

layer 𝑇 and layer 𝑇 + 1. Initially, the variable 𝑏𝑚𝑛, which 
represents this correlation, starts with a value of 0. 

                             𝑐𝑚𝑛 =
exp (𝑏𝑚𝑛)

∑ exp(𝑏𝑚𝑘)𝑘
                                    (7) 

To refine these correlations, the system iterates through 

Equation (8) until the iteration conditions are met. This 

iterative process adjusts 𝑏𝑚𝑛 to optimize the coupling 

coefficients  𝑐𝑚𝑛 , thereby enhancing the effectiveness of the 

capsule network in capturing complex relationships between 

different layers and improving its overall performance. 

                       𝑏𝑚𝑛 = 𝑏𝑚𝑛 + 𝑥(𝑛|𝑚) ∙ 𝑦𝑛                        (8) 

During each iteration, the output of capsule 𝑛 is processed 

by the nonlinear squashing function, represented by Equation 

(9): 

                          𝑦𝑛 =
‖𝑠𝑛‖2

1+‖𝑠𝑛‖2

𝑠𝑛

‖𝑠𝑛‖
                      (9) 

Where, 
𝑠𝑛

‖𝑠𝑛‖
 is a unit vector, that is the original vector 

length is adjusted proportionally 
‖𝑠𝑛‖2

1+‖𝑠𝑛‖2. The length of the 

output vector varies between 0 and 1 and is presented in a 

probabilistic approach. By scaling the length of the output 
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vectors in this manner, longer vectors are assigned greater 

significance, while shorter vectors are given less importance. 

This approach helps emphasize more prominent features in the 

data, making highlighting key information easier and 

mitigating the influence of less significant features. The 

proposed hybrid DL model integrates DenseNet-201 with a 
Capsule Network to effectively identify and classify brain 

strokes from CT images. The model is designed to process 

input images with dimensions of 224x224 pixels. Initially, 

these images are fed into the DenseNet-201 architecture, 

which functions as the primary feature extractor, capturing 

intricate patterns and features from the input data. Following 

the DenseNet-201 processing, the output feature maps are 

passed through an additional convolutional layer equipped 

with 64 filters of size 1x1, coupled with a ReLU activation 

function. This convolutional layer enhances and refines the 

extracted features before they are input into the Capsule 

Network. 

The CapsNet is configured with an input shape of 7x7 

feature maps with 64 channels, indicating that the preceding 

convolutional layer’s output is a set of 7x7 spatial feature 

maps with 64 channels. Within the CapsNet are 32 capsules, 

each with a dimensionality of 8. These capsules are designed 

to capture hierarchical relationships and spatial configurations 
present in the input images. The model’s final step involves 

processing the CapsNet output through a Dense layer with a 

single neuron. This Dense layer applies a sigmoid activation 

function to produce a binary classification decision, yielding a 

probability value that indicates whether the input image is 

classified as “Normal” or “Stroke.” The performance of this 

hybrid framework is assessed using various evaluation 

metrics, including accuracy, F1 score, recall, and precision. 

Figure 5 shows the model architecture of the proposed model. 

The algorithm for the proposed research is shown below.

Algorithm.1. Proposed brain stroke detection 

Input: Brain CT image dataset, labels determine Stroke or Normal 

Output: Predictions of whether the input image contains Stroke or Normal 

Begin: 

 Load and preprocess data: 

1.  Collect dataset: C= {(Ai, bi), where Ai is a brain CT image and bi∈ {0,1} bii∈ {0,1} (0: Normal, 1: Stroke). 

2. Preprocess: 

 Resize: Ai→Ai
′∈R224×224 

 Normalize: Ai
′ →

Ai
′−μ

σ
 

 Data Augmentation: Ai
′ → {Ai

′′}(Shear, Zoom, Flipp (horizontal and vertical), Rotation) 

 Define Base Models: 

1. Load Model: DenseNet 201 

2. Input: 224 × 224 × 3 

3. Load Model: CapsNet 

               Block 1: Conv2D ((3,3), activation=’relu’) 
              MaxPooling2D (pool size= (2, 2)) 

              Block 2: Conv2D ((3,3), activation=’relu’) 

             Block 3: Conv2D ((3,3), activation=’relu’) 

             Global Average Pooling 2D () 

           Concatenate  

             DenseNet () 

            Conv2D (64, (1,1), activation=’relu’) 

           CapsNet () 

           Dense (1, activation=’sigmoid’) 

 Model Compilation and Training: 

1. Compile each model M: 
       Optimizer=Adam () 

      Loss=binary _crossentropy 

     Metrics=[accuracy] 

2. Train: M.fit (Xtrain , ytrain ,validation_data= (Xval, yval)) 

  Model Evaluation and Comparison: 

1. Evaluate: 

     metrics=M.evaluate(Xtest , ytest), where metrics include accuracy, precision, recall. 

 Save the Model: 

End
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Fig. 5 Architecture of the proposed model 

 

3.4. Software and Hardware Setup 

The proposed model was developed and trained using 

Google Colaboratory, leveraging Python and the Keras 

framework. The Colab environment was equipped with 
TensorFlow, a Graphics Processing Unit (GPU), 12.75 

gigabytes of Random Access Memory (RAM), 68.50 

gigabytes of disk space, and a 64-bit edition of Windows 10. 

Python’s flexibility and advanced capabilities, combined with 

its user-friendly syntax and extensive libraries, provided a 

robust foundation for building and training the model.  

Its predictions were evaluated on the test dataset to assess 

the model’s performance. The hyperparameters, crucial for 

optimizing the learning process, were determined through 

empirical methods. These parameters, detailed in Table 1, 

significantly influence the model’s effectiveness. Various 
variables were examined and assessed to identify the 

configuration that yielded the highest classification 

performance, ensuring the model’s efficacy in detecting and 

classifying brain strokes from CT images. 

Table 1. Hyperparameters 

Parameters Values 

Optimizer Adam 

Loss Function Binary Crossentropy 

Activation Function ReLu, Sigmoid 

Batch Size 32 

Class Mode Binary 

Learning Rate 0.001 

Number of Epochs 20 

 

4. Results and Discussion 
Accuracy and loss plots are essential tools for evaluating 

the performance of a Machine Learning (ML) model during 

its training and validation phases. These graphs provide 

critical insights into the model’s ability to distinguish between 

“normal” and “stroke” conditions from brain CT images. 

The accuracy plot, shown in Figure 6, illustrates how the 

model’s accuracy evolves over training and validation epochs. 

Initially, the hybrid DL model starts with an accuracy of 
58.98% on the training set and 68.09% on the validation set. 

This relatively low starting accuracy is expected due to the 

random initialization of the model’s parameters. As training 

progresses, the model’s accuracy improves substantially, 

reaching 96.46% on the training set and 84.26% on the 

validation set. This upward trend indicates that the model is 

effectively learning and generalizing from the data over time. 

The loss plot, depicted in Figure 7, provides a view of the 

model’s loss function changes throughout the training and 

validation stages. At the beginning of training, the model 

exhibits a high loss of 0.6697, reflecting the model’s early 

stage of learning and its struggle with significant prediction 
errors. By the final epoch, the loss decreases markedly to 

0.3073, demonstrating that the model has learned to classify 

the input data with greater precision and reduced error. 

Overall, these plots confirm that the model improves its 

performance progressively, indicating successful learning and 

adaptation to the task of classifying brain strokes from CT 

images. 

 
Fig. 6 Accuracy plot 

 
Fig. 7 Loss plot 
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In order to thoroughly evaluate the efficacy and 

operational efficiency of the proposed model, the F1-score, 

accuracy, precision, and recall are the four primary metrics 

utilized. These measures, which are based on the concepts of 

False Positive (FP), False Negative (FN), True Negative (TN), 

and True Positive (TP), are essential for assessing the model’s 
performance. These performance parameters have 

mathematical formulations that are shown in Equations (10), 

(11), (12) and (13). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 +  𝑇𝑁) / (𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁)   (10)                                                  

    𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 / (𝑇𝑃 +  𝐹𝑃)                      (11) 

        𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 / (𝑇𝑃 +  𝐹𝑁)                     (12) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑟𝑒𝑐𝑎𝑙𝑙) / (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +
 𝑟𝑒𝑐𝑎𝑙𝑙)                                                   (13)                                                                      

The model demonstrates exceptional performance, 

achieving an overall accuracy of 93.45%. This high accuracy 

reflects its ability to correctly classify the majority of cases 

within the dataset. Additionally, the model’s precision and 

recall scores are 92.18% and 92.56%, respectively, 

highlighting its effectiveness in accurately identifying positive 

instances while minimizing false positives. The F1-score, 

which balances both precision and recall, is 92.36%, providing 
a comprehensive measure of the model’s reliability and 

effectiveness. These metrics collectively underscore the 

model’s robust capability in classifying data into “Normal” or 

“Stroke” categories. Table 2 and Figure 8 shows the 

performance evaluation of the proposed model.  

Table 2. Performance evaluation of the proposed model 

Performance Metrics Obtained Results 

Accuracy 93.45% 

Precision 92.18% 

Recall 92.56% 

F1-Score 92.36% 

 
Fig. 8 Performance evaluation of the proposed framework 

The effectiveness of a classification algorithm is critically 

evaluated using a confusion matrix, a tool that provides 

detailed insights into the model’s performance. A confusion 

matrix is a performance measurement framework that 

summarizes the results of a classification algorithm. It consists 

of four key components: true positives, true negatives, false 

positives, and false negatives. In the context of brain stroke 

detection, the matrix helps to visualize how well the model has 

classified images into the correct categories. Figure 9 depicts 

the confusion matrix used for categorizing brain strokes from 

CT images, which plays a crucial role in refining the model’s 

accuracy in distinguishing between stroke and normal images. 

In the given confusion matrix, the model accurately predicted 

280 images as normal and 112 images as stroke. However, the 

matrix also reveals some misclassifications: 18 stroke images 

were incorrectly labeled as normal, and 27 normal images 

were mistakenly classified as stroke.  
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Fig. 9 Confusion matrix 

 
Fig. 10 ROC curve 

 

By analyzing these errors, the confusion matrix aids in 

identifying patterns of misclassification and provides insights 

for model refinement. Addressing these inaccuracies is 

essential for enhancing the diagnostic accuracy of the 

algorithm, ultimately leading to better performance in stroke 

detection from brain CT scans. 
 

The Receiver Operating Characteristic (ROC) curve 

depicted in Figure 10 serves as a visual tool to assess the 

diagnostic performance of a binary classifier. This curve 

illustrates the trade-off between the true positive rate 

(sensitivity) and the false positive rate (1-specificity) across 

various threshold settings. By plotting these rates against each 

other, the ROC curve provides a comprehensive view of the 

model’s ability to distinguish between positive cases (stroke) 

and negative cases (normal). 

 

A crucial aspect of the ROC curve is the Area Under the 
Curve (AUC), which offers a single numerical value 

summarizing the classifier’s overall effectiveness. An AUC of 

1 indicates perfect classification, meaning the model 

accurately identifies all stroke and normal cases without error. 

Conversely, an AUC of 0.5 suggests no discriminatory power 

akin to random guessing. In the context of brain stroke 

detection, a high AUC value is desirable as it reflects the 

model’s strong capability to correctly differentiate between 

stroke and normal CT images. 

The ROC curve also aids in determining the optimal 

threshold that balances sensitivity and specificity, which is 
critical for enhancing the model’s clinical relevance. By 

selecting an appropriate threshold, the model can achieve an 

ideal trade-off between minimizing false positives (incorrectly 

classifying a normal image as a stroke) and maximizing true 

positives (correctly identifying stroke cases). This balance is 

essential for ensuring that the model’s predictions are both 

accurate and actionable in real-world medical settings. 

 
Fig. 11 Visualization using the Grad-CAM approach 
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The Gradient-weighted Class Activation Mapping (Grad-

CAM) technique is a powerful tool for visualizing Regions of 

Interest (ROI) in brain CT images, particularly for identifying 

areas indicative of a stroke, as shown in Figure 11. This deep 

learning method is particularly effective when applied to 

CNNs, allowing for identifying critical regions within an input 
image that contribute most significantly to the network’s 

prediction of a particular class. 

Grad-CAM is recognized as a class-discriminative 

localization method that provides visual explanations for 

CNN-based networks without requiring architectural 

modifications. It achieves this by examining the gradients that 

flow into the last convolutional layer of the CNN. These 

gradients generate a heat map highlighting the image’s most 

important areas for the network’s classification decision. 

Essentially, the technique involves calculating the gradient of 

the predicted class score with respect to the feature maps of 

the final convolutional layer. This allows Grad-CAM to 
identify the significance of each feature map for the given 

class, thereby pinpointing the regions of the image that are 

most influential in determining the network’s output. 

Through this approach, Grad-CAM helps in 

understanding the decision-making process of deep learning 

models and enhances their interpretability, making it easier for 

clinicians and researchers to trust and validate the predictions 

made by CNNs in critical applications like stroke detection 

from brain CT images. 

When an image is randomly selected from the brain CT 

dataset, it undergoes classification using the proposed model, 
determining whether the image falls under the “stroke” or 

“normal” category. Moreover, Figure 12 presents an example 

of an image processed by the model, where the prediction 

outcome is classified as “No Stroke.” This highlights the 

model’s ability to correctly identify cases without any stroke 

indications, further underscoring its accuracy in medical 

image classification. The consistent performance across 

various test images reflects the robustness of the model in 

distinguishing between normal and stroke-affected brain 

scans, making it a valuable tool in clinical settings for early 

stroke detection. 

 
Fig. 12 Prediction output 

Table 3 provides a detailed comparison of various 
methodologies and models used for detecting and classifying 

brain strokes across different imaging modalities, focusing on 

the accuracy achieved by each approach. Among these, the 

proposed hybrid model, which integrates DenseNet-201 and 

CapsNet, stands out by achieving the highest accuracy of 

93.45% when applied to CT images. This result underscores 

the model’s superior performance compared to other existing 

approaches. 

For instance, a Computer-Aided Diagnosis (CAD) system 

that leverages Convolutional Neural Networks (CNNs) to 

distinguish between different types of brain strokes attains an 

accuracy of 79%. On the other hand, the BrainNet model, 
which combines CNN with Support Vector Machines (SVM), 

demonstrates a higher accuracy of 91.91% using CT scans, 

reflecting the effectiveness of hybrid models in stroke 

detection. 

Additionally, assessments of various CNN architectures, 

including EfficientNet-b0 and Inception V3, reveal that 

Inception V3 achieves an accuracy of 86.3% when applied to 

Diffusion-Weighted Imaging (DWI) images. Furthermore, the 

AC-YOLOv5 model, specifically designed to enhance the 

detection of Ischemic Stroke (IS) features in Non-Contrast 

Computed Tomography (NCCT) images, achieves a notable 
accuracy of 91.7%. Another approach employing Deep 

Convolutional Neural Networks (DCNNs) for Acute Ischemic 

Stroke (AIS) detection using NCCT images with the 

Inception-v3 model reports an accuracy of 85.78%.
 

Table 3. Performance comparison of the proposed model with other models 

Reference Methodology Images Accuracy 

[4] CNN CT 79% 

[5] BrainNet CT 91.91% 

[6] Inception V3, EfficientNet-b0 DWI 86.3% (Inception V3) 

[8] AC-YOLOv5 NCCT 91.7% 

[12] AlexNet, Inception-v3, ResNet-101 NCCT 85.78% (Inception-v3) 

[13] Multiclass SVM MRI 90% 

Proposed Hybrid DenseNet 201-CapsNet CT 93.45% 
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Fig. 13 Performance comparison of the proposed model with other models 

Moreover, a computerized stroke detection procedure that 

utilizes a six-step approach incorporating multiclass SVM on 

MRI images achieves an accuracy level of 90%. The graphical 

representation in Figure 13 visually compares the performance 

of these existing methods with the proposed DenseNet-201 

and CapsNet hybrid model, highlighting the advancements 
made in stroke detection accuracy through the use of this novel 

approach. 

5. Conclusion 
Brain stroke is a critical medical condition that develops 

when the blood supply to the brain is interrupted. Prompt 

detection is essential to reduce the severity of the condition’s 

effects. Conventional methods for identifying and classifying 
brain strokes from CT images depend on manual analysis, 

which causes time consumption and is prone to human error. 

In this study, the hybrid model, which combines DenseNet-

201 and CapsNet, demonstrates promising performance for 

brain stroke classification from brain CT images. This model 

attains a notable result with 93.45% accuracy, 92.18% 

precision, 92.56% recall, and 92.36% F1 score. These metrics 

indicate the efficiency of the proposed model in precisely 

identifying stroke cases while minimizing false positives. The 

hybrid architecture uses DenseNet-201 for feature extraction 

and CapsNet for hierarchical representation learning. It can 
capture local and global features, making it easier to correctly 

classify brain stroke from CT scans. The high performance of 

this hybrid model highlights its potential as a valuable tool in 

clinical settings, assisting healthcare professionals with timely 

and accurate diagnosis and treatment planning for patients 

with brain stroke. This advanced approach promises to 

enhance diagnostic accuracy and improve patient outcomes, 

making it an essential resource in modern medical practice. 
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