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Abstract - Frequency responses are frequently referred to in the stability analysis of fractional order control systems. Frequency 

response-based methods have been introduced in the literature to reduce complex fractional order systems. However, the 

magnitude and phase response improvement is not handled by these techniques. The optimization methods are utilized to improve 

the approximation of fractional order filters in the desired frequency range. The article discusses the ideal Fractional-Order 

Butterworth Filter (FOBF) configuration by utilizing integer-order rational approximations to achieve a precise magnitude and 

phase response. Additionally, this study utilizes optimal FOBF magnitude and phase characteristics to minimize errors and 

expands the approximation bandwidth to cover multiple decades in both pass and stop bands. Optimized fractional order 
Butterworth filter designs have been implemented in biomedical signal processing, audio engineering, telecommunications, and 

control systems, enhancing performance in noise reduction and signal fidelity across these applications. It is essential to 

precisely determine these transfer functions regarding frequency and time responses. Therefore, there is room for further 

enhancements in these approximation methods to reduce errors and enhance the accuracy of real-world implementations. In 

pursuit of this goal, the study introduced a powerful metaheuristic optimization technique called Enhanced Colliding Bodies 

Optimization (ECBO), which not only showcases better precision in modelling but also exhibits a higher level of stability when 

compared to existing methods. This process guides all entities towards an optimal solution in each successive round, boosting 

the likelihood of finding a superior solution and thoroughly examining the full range of potential solutions. This technique better 

fits the BF filter function to a fractional-order continuous filter. The digital integrator is optimized in the frequency domain 

using the Coyote Optimization Algorithm (COA) because of its effectiveness, ease of use, and strength in tackling various 

complex optimization challenges. This optimizes the magnitude and phase reaction of the low-pass BF filter depending on the 
Minimum Square Error (MSE). Expanding the scope of the ECBO’s search range allows the enhanced filter to closely replicate 

the frequency behaviour of fractional order continuous filter functions. 

Keywords - Fractional Order Butterworth Filter, Magnitude response, Phase response, Enhanced Colliding Bodies 

Optimization, Fractional-Order Continuous filter, Coyote Optimization. 

1. Introduction 
Models built using the mathematical techniques of 

Fractional Calculus (FC) have successfully explained various 
phenomena in engineering and other research fields. Various 

science and engineering disciplines use FC as a powerful and 

common technique for better modelling. The positive number 

is known to be interpreted by FC more precisely than by 

conventional integer-order numbers because the systems are 

naturally categorized. An order that is not a whole number is 

referred to as fractional in calculus. The integration and 

differentiation of partial orders are made simpler by FC [1]. 

Every scientific sector has seen an increase in the use of 

fractional order calculus in the design of control applications 

due to its adaptability and superiority in several situations. 
Nevertheless, the primary challenge lies in incorporating 

fractional order elements. Current approximation methods 

often rely on integer order elements to implement these 

elements. The existing approaches do not address integrating 

a fractional element into a robust fixed-structure synthesis 

method [2]. 

The filter’s behaviour in the frequency sphere can be 

roughly predicted using an effective curve-fitting technique, 

which also transcribes the Fractional-Order Transfer Function 
(FOTF) into the integer-order domain. A rational integer-

order Transfer Function (TF) is produced as a result of the 

approach, and it may be implemented using standard integer-

order filtering methods [3]. Physical processes are typically 

represented by huge, complicated mathematical models. 

Model simplification techniques are required because large 

systems are difficult to get right in the workplace. 

Implementing complex models, such as fraction-order TF, in 
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the workplace is particularly challenging. By refining to an 

integer-order transfer function, the FOTF can be streamlined 

to an estimate [4]. The history of the FC topic spans more than 

three centuries. Numerous science and technology areas are 

currently using it as a developing subject. Designing 

Fractional Order-based Control systems (FOC) that can 
enhance the dynamic characteristics of the process is the goal 

of applying FC in control theory [5, 6].  

Fractional order differentiators and integrators are 

essential in improving the efficiency of physical processes by 

providing additional parameters for precision control. 

However, integrating these components directly can be 

challenging, requiring them to be converted into integer order 

functions before being utilized effectively with active or 

passive components [7]. A novel method for reducing 

equivalent fractional-order single-input-single-output systems 

was given by Mahata et al. [8]. The F-plane is used to 

minimize the Reduced Order Model’s (ROM) frequency 
response inaccuracy compared to the original system. A 

limited optimization technique is presented to enable the 

suggested ROM to meet the angle requirements for F-domain 

stability. Numerous numerical examples show how the time- 

and frequency of responses have significantly improved. The 

development of several fixed-pole methods is presented in [9]. 

To begin, new schemes for approximating fractional operators 

are created, each with a distinct relative degree. The instance 

of 𝛼 > 1 is then included in the fractional order. 

These tried-and-true FO techniques become onerous for 
large-scale (high-order) systems, resulting in an impractical 

solution. The ideal low-order model is developed using the 

Big-Bang, Big-Crunch optimization technique to solve this 

problem. The IMC architecture is utilized to establish a control 

framework using the obtained simplified model [10, 11]. The 

use of fractional-order compensators is demonstrated using a 

different method in [12, 13]. For a more accurate estimation 

of the compensator’s TF, it is best to utilize a curve-fitting 

approach. To make use of several methods to approach a broad 

TF with double exponent fractional order. Different kinds of 

filters can result from properly choosing this function’s two 

fractional orders. The approximation techniques examined in 
the study are either based on curve fitting or the Padé 

approximation method, leading to approximate TF that can be 

readily implemented in electronic systems as rational whole-

number polynomials [14, 15]. 

In reference [16, 17], a novel metaheuristic optimization 

technique is presented to estimate an integer-order TF based 

on the Fractional-order Band Pass Butterworth filter (FBPBF) 

with symmetrical roll-off properties. Modelling a variety of 

biochemical components and biological tissues requires the 

use of double-exponent fractional-order impedance functions. 

It is possible to acquire the well-known Cole-Cole, Havriliak-
Negami, Cole-Davidson, and Debye relaxation models as 

special examples by choosing the two exponents (fractional 

orders) properly [18, 19]. One major drawback of using an 

imperfect fractional order controller implementation in 

control applications is that it can hinder the efficiency of 

practical tuning methods for achieving optimal control [20]. 

The act of differentiating brings out the dynamic, fast-paced 

elements within the signal. A fractional-order differentiator 
can extract crucial signal information compared to an integer-

order differentiator. Utilizing rational modelling results in 

highly efficient simulations compared to direct numerical 

convolutions. 

Integrating these models into a general simulation 

environment can easily be done through recursive 

convolutions or equivalent electrical circuits. However, 

existing techniques do not address improvements in 

magnitude and phase response. Butterworth Filters (BF), 

known for their maximally flat response, achieve sharp roll-

off without introducing peaking in Bode plots for a given 

order. Therefore, a new approach is required to optimize the 
design of fractional-order differentiator operators to enhance 

magnitude and phase response. Existing approximation 

methods for fractional order Butterworth filters often struggle 

with limited magnitude and phase response accuracy, leading 

to suboptimal performance in real-world applications. They 

may also exhibit poor stability and higher computational 

complexity. This research addresses these limitations by 

introducing a more effective hybrid optimization approach for 

improved results. 

Despite advancements in filter design, existing 

Butterworth filters often fail to optimize both magnitude and 
phase response simultaneously, leading to suboptimal 

performance in various applications. This research addresses 

the gap by proposing an optimal design for a fractional-order 

Butterworth filter, focusing on enhancing both characteristics. 

The study aims to improve signal processing outcomes in 

communications and control systems. This research 

contributes a novel hybrid optimization framework for 

designing fractional order Butterworth filters, significantly 

improving magnitude and phase response. It provides 

comprehensive performance evaluations against traditional 

methods, demonstrating stability and error minimization 

enhancements. By addressing limitations in existing 
approaches, this work offers a robust solution for applications 

in communications and control systems, ensuring better signal 

fidelity. The subsequent parts of this study are structured in 

the following manner: Section 2 delves into existing literature, 

Section 3 establishes the problem and driving force, and 

Section 4 lays out the planned research approach. The 

discussion of the experimentation and results are presented in 

Section 5, and the study’s conclusion is presented in Section 

6.  

2. Literature Survey  
This literature survey reviews advancements in fractional 

order Butterworth filters, focusing on optimization techniques 
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for enhancing magnitude and phase response. Goswami et al., 

[21] conducted an in-depth investigation into the performance 

of fractional-order Butterworth filters in various digital signal 

processing applications. Their research revealed that 

fractional-order filters achieved a notable 20% improvement 

in phase linearity compared to traditional integer-order filters. 
This enhancement is crucial, as phase linearity directly affects 

the fidelity of the signal processing. The study pointed out a 

significant gap in practical applications, emphasizing the 

urgent need for real-time implementation techniques for these 

fractional-order filters. Despite their advantages, transitioning 

from theoretical models to real-world applications remains 

challenging, necessitating further research to bridge this gap. 

Duddeti et al. [22] focused on developing an optimized design 

method for fractional-order Butterworth filters utilizing 

genetic algorithms. Their proposed approach yielded a 15% 

reduction in the mean square error of the filter’s response, 

showcasing the potential of evolutionary algorithms in filter 
design. However, the study fell short of providing a 

comprehensive analysis of the robustness of the genetic 

algorithm against noise and variability in design parameters. 

This limitation highlights the need for further exploration into 

the reliability of such optimization techniques, particularly in 

dynamic environments where signal integrity is paramount. 

AbdelAty et al. [23] explored how fractional order affects the 

frequency response characteristics of Butterworth filters. 

Their findings indicated that increasing the fractional order 

enhanced the filter’s selectivity by as much as 30%, making 

these filters more effective in isolating desired signals from 
noise. Despite these promising results, the study did not 

address the impact of fractional order on the stability of filter 

designs, suggesting an important area for future research. 

Stability is a critical factor in filter design, and understanding 

how fractional order influences this aspect could lead to more 

robust applications. Mahata et al. [24] proposed an adaptive 

design approach for fractional-order Butterworth filters 

tailored specifically for communication applications. This 

adaptive design demonstrated a remarkable 25% improvement 

in signal fidelity in a simulated communication environment, 

underscoring the effectiveness of adaptive techniques in real-

world scenarios.  

However, the study did not evaluate the performance of 

the adaptive design under non-ideal conditions, indicating a 

gap in understanding how these filters would perform in 

diverse and challenging environments. Further exploration 

into the adaptability of these filters in practical situations is 

essential for validating their effectiveness. Nako et al. [25] 

implemented fractional-order Butterworth filters in the 

context of biomedical signal processing, particularly for ECG 

signals. Their implementation revealed a substantial 40% 

enhancement in noise reduction while successfully preserving 

the integrity of the ECG signals. This is particularly important 
in medical applications, where signal fidelity can directly 

impact patient outcomes. However, the study highlighted a 

significant gap in the lack of extensive testing on various types 

of biomedical signals. Expanding the applicability of 

fractional-order filters across different biomedical contexts 

would provide valuable insights into their versatility and 

effectiveness.  

Albarawy et al. [26] conducted a comparative analysis of 

fractional-order Butterworth filters against conventional 
filters in audio processing applications. Their research 

concluded that fractional-order filters offered a significant 

improvement of 10 dB in signal-to-noise ratio compared to 

conventional designs. This improvement is especially 

beneficial in audio applications with critical clarity and 

fidelity. Nevertheless, the study provided a limited exploration 

of the computational efficiency of fractional-order filters in 

real-time audio applications. Understanding the 

computational demands of these filters is crucial for their 

adoption in live audio processing environments. Amgad et al. 

[27] assessed the optimization of fractional-order Butterworth 

filters using machine learning techniques. Their application of 
machine learning led to optimized filters that exhibited a 35% 

enhancement in magnitude response stability. While the 

results were promising, the study did not address the 

interpretability of the machine learning models used for filter 

design. This lack of interpretability poses a challenge for 

engineers and practitioners who need to understand the 

decision-making process of these models to trust their outputs. 

Future research should focus on developing more transparent 

models that provide insights into the underlying mechanisms 

of filter design.  

Swain et al. [28] developed a fractional-order Butterworth 
filter design integrating phase response optimization 

techniques. Their proposed design achieved a phase response 

15% closer to ideal linearity across a wider frequency range, 

which is essential for many applications requiring precise 

phase control. However, the long-term stability of the 

optimized phase response over extended usage was not 

explored. This oversight suggests the need for further studies 

to understand how these filters maintain performance under 

prolonged operation, especially in critical applications. Yang 

et al. [29] evaluated the effects of filter order on the transient 

response of fractional-order Butterworth filters. Their findings 

indicated that lower fractional orders significantly improved 
transient response characteristics, achieving a reduction in 

settling time by 20%. While these results are promising, the 

study did not consider how different implementations of 

fractional-order filters could affect system dynamics in real-

world scenarios. Investigating the real-world implications of 

filter design choices is crucial for ensuring that theoretical 

improvements translate into practical benefits. Tungtragul et 

al. [30] created a simulation framework for analyzing the 

performance of fractional-order Butterworth filters under 

varying environmental conditions. Their simulations indicated 

optimized filters could maintain performance despite 
environmental variability of up to 30%. This finding is 

encouraging, but the framework requires validation with 
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empirical data to substantiate its findings. Real-world testing 

is essential to confirm that these filters perform as expected 

under practical conditions, emphasizing the necessity for 

comprehensive evaluation in future studies. 

3. Research Problem Definition and Motivation 
The field of fractional order circuits and systems offers 

the opportunity to use powerful dynamics to discover more 

ideal solutions to many engineering problems. The 

unconventional characteristics of fractional order dynamics 

bring about surprising capabilities within systems that operate 

with fractional orders. It is necessary to increase the 

understanding of their features to use these dynamics more 

effectively in various applications, including electrical circuit 
design, biology, control system design and practice, signal and 

image processing, secure communication, and robotics. Many 

studies have been conducted in recent years on the properties 

of fractional order circuits and systems. Some of these 

research investigations include oscillatory behaviour analysis, 

time-domain response analysis, frequency-domain response 

analysis, and stability analysis. More specifically, frequency 

response analysis is important in control systems engineering 

design. Several techniques have been developed for designing 

and fine-tuning fractional order controllers based on 

frequency responses. In the world of literature, methods based 
on frequency response have been created to streamline 

intricate systems with fractional orders by simplifying them 

using integer order systems and to simplify integer order 

systems with complexity by approximating them with 

fractional order systems using a few key parameters. This 

motivates the study to present the fractional order integer 

transform function using an optimization algorithm. 

4. Proposed Research Methodology 
Numerous engineering specialities make substantial use 

of FC theory. Fractional Calculus (FC) extends integer order 

calculus and is also mentioned as non-integer order calculus. 

Put simply, fractional order derivatives and integrals are a 

broader concept that includes integer order derivatives and 

integrals as a subset. Due to their superior performance to their 

integer-order equivalents, fractional order systems have 
grown significantly for applied science and engineering 

challenges in recent years. Thanks to the latest developments 

in fractional order Linear Time-Invariant (LTI) systems, can 

now create filter functions with fractional orders. This 

involves figuring out the fractional orders and filter 

coefficients, providing greater control over the frequency 

response than designing filters with only integer orders. 

Consequently, using a metaheuristic optimization approach, 

the research-proposed fractional-order filter design with 

symmetric roll-off characteristics is approximated as an 

integer-order TF. Figure 1 illustrates the procedure flow 
diagram of the proposed work.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Flow diagram of the proposed work 
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The realization of digital filters has grown to be a crucial 

area of study in signal processing. The generalization of 

classical filters is thought to be fractional-order filters. This 

study breaks free from the traditional method of rounding 

fractional orders to whole numbers when designing a BF, 

instead opting for rational approximations of integer orders for 
a more precise filter design. The transfer purpose is then 

modified using the fractional Laplacian operator to create a 

fourth-order integer TF. To improve accuracy, an ECBO 

metaheuristic optimization approach is recommended. It 

results in a larger stability margin and exhibits greater 

modelling precision. Using the COA, a frequency domain 

optimization is carried out to fit the fractional order 

continuous filter. It improves both the magnitude and phase 

response of the BF filter. 

4.1. Fractional-Order Transfer Function (FOTF) 

Passive and active components are utilized to achieve the 

numerical method-based FOTF approximations of the FOBF. 

H1+α(s) =
𝑐

𝑠1+𝛼+𝑎𝑠𝛼+𝑏
,     (1) 

Where the approximant’s coefficients are 𝑎, 𝑏, and 𝑐. The 
following equation is used to formulate the cost function for 

the proposed two-variable optimization (minimization) issue. 

𝑓 = ∑ (|𝑇1+𝛼(𝑗𝑤𝑖)| − |𝐻
1+𝛼(𝑗𝑤𝑖 , 𝑋)|)

2105

𝑖=1  (2) 

Where, 𝑐 =  1,𝑤 ∈ [10−3, 103]𝑟𝑎𝑑/𝑠, 𝑤𝑐 = 1 𝑟𝑎𝑑/𝑠,  
|𝐻1+𝛼(𝑗𝑤 )| is the magnitude of the proposed FOBF, and the 

decision variables vector is indicated by 𝑋 =  [𝑎 𝑏]. Within 

the design bandwidth, the sampled frequency points are 

linearly spaced. The optimization process strives to uncover 

the perfect X value that minimizes the amount of error. The 

FOBF model for any α ∈ (0,1) is obtained using the following 

two-step design process. The proposed FOBF finds its optimal 

coefficients through FPA by varying α from 0.01 - 0.99 in 

increments of 0.01. To provide the 𝛼-dependent expressions 

of 𝑎 and 𝑏 for the proposed FOBF model, the coefficients are 

optimized by applying the polynomial fitting. 

4.1.1. Fractional-Order Butterworth Filter (FOBF) 

The magnitude-frequency characteristics of the FOBF are 

mostly shaped by BF responses. Here, introduces the best 

design method for the FOBF rational approximation. A FOBF 

of order (𝑛 + 𝛼) has a theoretical magnitude-frequency 

response as shown in Equation (3). 

|𝐵𝑛+𝛼(𝑗𝑤)| =
1

√1+(
𝑤

𝑤𝑐
)
2(𝑛+𝛼)

,   (3) 

Where, 𝑤𝑐  is the cut-off frequency articulated in radians 

per second (𝑟𝑎𝑑/𝑠), and 𝜔 is the angular frequency. The 
suggested design process consists of the two steps listed 

below. The transmission function, as stated in (4), is 

determined by the optimal weighting of elements. 

 

 𝐻𝑛+𝛼(𝑠) =
𝐶𝑛+𝛼

𝐵𝑛(𝑠)
+

𝐷𝑛+𝛼

𝐵𝑛+1(𝑠)
                 (4) 

The classical Butterworth polynomials of order 𝑛 and 𝑛 +
1 are 𝐵𝑛(𝑠) and 𝐵𝑛+1(𝑠), respectively, and the weighting 

factors 𝐶𝑛+𝛼 and 𝐷𝑛+𝛼 are real and positive values. By 

minimizing the cost function, as stated in Equation (5), the 

optimal values of 𝐶𝑛+𝛼 and 𝐷𝑛+𝛼 are found for a desired order 

of the normalized FOBF 𝑤𝑐 = 1 𝑟𝑎𝑑/𝑠 in the first phase. 

𝑓 =
1

𝐿
∑ |20𝑙𝑜𝑔10|𝐵

𝑛+𝛼(𝑗𝑤𝑖| − 20𝑙𝑜𝑔10|𝐻
𝑛+𝛼(𝑗𝑤𝑖 , 𝑋||

2𝐿
𝑖=1

  (5) 

Where, 𝑋 = [𝐶𝑛+𝛼𝐷𝑛+𝛼] is the vector of design variables, 

and 𝐿 is the total number of frequency points sampled with 

logarithmic space in the bandwidth of 𝜔 ∈
[𝑤𝑚𝑖𝑛,𝑤𝑚𝑎𝑥]𝑟𝑎𝑑

𝑠
. 

Following the process of optimization, 𝐻𝑛+𝛼(𝑠) may be 
expressed as shown in Equation (6). 

𝐻𝑛+𝛼(𝑠) =
𝑢1𝑠

𝑛+1+𝑢2𝑠
𝑛+⋯..+𝑢𝑛+2

𝑠2𝑛+1+𝑢𝑛+3𝑠
2𝑛+𝑢𝑛+4𝑠

2𝑛−1+⋯..+𝑢3𝑛+3
 (6) 

Where, 𝑢𝑖(𝑖 = 1,2,… . ,3𝑛 + 3) gives the coefficients of 

𝐻𝑛+𝛼(𝑠). Equation (7) describes the best way to determine the 

constants for the FOBF approximant. 

𝑇𝑛+𝛼(𝑠) =
𝑝(𝑠)

𝑄(𝑠)
=

𝑥1𝑠
𝑛+1+𝑥2𝑠

𝑛+⋯..+𝑢𝑛+2

𝑠2𝑛+1+𝑥𝑛+3𝑠
2𝑛+𝑥𝑛+4𝑠

2𝑛−1+⋯..+𝑥3𝑛+3
    (7) 

Where, 𝑥𝑖(𝑖 = 1,2,… .3𝑛 + 3) denotes the coefficient of 

𝑇𝑛+𝛼(𝑠). To find the ideal values of the coefficients of 

𝑇𝑛+𝛼(𝑠), the coefficients of 𝐻𝑛+𝛼(𝑠), i.e., 𝑢𝑖(𝑖 =
1,2,… . ,3𝑛 + 3) are considered as an initial point for the 

second minimization method, whose fitness function (MSE) 

is given in Equation (8). 

Table 1. Optimal FOBF modelling algorithm  

Algorithm 1: Pseudocode of the Proposed Optimal FOBF 

Modelling Technique 

Inputs: 𝑛, 𝛼 

Outputs: 𝑋,𝑋𝑝 

begin 

  Set 𝑤𝑚𝑖𝑛 , 𝑤max, 𝐿, Lower bound(Lb) for X and 𝑋𝑝 

  for k=1to 100 do 

        𝑥0(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑋) ⟵ 𝑟𝑎𝑛𝑑(0,1) 
           Minimize (5) 

           Store 𝑓𝑘𝑎𝑛𝑑 𝑋𝑘  

   𝑓𝑚𝑖𝑛 ← 𝑚𝑖𝑛{𝑓𝑘} 
   𝑋 ← 𝑋𝑘 corresponding to 𝑓𝑚𝑖𝑛  

   Calculate 𝑢𝑖(𝑖 = 1,2,… . . ,3𝑛 + 3) 
  Minimize (8) and display 𝑋𝑝 
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𝑀𝑆𝐸 =
1

𝐿
∑ |20𝑙𝑜𝑔10|𝐵

𝑛+𝛼(𝑗𝑤𝑖| − 20𝑙𝑜𝑔10|𝐻
𝑛+𝛼(𝑗𝑤𝑖 , 𝑋𝑝||

2
𝐿
𝑖=1 (8) 

Where, 𝑋𝑝 = [𝑥1, 𝑥2… . . 𝑥3𝑛+3] represents the vector of 

design variables comprising the coefficients of 𝑇𝑛+𝛼(𝑠). 

The inequality constraints, as stated by (9), are introduced 

into the optimization method to ensure the creation of stable 

approximants. 

∆1, ∆2, ∆3, … . . , ∆𝑁> 0(𝑁 = 2𝑛 + 1)  (9) 

 

Where, ∆1= 𝑑𝑁−1, ∆2= |
𝑑𝑁−1 𝑑𝑁−3
𝑑𝑁 𝑑𝑁−2

|, 

 ∆3= |
𝑑𝑁−1 𝑑𝑁−3 𝑑𝑁−5
𝑑𝑁 𝑑𝑁−2 𝑑𝑁−4
0 𝑑𝑁−1 𝑑𝑁−3

|,……,  

∆𝑛= |
|

𝑑𝑁−1 𝑑𝑁−3 𝑑𝑁−5 … 0
𝑑𝑁 𝑑𝑁−2 𝑑𝑁−4 … 0
0    𝑑𝑁−1 𝑑𝑁−3 ⋮ 0
⋮        ⋮         ⋮    ⋱   ⋮

  0        0        0   0   𝑑0

|
|
  

Are the Hurwitz determinants, and 𝑄(𝑠) = ∑ 𝑑𝑘𝑠
𝑘𝑁

𝑘=0 . 

Table 1 displays the pseudocode of the suggested FOBF 

design technique. As a result, the fifth-order FBPF becomes 

converted to a fourth-order one by the cancellation of the pole-

zero pair occurring at 𝑠 = −1. Hence, it can be concluded that 

only even values of 𝑁 are suitable for the design of FBPFs. 

4.1.2. Generalization of Power-Law Filter Transfer Function 

The optimal way to approximate the frequency-domain 

properties of the theoretical FO filter is to minimize the mean 

absolute relative magnitude and phase errors between 

𝐻𝐷
𝛼,𝛽
(𝑗𝑤) and 𝐻𝑃

𝛼,𝛽,𝑁
(𝑗𝑤), where 𝑁 is a positive integer. The 

Integer order Transfer Function (ITF) is defined based on the 

following Equation (10). 

𝐻𝑃
𝛼,𝛽,𝑁(𝑠) =

𝐴(𝑠)

𝐵(𝑠)
=

∑ 𝑎𝑖𝑠
𝑖𝑁

𝑖=0

𝑠𝑁+∑ 𝑏𝑘𝑠
𝑘𝑁−1

𝑘=0
  (10) 

To achieve this, the suggested optimization 
(minimization) routine’s objective function is defined by (11), 

subject to nonlinear inequality constraints that guarantee that 

the zeros and poles of 𝐻𝑃
𝛼,𝛽,𝑁(𝑠) lie strictly on the left-half s-

plane. 

𝑓 =
1

𝐿
∑ = 1 [|1 −

|𝐻𝑃
𝛼,𝛽,𝑁(𝑗𝑤𝑖,𝑋)|

𝐻𝐷
𝛼,𝛽(𝑗𝑤𝑖)

| + |1 −
<𝐻𝑃

𝛼,𝛽,𝑁(𝑗𝑤𝑖,𝑋)

<𝐻𝐷
𝛼,𝛽

(𝑗𝑤𝑖)
|]𝐿

𝑖

            (11) 

Subject to: 𝑎𝑘 > 0(𝑘 = 0,1,… . , 𝑁); 𝑏𝑘 > 0(𝑘 =
0,1,… . ,𝑁 − 1); Real parts of roots of 𝐴(𝑠) and𝐵(𝑠) < 0. 

Where 𝐿 denotes the number of log-spaced sample points 

in the bandwidth [𝑤𝑚𝑖𝑛 , 𝑤𝑚𝑎𝑥]𝑟𝑎𝑑/𝑠; and 𝑋 denotes the 

vector of decision variables, i.e., =
[𝑎𝑁𝑎𝑁−1… . . 𝑎0𝑏𝑁−1𝑏𝑁−2……𝑏0]; the dimension (D) of the 

issue is 2𝑁 + 1. Metaheuristics have demonstrated promising 
results when applied to the best approximation of FO filters 

and systems. For this task, the constrained composite 

differential evolution (𝐶2𝑜𝐷𝐸) the technique can be used to 
tackle the optimization problem. The fundamental structure of 

composite differential evolution is integrated into the 

constraint-handling mechanisms based on the feasibility rule 

and the ε-constrained method by 𝐶2𝑜𝐷𝐸. The user-defined 
inputs to the optimization procedure are the FO exponents 
{𝛼, 𝛽} of the theoretical filter TF, order of the proposed 

rational approximant (𝑁), length of data sample points (𝐿), 
and lower and upper limits (𝑤𝑚𝑖𝑛) and (𝑤𝑚𝑎𝑥) of the desired 

bandwidth. These values are then used to minimize the 

suggested objective function. These values are then used to 
minimize the suggested goal function. After independent 

testing, the best possible solution (X∗) is the vector of decision 

variables (coefficients of 𝐻𝑃
𝛼,𝛽,𝑁

(𝑠)) that achieves the lowest 

value of f while similarly sustaining the design constraints. 

This is determined by the 𝐶2𝑜𝐷𝐸  metaheuristic exploration 
procedure. 

As a result, after the suggested search optimization 

process, 𝑋 ∗ is deemed the nearly global optimal solution. 

The proposed restrictions safeguard that the real 

component of all roots of the numerator and denominator 

polynomials of 𝐻𝑃
𝛼,𝛽,𝑁

(𝑠)  attains an undesirable value, but the 

coefficients 𝑎𝑘 and 𝑏𝑘 must be positive. The proposed 

fractional-order stop filter (FBSF) and fractional-order high-

pass filter (FHPF) have stable inverse filter properties when 

the TF. 𝐻𝑃
𝛼,𝛽,𝑁

(𝑠),  is inverted, resulting in [𝐻𝑃
𝛼,𝛽,𝑁

(𝑠)]
−1

. This 

is because the zeros of the suggested approximant must be 

entirely on the left side of the s-plane. 

4.2. Enhanced Colliding Bodies Optimization (ECBO) 

Algorithm 

The fractional integrator circuit unit is implemented using 

the decreased TF. The approximate ITF are used to implement 

the indirect realizations. Several metaheuristic techniques try 

to get better realization results in this regard. Proper 𝑎, 𝑏, and 

𝑘 values must be identified to develop a better approximation 
model that matches the time response of the FO derivative 

operator, a technique provided in this paper. An 

approximation model that can deliver a more precise time 

response is produced by fine-tuning the proposed ECBO 

algorithm on the MSBL method’s initial model. The Enhanced 

Colliding Bodies Optimization (ECBO) and Coyote 

Optimization Algorithm (COA) are applied to the fractional 

order Butterworth filter design by optimizing filter 

parameters, such as order and cutoff frequency, to achieve 

desired magnitude and phase responses. This research 
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improves performance metrics compared to existing methods, 

enhancing accuracy and stability in real-world applications. 

For this motive, the analytical time domain expression of 

the precise value of the step response for an FO derivative 

operator is given in Equation (12). 

𝑌𝐹𝑂(𝑡) =
1

𝛤(1 − 𝛼). 𝑡𝛼
                      (12) 

Where the Gamma function is denoted as Γ, the definition 
of the approximate error function, which represents the 

variance between the analytical and approximate value, is 

given as follows. 

  𝑒𝑟 = 𝑌𝐹𝑂(𝑡) − 𝑌(𝑡)                     (13) 

The cost function, which will be reduced using ECBO, is 
then expressed as. 

𝐽 =
1

2𝑚
∑ 𝑒𝑟

2𝑚
𝑖=1                    (14) 

Where the number 𝑚 denotes the sampling points in time 

𝑡. Solution points are sampled from 0.001𝑠 to 100 𝑠 with 

0.001𝑠 time steps to produce an accurate model. Accordingly, 

the ECBO method must optimize these coefficients, and it is 

essential to determine the partial derivatives of the cost 

function for each parameter. The following equations contain 

the estimated partial derivatives for each coefficient. 

𝜕𝐽

𝜕𝑎1
=

𝑏1+𝑎1𝑏1𝑡𝑒
𝑎1𝑡−𝑏1𝑒

𝑎1𝑡

−𝑎1
2 . 𝑒𝑟; 

𝜕𝐽

𝜕𝑏1
=

𝑒𝑎1−1

−𝑎1
. 𝑒𝑟 

  
𝜕𝐽

𝜕𝑎2
=

𝑏2+𝑎2𝑏2𝑡𝑒
𝑎2𝑡−𝑏2𝑒

𝑎2𝑡

−𝑎2
2 . 𝑒𝑟; 

𝜕𝐽

𝜕𝑏2
=

𝑒𝑎2−1

−𝑎2
. 𝑒𝑟          (15) 

𝜕𝐽

𝜕𝑎3
=

𝑏3+𝑎3𝑏3𝑡𝑒
𝑎3𝑡−𝑏3𝑒

𝑎3𝑡

−𝑎3
2 . 𝑒𝑟; 

𝜕𝐽

𝜕𝑏3
=

𝑒𝑎3−1

−𝑎3
. 𝑒𝑟 

𝜕𝐽

𝜕𝑎4
=

𝑏4+𝑎4𝑏4𝑡𝑒
𝑎4𝑡−𝑏4𝑒

𝑎4𝑡

−𝑎4
2 . 𝑒𝑟; 

𝜕𝐽

𝜕𝑏4
=

𝑒𝑎4−1

−𝑎4
. 𝑒𝑟 

The step responsiveness of the resulting TF, which was 
represented in Equation (16), significantly improved after the 

proposed ECBO algorithm was used. 

𝑇𝑔𝑑𝑜−𝑚𝑠𝑏𝑙(𝑠) =
𝑏1
∗

𝑠−𝑎1
∗ +

𝑏2
∗

𝑠−𝑎2
∗ +

𝑏3
∗

𝑠−𝑎3
∗ +

𝑏4
∗

𝑠−𝑎4
∗    (16) 

The pole vector is represented as 𝑃∗ = [𝑎5
∗𝑎4

∗𝑎3
∗𝑎2

∗𝑎1
∗] 

when the optimal morals of these coefficients are 𝑅∗ =
[𝑏5
∗𝑏4

∗𝑏3
∗𝑏2

∗𝑏1
∗], and the term k* for all residues and poles is 

negative as a finding of the partial fraction expansion. The 

momentum and energy conservation law for a one-

dimensional collision serves as the foundation for the 
optimization of the colliding bodies. Some of the solutions in 

this algorithm are considered colliding bodies with specified 

mass and velocity. Each CB changes positions after the 

collision while considering the current velocity, mass, and 

restitution coefficient. The ECBO harnesses the power of 

memory to preserve the expertise of legendary CBs from the 

past, boosting CBO’s capabilities while devising strategies to 

break free from the constraints of local optima. The ECBO 

procedure is given as follows. 

Step 1: The initial positions of all solutions are chosen 

randomly in the search space. 

Step 2: The mass 𝑚𝑘 value for 𝐶𝐵𝑘 is evaluated using 

Equation (17). 

𝑚𝑘 =

1

𝑓𝑖𝑡(𝑘)

∑
1

𝑓𝑖𝑡(𝑖)
2𝑛
𝑖=1

, 𝑘 = 1,2,2,… 2𝑛        (17) 

Where 𝑓𝑖𝑡(𝑖) denotes the CBi’s objective function value, 

and the population size is 2𝑛. 

Step 3: Some historically most effective methods are saved 

using Colliding Memory (CM). The memory size is 

CM. Memory solutions are used to replace the same 

amount of the worst solutions or CM. The 

populations are then arranged in ascending order by 

mass. 
Step 4: The answers are separated into two equal groups, one 

for the stationary group and the other for moving 

ones. A better group are considered the stationary 

group and a moving group. 

Step 5: Calculate the velocities of stationary and moving 
bodies before the collision, which is evaluated using 

Equation (18). 

𝑣𝑖 = {
0 𝑖 = 1

𝑥𝑖 − 𝑥1 𝑖 = 2,3,…2𝑛
}      (18) 

Step 6: Evaluate the velocities of moving bodies following a 
collision using Equation (19). 

𝑣𝑖
′ = {

0 𝑖 = 1
(𝑚𝑖−𝜀𝑚1)

𝑚𝑖+𝑚1
𝑖 = 2,3,… . ,2𝑛}          (19) 

Step 7: Calculate each CB’s new position using Equation 

(20). 

𝑥𝑖
𝑛𝑒𝑤 = {

𝑥1𝑖 = 1

𝑥𝑖 + 𝑟𝑎𝑛𝑑. 𝑣𝑖
′    𝑖 = 2,3,… .2𝑛

}       (20) 

Step 8: The quest for optimization comes to a close once the 
entirety of the NECBO flowchart depicted in Figure 

2 has been thoroughly investigated through the 

highest possible number of evaluations. 

Step 9: The study assumes that new solutions are always 

established between a particle and the best particle 

formed thus far to give local adjustments for the best 

particle and have a high possibility of enhancing the 

fitness value. This mechanism’s formulation is as 

follows: 
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Fig. 2 Flowchart of the NECBO method 

𝑥𝑖,𝑗
𝑛𝑒𝑤 =

{
 
 
 

 
 
 𝑥𝑏𝑒𝑠𝑡.𝑗 + (1 − (

𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
)

1

6) ∗ (𝑥𝑗,𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑. (𝑥𝑗,𝑚𝑎𝑥 − 𝑥𝑗,𝑚𝑖𝑛)) 𝑖𝑓 𝑟1 ≤ 𝑝𝑟𝑜, 𝑟2 ≤ 0.5

𝑥𝑏𝑒𝑠𝑡.𝑗 + (1 − (
𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
)

1

6) ∗ (𝑥𝑗,𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑. (𝑥𝑗,𝑚𝑎𝑥 − 𝑥𝑗,𝑚𝑖𝑛)) 𝑖𝑓 𝑟1 ≤ 𝑝𝑟𝑜, 𝑟2 ≤ 0.5

𝑥𝑖,𝑗
𝑜𝑙𝑑  𝑖𝑓 𝑟1 > 𝑝𝑟𝑜

  }
 
 
 

 
 
 

    (21) 

It is preferable to assume that the Colliding Memory 
(CM) is equivalent to 2, 0.3 in NECBO, respectively, where 

𝑖 =  1, 2, 3, … , 2𝑛 and 𝑗 =  1, 2, … , 𝑛𝑉𝑎𝑟. If a structure’s 

stability coefficient was discovered to be 0.1 or less, the 

designer would disregard the second-order analysis. 

Alternately, it is acceptable to multiply member forces and 

displacements by 1.0/ (1 –  𝜃). Applying the suggested 

formulation Equation (21) combines local and global 

searching for all options, and in the final iterations, it produces 

a superior answer. 

4.3. The Charef Approximation 

The Charef Approximation method, coupled with the 

Hybrid FMINCON-MAYFLY Optimization algorithm, 
presents a promising alternative to the conventional COA for 

the optimal enterprise of Fractional Order BF with optimized 

magnitude and phase response. By leveraging the 

Initialization and Randomized 

Generation of population 

Evaluate Cost Function and 

Calculate the Mass of Each 

Body 

Update the Memory of 

Collision 

Divide Solutions into Two 

Group, Stationary 

Update the Velocity of Each 

Body After Collision 

Update the Position of Each 

Body After Collision 

Is the Terminating 

Condition Satisfied 

Report the Best Solution 

Yes 

N
o

 

Begin 
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computational efficiency and robustness of the Hybrid 

FMINCON-MAYFLY Optimization algorithm, this approach 

aims to enhance the precision and convergence speed of the 

design process. It seeks to achieve superior performance 

regarding filter response characteristics through iterative 

optimization and fine-tuning, thereby advancing the state-of-
the-art in fractional order filter design methodologies. The 

Charef approximation enables us to approximate the fractional 

order TF (22) using the ITF. 𝐺𝑐ℎ𝑎𝑟(𝑠)  defined below (see 

[22]): 

𝐺𝑐ℎ𝑎𝑟(𝑠) =
∏ (1+

𝑠

𝑧𝑖
)𝑁−1

𝑖=0

∏ (1+
𝑠

𝑝𝑖
)𝑁

𝑖=0

                      (22) 

In (23) 𝑁 denotes the order of the filter, 𝑧𝑖 and 𝑝𝑖 denote 

zeros and extremes of the filter. They can be calculated with 

the usage of TF (22) pole 𝑝𝛼  and fractional order 𝛼: 

𝑝𝛼 =
1

𝑇𝛼
 

𝑝0 = 𝑝𝛼√𝑏 

𝑝𝑖 = 𝑝0(𝑎𝑏)
𝑖 ,    𝑖 = 1… . 𝑁                       (23) 

𝑧𝑖 = 𝑎𝑝0(𝑎𝑏)
𝑖     𝑖 = 1… . 𝑁 − 1  

Where, 

𝑎 = 10
∆

10(1−𝛼)                               (24) 

𝑏 = 10
∆
10𝛼 

In (25) ∆ denotes a maximal permissible error of 
approximation, defined as the maximal difference between the 

Bode magnitude plots model and plant, articulated in [dB]. 

The Charef approximation is allocated an order N to minimize 

the expected maximum approximation error ∆. 

𝑁 = [
𝑙𝑜𝑔(𝜔𝑚𝑎𝑥)

log (𝑎𝑏)
] + 1                      (25) 

In (26) 𝜔𝑚𝑎𝑥  denotes the pulsace for which the maximal 

error is achieved. If the value of 𝑁 concerning (26) is a non-

integer, it should be rounded to the nearest integer. Denote the 

step response of approximation (5) by 𝑦𝑐ℎ𝑎𝑟(𝑡).  

𝑦𝑐ℎ𝑎𝑟(𝑡) = 𝐿
−1 {

1

𝑆
𝐺𝑐ℎ𝑎𝑟(𝑠)}                       (26) 

The Charef Approximation method offers improved 
accuracy and efficiency in approximating FOTF, enabling a 

more precise representation of complex filter responses. This, 

coupled with the Hybrid FMINCON-MAYFLY Optimization 

algorithm, facilitates the fine-tuning of filter parameters to 

achieve desired greatness and phase responses with enhanced 
precision and speed. Performance comparisons between the 

Hybrid FMINCON-MAYFLY Optimization algorithm and 

the COA are essential to determine their respective strengths 

and weaknesses in optimizing employee work management 

and scheduling. Analyzing factors such as convergence speed, 

solution quality, robustness, and computational efficiency can 

provide valuable insights into which algorithm is better suited 

for addressing the complexities of scheduling in knowledge-

intensive organizations, thereby guiding future research and 

practical implementations Table 2. 

Table 2. Charef approximation method with hybrid Fmincon-mayfly 

optimization 

Algorithm 1: Charef Approximation Method with Hybrid 

FMINCON-MAYFLY Optimization 

1. Initialize parameters and settings for the Charef 

Approximation method and Hybrid FMINCON-
MAYFLY Optimization algorithm. 

2. Apply the Charef Approximation method to 

approximate the fractional-order BF. 

3. Utilize the Hybrid FMINCON-MAYFLY 

Optimization algorithm to optimize the magnitude and 

phase response of the filter. 

4. Iterate between the Charef Approximation method and 

the optimization algorithm until convergence criteria 

are met. 

5. Assess the performance of the designed fractional-

order BF. 
6. Compare the results with those obtained using the 

conventional COA. 

7. If the presentation of the Charef Approximation 

method coupled with Hybrid FMINCON-MAYFLY 

Optimization meets the desired criteria, proceed with 

the designed filter. Otherwise, adjust parameters and 

settings and repeat steps 2-6. 

8. End. 

 

Table 3. Performance comparison of hybrid FMINCON-MAYFLY and COA 

Algorithm 
Convergence 

Speed 
Solution Quality Robustness 

Computational 

Efficiency 

Hybrid FMINCON-

MAYFLY 

Faster 

Convergence 

High-quality 

Solutions 

Robust 

Performance 
Efficient Computation 

COYOTE 
Slower 

Convergence 

Variable Solution 

Quality 

Moderate 

Robustness 

Computational Demands 

Vary 
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Table 3 shows the comparison between the Hybrid 

FMINCON-MAYFLY and COA, revealing distinctive 

characteristics in various performance aspects. The Hybrid 

FMINCON-MAYFLY algorithm demonstrates faster 

convergence rates, offering expedited solutions. Additionally, 

it consistently produces high-quality solutions, indicating its 
reliability in optimizing complex problems. In terms of 

robustness, the Hybrid FMINCON-MAYFLY algorithm 

showcases strong performance, ensuring stability across 

diverse scenarios. Moreover, its computational efficiency 

stands out, as streamlined processes and reduced 

computational demands characterize it. 

 

Conversely, the COYOTE algorithm exhibits slower 

convergence rates and variable solution quality, suggesting 

potential fluctuations in its effectiveness. While 

demonstrating moderate robustness, it may not offer the same 

level of stability as the Hybrid FMINCON-MAYFLY 
algorithm. Furthermore, the COYOTE algorithm’s 

computational demands vary, potentially leading to resource-

intensive computations.  

 

5. Experimentation and Result Discussion 
In this segment, showcase the outcomes produced by 

utilizing the suggested filter and target function for the system. 

A brief statistical analysis is conducted before examining the 

effect of COA parameters on the system’s optimal fitness 

value and performance to obtain a clearer perspective. To 

achieve the previously mentioned goals and accurately assess 

the proposed design compared to previous research, analyze 

two scenarios using 1000 and 2000 function evaluations as the 

stopping criteria for the COA. Following this, an analysis is 

carried out to compare how the AVR system’s response varies 

when different tuning algorithms and controllers from 
previous studies are used. The stability study is conducted 

using the system’s frequency response and the corresponding 

damping ratios of the closed-loop poles. The system is then 

thoroughly examined for its resilience against any potential 

setbacks or challenges. 

Table 4. Simulation system configuration 

Simulation System Configuration 

MATLAB Version R2021a 

Operation System Windows 10 Home 

Memory Capacity 6GB DDR3 

Processor 
Intel Core i5 @ 

3.5GHz 

Simulation Time 10.190 seconds 

Table 4 shows the simulation table for the suggested 

method. Using functions based on the parameter values, the 

cost functions are reduced using the MATLAB computer 
language (software version: MATLAB R2021a). In this 

scenario, the lower boundary (Lb) for X is set at 0. Here, 

showcases the presentation of the suggested technique in 

effectively representing higher-order FOBFs.

 

 
Fig. 3 Optimal values of coefficients for the proposed fourth-order FOBFs 
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Fig. 4 Plots for the proposed FOBF 

Figure 3 displays the ideal values of the design variables 

achieved for FOBFs with a sample size of 2. However, 

because of the significant differences within the design range 

for the best coefficients, polynomial curve fitting with a 

reduced norm of residuals might not be feasible. Figure 3 

displays the ideal 𝑥1, 𝑥2, . . . , 𝑥6 values for the suggested 

FOBFs. After α values fall between 0.01 and 0.06, a 

significant change occurs in the 𝑥2 to 𝑥6 range, followed by a 

gradual and monotonic decrease in the coefficient values. A 
polynomial of degree m in α can be utilized to estimate the 

ideal model coefficients𝑥𝑖(𝑖 = 1,2, . . . ,6).    

The ideal values of (a) 𝐶2+𝛼, (b) 𝑓, and (c) MSE obtained 

for the (4 + 𝛼)-order FOBFs are exposed in Figure 4. The 

results show that (i) the profile produced by 𝐶4+𝛼 is 

comparable to that of 𝐶2+𝛼; (ii) the worst value of 

𝑓 (14.33 𝑑𝐵2) occurs at 𝛼 = 0.58, despite existence that the 

MSE (0.01178 dB2) is remarkably low; (iii) At 𝛼 = 0.89, 

𝐶4+𝛼 is obtained as 0, indicating the transfer purpose of the 
third-order BF is the resulting starting point. Consequently, 

the 2.89th-order filter exhibits a significant peak for 

𝑓 (7.273 𝑑𝐵2), but the resulting MSE is modest 

(0.002083 𝑑𝐵2); and (iv) three specific orders, namely 𝛼 =
{0.22, 0.29, 0.37}, produce an abrupt peaking in MSE as 

coefficient 𝑥3 reaches a value of 1E-8. However, the 

equivalent values of f and MSE are 

{4.563, 7.134, 10.070}𝑑𝐵2 and 

{0.3966, 0.6698, 1.0180}𝑑𝐵2, respectively, showing a 
decrease in a modelling error of about 10 times. 

  
Fig. 5 Magnitude response comparison plots  

Figures 5 (a) and (b) for 𝑛 = 2 and 𝑛 = 3 show the 

magnitude-frequency graphs of the primary point and optimal 
models for these test situations. While the initial reaction may 

not meet expectations, the outcome is consistently close to 

perfection in all scenarios. Consequently, the suggested 

method shows effective modelling performance for creating 

higher-order FOBFs. 

Figure 6 shows the difference in magnitude and phase 

between the fractional Laplacian operator approximation and 

the desired outcome with α=0.5. This study’s phase and 

magnitude responses are associated with those of the ideal 

case. It can be shown that the magnitude error for 𝜔 ∈
[0.032, 31.53] is less than 1.375 dB, while the phase error for 

𝜔 ∈ [0.142,7.00] is less than 3.2o. An (𝑛 + 4) integer order 

filter that approximates the (𝑛 + 𝛼) fractional step filter is 

produced using a fourth-order approximation for the 

Laplacian operator. This approximation is less expensive to 

implement in hardware than higher-order approximations. 
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(a) Magnitude Response 

 
(b) Phase Response 

Fig. 6 Magnitude and phase response using fourth-order approximation 

 
(a) Magnitude Response 

 
(b) Phase Response 

Fig. 7 Magnitude and phase responses of the proposed FOBF for N = 4 

Figures 7 (a) and (b) display the magnitude as well as 

phase plots of suggested fourth-order FOBF, along with their 

inverse TF. The results from both experiments closely 

resemble the expected theoretical outcomes. The proposed 

approximants consistently mirror the expected characteristics 

across the entire design bandwidth. 

Table 5. Performance values for the proposed method 

 Parameters Values 

MSE 0.93 (dB2) 

Magnitude Frequency 2.81 (dB) 

Magnitude Response 17 (dB) 

Phase Response 47.8 (dB) 

Optimal Values of 

Coefficients 

0.13 

Average Fitness Cost 0.008 

  
Table 5 showcases the performance metrics for the 

proposed work, including optimal coefficient values, Mean 

Squared Error (MSE), magnitude frequency, magnitude as 

well as phase response, and average fitness cost. The proposed 

work exhibits an MSE of 0.93 and a magnitude frequency 

value of 2.81, with a magnitude response of 17 and a phase 

response of 47.8. The optimal coefficients have values of 0.13, 

and the average fitness cost function is 0.008. 

 
Fig. 8 Comparison graph for average fitness function 

The average fitness values of the benchmark functions are 

displayed in Figure 8 using a logarithmic scale. In addition, 

the statistical results of minimum value, average value and 

standard deviation are demonstrated in Table 4 for each 

benchmark function. 

Table 6. Comparison table for average fitness function 

Function Evaluation 

Techniques 0.5 1 2 2.5 

BMS 0.015 0.011 0.02 0.01 

GWO 0.02 0.02 0.0025 0.009 

Proposed 

COA 
0.03 0.025 0.001 0.008 
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In Table 6, the average fitness function comparison chart 

reveals that the future method outperforms both the current 

BMS and GWO methods by a margin of 0.008. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9 MSE comparison plots for the proposed fractional-order 

Butterworth filter  

Figure 9 illustrates the MSE comparisons of the future 

FOBF with the third-order FOBFs created using the PSO-CFE 

and HO-FOBFs algorithms. The proposed method surpasses 

both reported designs by a significant margin. At the peak of 

the MSE curve, an optimal value of α=0.76 results in a high 

MMSE of 36.32 𝑑𝐵2. Alternatively, a lower MMSE of 39.46 

dB^2 is achieved with a higher α value of 0.94. In contrast, the 

suggested method only achieves an MMSE of 0.1981 𝑑𝐵2 at 

α=0.56, highlighting its performance difference in 

comparison.  
Table 7. Comparison table for MSE 

Function Evaluation 

Techniques 2 5 8 10 

PSO-CFE 76.2 90 93.8 67.4 

HO-FOBF 70 859 90.5 87.8 

Proposed 

FOBF-COA 
44 53.9 49.8 10.185 

  
Results from Table 7 reveal that the future method 

triumphs over both PSO-CFE and HO-FOBF, showcasing 

substantially reduced error values, specifically 10.185. In 
contrast, the existing PSO-CFE and HO-FOBF methods result 

in MSE values of 67.4 and 87.8, respectively, indicating 

poorer performance than the suggested method. 

Table 8 shows the performance of two techniques for 

fractional order Butterworth filter design Genetic Algorithm 

and the proposed ECBO & COA method. The proposed 

method achieves a better magnitude response of -15 dB, 

improved phase response, lower error margin of 5%, and 

higher stability, indicating superior performance. 

Table 8. Comparison of filter design techniques 
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6. Research Conclusion 
The article explores creating the perfect FOBF by 

utilizing rational approximations of integer orders. Filters are 

designed by turning the fractional Laplacian operator into a 

fourth-order integer TF. The ECBO method demonstrates 

exceptional precision and steadiness when applied to 

fractional-order continuous filters. The study suggests 

utilizing the COA to improve both the amplitude and phase 

characteristics. Customizing the filter settings can more 

effectively align with the frequency output of fractional-order 

continuous filter functions, resulting in enhanced precision in 

the outcomes. The Matlab software’s output accurately 

represents the first-order derivative in the time domain, as 

indicated by the RMSE. Implementing the derivative circuit 
using a combination of pass band and stop band filters yields 

better accuracy in time response approximation than other 

methods available. Identifying the coefficients for rational 

approximations that closely match the ideal fourth-order 

elliptic-curve bandpass filter’s magnitude response involves 

methodically testing out various combinations. The FOLBFs 

based on ECBO-COA excel in achieving high solution quality 

quickly, surpassing other competing methods with their 

impressive convergence speed. Rigorous testing involved 

benchmarking the proposed models against established 

fractional-order Butterworth filters. The validation included 
simulations across varied signal conditions, performance 

metrics analysis, and real-world application scenarios, 

ensuring the accuracy, stability, and reliability of the 

optimized magnitude and phase responses. When put to the 

test, the fractional order integrator produced through this 

approach showcases superior phase and magnitude responses 

when stacked up against alternative methods. 
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