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Abstract - Fractional order calculus in modelling and control applications has been increasingly popular in every scientific 

field due to its versatility and superiority in various instances. These methods present advantages in frequency response 

approximation. However, real-world engineering applications require more accurate time responses to implement FO 

operators. Consequently, the article proposed FO systems’ rational integer order approximate transfer function. This will 

positively contribute to the realization performance of FO system models in real-world applications. A pole and zero model of 

the Charef rational approximation method is proposed on a fractional-order transfer function. The poles of the approximate 

model are unrelated to the order of the integrator. This feature shows the benefits of extending the algorithm to the systems 

containing various fractional orders. Moreover, numerical examples are given to show the wide applicability of this method 

and to illustrate the acceptable accuracy for approximations. Further, time responses of FMINCON-based FO derivative 

models are improved by the Mayfly Optimization Algorithm (MOA). This study analyses the convergence behaviour and 

magnitude error metrics of the different order FO to improve magnitude response. In addition, the research proposed to 
optimize the Simulated Annealing (SA) algorithm for the determination of optimal hyper-parameters with custom target values 

to improve magnitude response. The proposed work is implemented using Matlab software. The analysis process involves 

selecting key parameters such as fractional order, optimization algorithm settings, and convergence criteria. Validation 

methods include comparing the results from the proposed approaches with analytical solutions and employing metrics like 

magnitude error to assess accuracy. The numerical simulations of various test cases are conducted to confirm the effectiveness 

and robustness of the model. Comparing the analytical and actual solutions demonstrates that the proposed approaches 

effectively and efficiently investigate complicated nonlinear models. Furthermore, the proposed methodologies control and 

manipulate the achieved better solutions in a very useful way, providing a simple process to adjust and control the convergence 

regions of the series solution.  

Keywords - Fractional Order System, Charef approximation, FMINCON, Mayfly optimization, Magnitude error metrics, 

Simulated annealing, Hyper-parameters. 

1. Introduction 
The discipline of engineering and applied sciences has 

recently shown a strong interest in Fractional Partial 

Differential Equations (FPDE). The FPDE is found to be a 

useful tool in the interpretation and modelling of many 

problems that arise in physics, biology, and applied 

mathematics. Its extensive applicability in real-world 
problems is described by this equation. As a result, academics 

have given substantial attention to solving FPDEs and 

differential equations. Because most FPDE lacks exact 

analytic solutions, approximate and numerical approaches are 

frequently used [1, 2]. When used to describe the inherited 

and memory characteristics of various materials and systems, 

the fractional derivative is an excellent contrivance. 

Modelling actual materials’ electrical and mechanical 
properties and those of rocks, signal processing, and 

numerous other fields is done using Fractional Differential 

Equations (FDE) [3]. A novel epidemiological model that 

considered both integer and fractional order operators was 

created in addition to understanding the dynamics of measles 

transmission. A singular solution to the Caputo fractional 

model exists in the positively invariant area [4]. A more exact 

attenuation characteristic of analogue filters has recently been 

achieved by applying the theoretical idea of fractional 

calculus that deals with the generalization of the classical 

concepts of differentiation and integration. Because the 
traditional Laplacian operator s has been generalized to the 

Fractional-Order (FO) form 𝑠𝛼, where 𝛼 ∈ (0, 1), this is 
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conceivable, which gives system modelling extra degrees of 

freedom [5]. The ideas of fractal and fractional differentiation 

have been merged to create new differentiation operators. 

The generalized Mittag-Leffler function, the power law, and 

exponential decay were used as the three kernels for 

constructing the new operators. The two new operators’ 
parameters are the first, which is regarded as fractional order, 

and the second is the fractal dimension. A highly effective 

numerical approach is developed in [6] to simulate several 

chaotic attractors to solve the models. The Charef 

approximation method for fractional-order system models 

has shown promise, yet significant challenges remain in 

effectively integrating fractional elements into practical 

applications. Existing optimization techniques often fall short 

in addressing the complexities of these models, particularly 

when it comes to achieving optimal performance in real-

world scenarios. This research identifies a gap in robust 

optimization strategies that can seamlessly incorporate 
fractional-order dynamics. The proposed hybrid Fmincon-

Mayfly optimization algorithm aims to bridge this gap, 

enhancing the accuracy and efficiency of fractional-order 

system modelling. 

[7] defines a novel computational method for solving 

FDE using the Atangana-Baleanu derivative and the Laguerre 

polynomial. The operational matrices for fractional 

integration and fractional integral differentiation are 

developed for this purpose using Laguerre polynomials. The 

generated operational matrices and collocation points reduce 

the FDEs to a set of linear or nonlinear algebraic equations. 
A bound on the error is derived for the operational matrix of 

the fractional integration. The mathematical formulation of 

fractional pantograph differential equations is presented in 

[8] using a brand-new class of functions known as fractional-

order Alpert multiwavelet functions. Consideration is given 

to the Caputo-type fractional derivative. The fractional-order 

Alpert multiwavelet functions are used in this instance to 

create the Riemann-Liouville fractional operational matrix of 

integration. High-order and fractional differentiators, both of 

which have continuously tunable orders, are used in signal 

processing [9]. To enhance a mathematical representation of 

a two-mass system with a long shaft and concentrated 
parameters, the Caputo-Fabrizio operator is applied, and its 

application is evaluated based on the general theory of 

fractional order derivatives and integrals. Ordinary 

fractional-order differential equations are used to explain 

such systems. Additionally, it is widely known that an elastic 

mechanical wave that travels down a long, stiff shaft in a 

drive transmission would cause the distribution of the angular 

velocities in time and space, the angle at which the shaft is 

rotating, and the elastic moment to slow down [10, 11]. The 

fractional order model and its synchronization are also 

included. They are based on an optimized fractional order 
sliding mode controller and are not analytically solved; 

instead, they are solved using genetic algorithms, which can 

produce intelligent solutions with an objective function and 

some additive unknown parameters [12, 13]. 

The calculation of the fractional-order integrator and 

equivalent may result in infinite complexity, which is a key 

challenge for fractional-order element implementations. The 

concept of the various FOPID controller implementation 
strategies has been provided in [14, 15]. However, one 

negative side effect of adopting classical approximations of 

the fractional-order elements in the FOPID controllers is the 

steady-state inaccuracy. Latif and Kumarasamy demonstrate 

how applying different optimization strategies lowers steady-

state inaccuracy. The ideal set of these parameters was 

successfully obtained using many optimization techniques, 

including the Genetic Algorithm (GA), Bacterial Foraging 

Optimization (BFO) algorithm, Artificial Bee Colony (ABC) 

algorithm, and many more [16-18]. The execution of such 

techniques might reveal their primary distinctions (i.e., the 

realization of the controller’s integral and the differential 
components) [19, 20].  

AVR maintains a synchronous generator’s voltage as the 

main excitation system controller at a specific level. The 

proposed controller is simulated within various scenarios, 

and its performance is compared with those of an optimally 

designed PID controller. A recently Simulated Annealing is 

presented to tune the hyperparameters, it can significantly 

improve the magnitude response of the system by analyzing 

the convergence behaviour and magnitude error metrics of 

the different order FO. The rest of the work is described as 

follows: Section 2 portrays the literature survey of the 
research, and Section 3 demonstrates the definition of the 

research problem and its motivation. Section 4 reveals the 

proposed research methodology, Section 5 elucidates the 

experimentation and result discussion, and the conclusion of 

the research work is established in Section 6. 

2. Literature Survey 
Aguila Camacho N et al. [21] extended to situations 

where system states are influenced by a bounded non-

parametric disturbance. Simulation studies are conducted 

with various representative plants to be controlled, 

demonstrating that fractional orders and levels of switching 

error can be observed in most cases. Valencia-Ponce M A. et 

al. [22] utilized to plan adders and subtractors, while the 

multiplication of variables is achieved through development. 

The paper demonstrates that the simulation results, which 

scale the mathematical model to amplitudes below ±1, align 

well with the outcomes obtained using 180 nm CMOS IC 

technology. Charef A et al. [23] obtained from the time 
response of the proposed analogue dynamical model. The 

efficiency and accuracy of the numerical evaluation results 

for the proposed are compared with those of Lorenzo and 

Hartley using an illustrative example. Bettou K et al. [24] 

compared those achieved with the classical PIDA controller 

using various design methods from the literature. The 
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simulation results further indicate a substantial improvement 

in the performance and robustness of the closed-loop system 

when employing the proposed fractional order controller 

design. Lassoued A. et al. [25] implied that even a slight 

variation in the initial conditions could lead to a significant 

difference in the final stages of hyperchaotic systems. 
Simulations demonstrate that the system can generate various 

attractors, including equilibrium points, limit cycles, and 

hyperchaotic attractors.  

Adigintla S et al. [26] planned for the FOPI manager to 

be integrated into the rotor field-oriented control algorithm 

for the Induction Motor (IM). Hardware learning is 

conducted using a research laboratory HIL stage to validate 

the robustness of the planned FOPI manager estimate 

method. Duddeti B B et al. [27] assessed using several 

performance metrics and time response characteristics. 

Finally, inverse substitution transforms the concentrated 

number direction sample rear into a CFS. Boucherma D et al. 
[28] round these roles to derive rational purposes in the 

forms.  

This transformation was accomplished by applying the 

concept of fractional commensurate order, making it directly 

relevant to real-world physics. Emad S et al. [29] focused on 

their scale fault, level fault, and application difficulty. The 

examined techniques include CFE, Padé, Charef, and 

approximations using the MATLAB curve-fitting tool. Yüce 

A et al. [30] proposed a method that is compared to existing 

studies in the literature regarding time and frequency 

responses. Results indicate that it offers improved model 
approximation performance and achieves a lower-order 

model. 

3. Research Problem Definition and Motivation  
Fractional calculus is gaining popularity because it 

enables more precise modelling of real systems and enhances 

system solutions that cannot be reached with integer order 

system models. Because of this, a wide range of real-world 
applications are identified in this fractional calculus. To find 

more reliable answers to various scientific and engineering 

issues, fractional order system models make it possible to 

represent real-world systems more accurately, and fractional 

order modelling has been used. Limited-band and integer-

order approximations are frequently used to create fractional-

order transfer functions due to the enormous computational 

load of the ideal realization of fractional-order elements. The 

approximate fractional order models may impair the usability 

of optimal control tuning techniques, which is a significant 

side effect of such a non-ideal fractional order controller 
function realization for control applications. This 

fundamental difficulty prohibits engineering problems from 

fully utilizing the benefits of optimal fractional order 

behaviour (Tepljakov et al. 2018). Approximate integer-order 

models, which can approximate responses of fractional order 

elements in constrained operating ranges, were developed to 

deal with these difficulties and implement fractional order 

elements with tolerable processing overhead. In control 

practice, these approximate models were frequently used for 

the non-ideal realization of FOPID controllers. Because 

analytical tuning approaches primarily require an ideal 
realization of FOPID controller functions, the performance of 

approximate models inherently degrades the practical 

performance of optimal tuning methods. Consequently, real-

world control performance is significantly lower than the 

theoretically attainable ideal control performance when 

fractional order elements are implemented roughly. For these 

reasons, the real-world performance of fractional-order 

control systems in applications should be a major issue when 

choosing an appropriate approximate model to implement 

fractional-order transfer functions. 

4. Proposed Research Methodology 
In time domain analysis, components or elements of a 

power system with known characteristics in the frequency 

domain are modelled using approximated rational functions. 

Based on the assumption that the dynamics are lumped and 

time-invariant, traditional differential equations and integer 

order transfer functions are typically used to describe linear 

circuits and systems. However, many dynamical systems are 
better modelled by fractional calculus, with the interaction of 

the variables being modelled by fractional integration and/or 

fractional differentiation than the conventional integer order 

calculus. With the help of experimental data, the current work 

suggests a generalized method for identifying fractional order 

systems in the frequency domain.  

Many methods have been proposed to accurately 

compute models for transient studies by fitting the frequency 

response to rational functions. In this work, a comparison of 

various methodologies is contrasted. There is a lot of interest 

in studies surrounding rational function approximation. This 

may efficiently approximate abruptly changing functions and 
has many possible real-world applications. A generalized 

rational approximation for fractional order in the ideal 

fractional operator response was proposed in this research 

afterwards. Figure 1 illustrates the process flow diagram. 

A Charef approximation method is proposed for the 

fractional-order transfer function in this work. Fractional-

order control has mostly turned to meta-heuristic 

optimization methods to search for and test potential 

solutions to increase controller performance. The study also 

suggested the time responses of Find a Minimum of a 

Constrained (FMINCON) nonlinear multivariable function 
with the Mayfly optimization algorithm presented, which 

analyses the convergence behaviour and magnitude error 

metrics of the various order FO. A simulated annealing model 

is suggested for the generalization of the model, which 

increases response effectiveness for hyperparameter tuning. 
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Fig. 1 Flow diagram of the proposed work 

4.1. Charef Approximation Method 

Integrating the Charef Approximation with optimization 

algorithms involves utilizing the approximation to convert 

fractional-order systems into a form suitable for optimization. 

This method allows for deriving integer-order approximants 

that can be manipulated using optimization techniques to 

improve system performance. By applying optimization 

algorithms, such as the Mayfly Optimization Algorithm or 

Simulated Annealing, the parameters of the Charef 

approximation can be fine-tuned, enhancing the accuracy and 
stability of the resulting integer-order models while 

preserving the essential characteristics of the original 

fractional-order system.  

The possibility of application of the fractional order 

transfer function is determined by the possibility of its finite 

dimensionality and integer order approximation. Several 

authors have discussed the approximation of fractional-order 

transfer functions. The fractional order transfer function of an 

inertial plant can be approximated using the rational Charef 

approximation, which is presented below. 

𝐺(𝑠) =
1

(𝑇𝑠+1)𝛾   (1) 

Where T stands for the plant’s time constant and 0 <
𝛾 < 1 means the fractional order. The following Equation (2) 

expresses the transfer function’s finite-dimensional 

approximation. 

𝐺𝑐ℎ(𝑠) =
∏ (1+

𝑠

𝑧𝑖
)𝑁−1

𝑛=0

∏ (1+
𝑠

𝑝𝑖
)𝑁−1

𝑛=0

            (2) 

Where N stands for the approximation’s order and zi and 

pi Stand for the approximation’s zeros and poles. This 

approximation aims to best match a plant’s Bode magnitude 

plot to that of the approximation in a certain frequency band. 

The following recursive dependencies are used to calculate 

zeros and poles. 

𝑝 =
1

𝑇
  (3) 

𝑝0 = 𝑝√𝑏         (4) 

𝑧0 = 𝑎𝑝0       (5) 

𝑝𝑖 = 𝑝0(𝑎𝑏)𝑖 𝑖 = 1, … 𝑁               (6) 

𝑧𝑖 = 𝑎𝑝0(𝑎𝑏)𝑖 𝑖 = 1, … 𝑁              (7) 

Where, 𝑎 = 10
∆

10(1−𝛼), 𝑏 = 10
∆

10𝛼, and 𝑎𝑏 = 10
∆

10𝛼(1−𝛼). 

The difference between the Bode magnitude plots for the 

model and plant, stated in [dB], where ∆> 0 determines the 

maximum acceptable error of the Charef approximation in 𝑎, 

𝑏, and 𝑎𝑏. It is possible to estimate the order of 

approximation 𝑁 as follows. 

𝑁 = 𝐼𝑛𝑡 (
𝑙𝑜𝑔(𝜔𝑚𝑎𝑥𝑇)

𝑙𝑜𝑔(𝑎𝑏)
) + 1 =

𝐼𝑛𝑡 (
10𝛼(1−𝛼)𝑙𝑜𝑔(𝜔𝑚𝑎𝑥𝑇)

∆
) + 1             (8) 

Where, 𝜔𝑚𝑎𝑥  Stands for the widest frequency band that 

the approximation will be used. The transfer function can be 

represented as the following product; hence, the Bode 

magnitude plot of the function deals with a sum of the plots 
stated. 

𝐺(𝑠) = 𝐺𝛼(𝑠)𝐺𝛽(𝑠)        (9) 

Where the following Equation (10) and (11) can be used 

to express 𝐺𝛼(𝑠) and 𝐺𝛽(𝑠). 
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𝐺𝛼(𝑠) =
1

(𝑇𝛼𝑠+1)𝛼               (10) 

𝐺𝛽(𝑠) = (𝑇𝛽𝑠 + 1)
𝛽

=
1
1

(𝑇𝛽𝑠+1)
𝛽

                       (11) 

Using approximations (2) to (8), the transfer function 

(10) can be directly approximated. Equation (12) represents 

its approximation as 𝐺𝑐ℎ𝛼(𝑠)  . 

𝐺𝑐ℎ𝛼(𝑠) =
∏ (1+

𝑠

𝑧𝑛𝛼
)

𝑁𝛼−1
𝑛𝛼=0

∏ (1+
𝑠

𝑝𝑛𝛼
)

𝑁𝛼
𝑛𝛼=0

=
𝐿𝑐ℎ𝛼(𝑠)

𝐷𝑐ℎ𝛼(𝑠)
                     (12) 

The approximation order is equal to 𝑁𝛼. The 
approximation of the second factor of the transfer function is 

denoted by the expression (11). This suggests that the 

approximation for the inertial plant stated in (13) might be 

proposed as the inverse of this approximation. 

𝐺𝑐ℎ𝛽(𝑠) =
∏ (1+

𝑠

𝑝𝑛𝛽
)

𝑁𝛽−1

𝑛𝛽=0

∏ (1+
𝑠

𝑧𝑛𝛽
)

𝑁𝛽
𝑛𝛽=0

=
𝐷𝑐ℎ𝛽(𝑠)

𝐿𝑐ℎ𝛽(𝑠)
         (13) 

Consequently, the approximate 𝐺𝑐ℎ(𝑠) value for the 

entire transfer function is described as follows. 

𝐺𝑐ℎ(𝑠) = 𝐺𝑐ℎ𝛼(𝑠)𝐺𝑐ℎ𝛽(𝑠) =
𝐿𝑐ℎ𝛼(𝑠)𝐷𝑐ℎ𝛽(𝑠)

𝐷𝑐ℎ𝛼(𝑠)𝐿𝑐ℎ𝛽(𝑠)
              (14) 

The transfer function’s numerator and denominator in 

Equation (14) have the same summarising order, which is 

equal to 𝑁𝛼 + 𝑁𝛽 − 1. The estimation presented above is 

very “cautious” and describes the upper limits of inaccuracy. 

Although the actual error is much smaller, it can increase 
significantly in the presence of cancellation poles or zeros. 

Due to their fractional ordering, fractional systems have a 

significant difficulty because of their infinite dimensionality 

in time domain simulations when compared to regular 

systems. Compared to the previous model, this one uses 

fewer components and provides results that are more accurate 

when considering interest frequency. This indicates the 

corresponding resistor and capacitor values for the desired 

frequency. 

4.1.1. Proportional-Integral-Derivative (PID) Fractional-

Order Controllers 
Researchers have established that integer-order 

controllers can be replaced by FO controllers. This has 

prompted numerous studies on the design and evaluation of 

these controllers. Such controllers only have one drawback: 

to implement them, their dynamics must be approximated. 

The PID fractional-order controllers are modelled in practice 

as high-order integer-order transfer functions. As a result, it 

is simple to apply the proposed methodology to other 

established approximations. The following Equation (15) 

describes the differential equation of a fractional order PID 

controller. 

𝑢(𝑡) = 𝑘𝑃𝑒(𝑡) + 𝑘𝐼𝐷𝑡
−𝜆𝑒(𝑡) + 𝑘𝐷𝐷𝑡

𝛿𝑒(𝑡)          (15) 

The following Equation (16) is the continuous transfer 

function of FOPID that is computed using the Laplace 

transform. 

𝐺𝑐(𝑆) = 𝑘𝑃 + 𝑘𝐼𝑆−𝜆 + 𝑘𝐷𝑆𝛿            (16) 

Designing a FOPID controller entails designing three 

parameters𝑘𝑃, 𝑘𝐼, 𝑘𝐷, as well as two orders 𝜆; 𝛿, neither of 

which must be integers. A typical integer-order PID 

controller is produced by taking𝜆 = µ = 1. Evaluation of a 

fractional integrodifferential operation over a function is 
subject to several definitions. The Grünwald-Letnikov, 

Caputo, and Riemann-Liouville definitions are the ones that 

are most frequently employed in the literature. However, 

Equation (17) provides the Riemann-Liouville definition. 

 𝑎𝐷𝑏
𝑟𝑓(𝑡) =

1

Γ(𝜐−𝑟)

𝑑𝜐

𝑑𝑡𝜐 ∫
𝑓(𝜏)

(𝑡−𝜏)𝑟−𝜐+1 𝑑𝜏
𝑏

𝑎
         (17) 

Equation (18) gives the Riemann-Liouville definition of 

the fractional derivative in the Laplace Transform for(𝜐 −
1 < 𝑟 < 𝜐). 

𝐿{ 𝑎𝐷𝑏
𝑟𝑓(𝑡)} = 𝑠𝑟𝐿{𝑓(𝑡)} − ∑ 𝑠𝑘  𝑎𝐷𝑏

𝑟−𝑘−1𝑓(𝑡)𝑛−1
𝑘=0 |

𝑡=0

             (18) 

For (𝜐 − 1 < 𝑟 ≤ 𝜐), where the complex Laplace 

transform variable 𝑠 = 𝜎 + 𝑗𝜔 is used. It should be noted that 

the integer-order derivative’s Laplace Transform is 

comparable to the fractional derivatives. Transfer functions 

can be used with the fractional order controller, which 
generalizes the traditional integer order PID controller. This 

growth may give greater flexibility to accomplish control 

goals. 

4.2. Hybrid FMINCON-Mayfly Optimization Algorithm 

The step response of Fractional Order (FO) elements 

often cannot be accurately approximated using frequency 

domain approaches alone. The research proposes a novel 

optimization method based on a rational approximation 

scheme to address this limitation, significantly enhancing 

step response performance without compromising frequency 

response accuracy. This work improves approximate FO 

derivative models by integrating the Mayfly Optimization 
Algorithm (MOA) with time responses from the Find the 

Minimum of a Constrained (FMINCON) nonlinear 

multivariable function) technique. The hybrid optimization 

approach facilitates parameter selection through the 

pathfinder algorithm, focusing on convergence behaviour and 
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magnitude error metrics for various order FO elements. This 

unique integration represents a significant contribution to the 

literature on fractional-order systems, offering new 

methodologies for improved performance.  

4.2.1. FMINCON Algorithm 

The Find the Minimum of Constrained (FMINCON) 
algorithm finds the minimum of a constrained nonlinear 

multivariable equation using the interior-point algorithm. The 

chosen approach, called “interior point”, can deal with both 

large and small, intensive situations that are sparse. The 

Fmincon method can improve from NaN or INF results and 

compensate for the constraints throughout all iterations. For 

complex problems, this method can make use of some unique 

strategies. Figure 2 displays the flowchart for the Fmincon 

algorithm. 

The input value for the Fmincon algorithm process 

contains the Active powers, Constraints, and Beginning 

point.𝑥0. Based on the provided constraints, an evaluation 

procedure is conducted. 𝐽 Is considered as Fmincon function. 

The number of iterations will be increased, and new𝐾𝑝, 𝐾𝑑, 

𝐾𝑖 values will be chosen within the parameters. The current 

Fmincon function 𝐽(𝑥𝑖) and the prior value 𝐽(𝑥𝑖 − 1) are 

compared. Until the best optimal value of𝐾𝑝, 𝐾𝑑, 𝐾𝑖 is 

attained, or the iteration reaches its maximum value, the 

iteration will be repeated. An Integral Square Error (ISE) is 

thought to be the objective function. The ISE is represented 

by Equation (19), where 𝑒(𝑡) is the error, which is the 

difference between the actual and the desired pressure value. 

𝐼𝑆𝐸 = ∫ 𝑒(𝑡)2𝑑𝑡
𝑇

0
           (19) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Flowchart for FMINCON algorithm 
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The starting point is taken to be𝑋 = (𝑋1, 𝑋2, 𝑋3). Based 

on the ISE objective function, Equations (20) to (22) return 

the PID parameter values. 

[𝐾𝑝, 𝑓𝑣1, 𝑒𝑓1, 𝑜𝑝1, 𝐿, 𝐺, 𝐻] =
𝑓(𝐼𝑆𝐸, 𝑋1, 𝐴1, 𝑏1, 𝐴𝑒𝑞1, 𝑏𝑒𝑞1, 𝑙𝑏1, 𝑢𝑏1, 𝑁1, 𝑂1)           (20) 

[𝐾𝑖, 𝑓𝑣2, 𝑒𝑓2, 𝑜𝑝2, 𝐿, 𝐺, 𝐻] =
𝑓(𝐼𝑆𝐸, 𝑋2, 𝐴2, 𝑏2, 𝐴𝑒𝑞2, 𝑏𝑒𝑞2, 𝑙𝑏2, 𝑢𝑏2, 𝑁2, 𝑂2)          (21) 

[𝐾𝑑, 𝑓𝑣3, 𝑒𝑓3, 𝑜𝑝3, 𝐿, 𝐺, 𝐻] =
𝑓(𝐼𝑆𝐸, 𝑋3, 𝐴3, 𝑏3, 𝐴𝑒𝑞3, 𝑏𝑒𝑞3, 𝑙𝑏3, 𝑢𝑏3, 𝑁3, 𝑂3)        (22) 

In Equations (20) to (22), the method starts with the 

beginning value and uses the objective function ISE to 

determine the minimum value of the function. In equations 

(20)-(22), the final value is abbreviated as𝑓𝑣, the exit flag 

as𝑒𝑓, the output as 𝑜𝑝, and fmincon is abbreviated as 𝑓. 𝐿 

Stands for the Lagrange multiplier field structure, and 𝐺 for 

the gradient of the PID parameter’s objective function. The 

constraints on linear inequality are represented by the 

matrices a and b, respectively.  

The linear equality constraints matrix and vector are 

designated as 𝐴𝑒𝑞 and𝑏𝑒𝑞, respectively. The PID 

parameters’ lower and upper bounds are shown as 𝑙𝑏 and𝑢𝑏, 

respectively. The value of the objective function, which is 

returned as a real number, is 𝑓𝑣𝑎𝑙. Nevertheless, 𝑂 stands for 

the option that returns a collection of the optimization 

problem, and 𝐻 stands for the Hessian of the PID parameter’s 

objective function. 

Together with a structured output including information 

about the optimization process, FMINCON also produces a 

value exit flag that identifies the algorithm’s exit state. In 

Equation (23), the Hessian of the Lagrangian is depicted. 

𝐻 = 𝛻2𝐿 = 𝛻2𝐼𝑆𝐸 + ∑ 𝜆𝑖𝛻
2𝐶𝑖𝑖 + ∑ 𝜆𝑗𝛻2𝐶𝑒𝑞𝑗𝑗      (23) 

The nonlinear inequality constraint vector is denoted 

by𝐶, and the nonlinear equality constraint vector is denoted 

by𝐶𝑒𝑞. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

technique is chosen in Hessian because it solves 

unconstrained nonlinear optimization problems interactively. 

Set typical 𝑋 values that represent the distinct magnitude of 

the variables in the algorithm configuration. The maximum 

iterations in the projected conjugate iteration denote the 

greatest possible number of projected conjugate gradient 

iterations. The relative tolerance shows the projected 

conjugate gradient iteration’s relative termination tolerance. 

The absolute tolerance indicates the projected conjugate 
gradient iteration’s absolute termination tolerance. The 

stopping criterion indicates the algorithm’s termination point. 

The algorithm’s maximum number of iterations is indicated 

by the term “max iterations”. The evaluations of the Max 

function must include most instances of the constraints and 

objective function. The method proceeds through numerous 

iterations until the best-fit values are obtained. The Mayfly 

Optimization Algorithm will receive the best-fit value 

obtained by the Fmincon method as input. The approximation 

FO derivative models are enhanced by the MOA. The mayfly 
optimization technique is given in the following subsection. 

4.2.2. Mayfly Optimization Algorithm (MOA) 

The Mayfly optimization method is presented as a brand-

new approach to intellectual optimization. Moreover, mayfly 

mating and fighting behaviours had an impact on the 

algorithm. The system combines the main advantages of 

swarm intelligence and evolutionary intelligence. Despite the 

mayfly optimization algorithm’s clear advantages in 

convergence speed, accuracy, and exploitation, interest in it 

keeps growing. Each mayfly’s position in the search space 

suggests potential, essential key solutions to the challenging 

circumstances. The steps for the mayfly algorithm are given 
as follows. 

Step 1: Initialize both the male and female mayfly 

populations and set the speed parameters. 

Step 2: Calculate the fitness value and sort the outcomes to 

obtain pbest and gbest. 

Step 3: Update the locations of the male and female 

mayflies in turn and to mate. 

Step 4: Update pbest & gbest after calculating fitness. 

Step 5: Verify whether the stop condition has been attained; 

if so, exit and output the result; otherwise, repeat 

steps 3 to 5. 

Initiation 

Create a population of males and females with initial 

positions of 𝑥𝑖 = [𝑥1, … , 𝑥𝑑] and 𝑦𝑖 = [𝑦1, … , 𝑦𝑑] and 

corresponding velocities of 𝑣𝑖 = [𝑣1, … , 𝑣𝑑]. 

Male Movement 

Each mayfly modifies its position to achieve both its own 

best position or𝑝𝑏𝑒𝑠𝑡 , and the best position achieved by its 

neighbours𝑔𝑏𝑒𝑠𝑡, which has been described as follows. 

𝑥𝑖𝑗
𝑡+1 = 𝑥𝑖𝑗

𝑡 + 𝑣𝑖
𝑡+1  (24) 

𝑣𝑖𝑗
𝑡+1 = 𝑣𝑖𝑗

𝑡 + 𝑎1𝑒−𝛽𝑟𝑝
2
(𝑝𝑏𝑒𝑠𝑡𝑖𝑗 − 𝑥𝑖𝑗

𝑡 ) + 𝑎2𝑒−𝛽𝑟𝑔
2
(𝑔𝑏𝑒𝑠𝑡𝑖𝑗 − 𝑥𝑖𝑗

𝑡 )

            (25) 

Where, 𝑎1 and 𝑎2 are the global and personal learning 

coefficients, and 𝑥𝑖𝑗
𝑡  and 𝑣𝑖𝑗

𝑡  are the location and velocity of 

agent 𝑖 at dimension 𝑗 and iteration𝑡. The constant coefficient 

is𝛽, and the Cartesian distances 𝑟𝑝 and 𝑟𝑔 stand for personal 

and global distances, respectively. The formula for the best 

mayfly’s velocity is𝑣𝑖𝑗
𝑡+1 = 𝑣𝑖𝑗

𝑡 + 𝑑 ∗ 𝑟. Where 𝑑 is the 

nuptial dance coefficient and 𝑟 is the random value between 

[-1, 1]. 
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Female Movement 

A female mayfly updates its location using the following 

formula based on the Cartesian distance between itself and 

the males. 

𝑦𝑖𝑗
𝑡+1 = 𝑦𝑖𝑗

𝑡 + 𝑣𝑖
𝑡+1            (26) 

𝑣𝑖
𝑡+1 = {

𝑣𝑖𝑗
𝑡 + 𝑎2𝑒−𝛽𝑟𝑚𝑓

2
(𝑥𝑖𝑗

𝑡 − 𝑦𝑖𝑗
𝑡 ) 𝑖𝑓 𝑓(𝑦𝑖) > 𝑓(𝑥𝑖)

𝑣𝑖𝑗
𝑡 + 𝑓𝑙 ∗ 𝑟 𝑖𝑓 𝑓(𝑦𝑖) ≤ 𝑓(𝑥𝑖)

    (27) 

Where, 𝑎2 is a positive attraction coefficient and 𝑦𝑖𝑗
𝑡  and 

𝑣𝑖𝑗
𝑡  represent the position and motion of female 𝑖 at dimension 

𝑗 and iteration 𝑡, respectively. As opposed to this, 𝑓𝑙 is a 

random coefficient, 𝑟𝑚𝑓  is the Cartesian distance between 

males and females, and 𝛽 is a fixed coefficient. 

Mayfly Mating 

Male and female will mate and produce two springs. The 

equation is shown in the following format. 

𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔1 = 𝐿 ∗ 𝑚𝑎𝑙𝑒 + (1 − 𝐿) ∗ 𝑓𝑒𝑚𝑎𝑙𝑒

𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔2 = 𝐿 ∗ 𝑓𝑒𝑚𝑎𝑙𝑒 + (1 − 𝐿) ∗ 𝑚𝑎𝑙𝑒
        (28) 

Where the male is a parent, and the female is a parent, 𝐿 

is a random number. The male population will gain one 

offspring, while the female population will gain the other 

offspring. Accordingly, the initial velocities of the offspring 

will be zero. Male and female candidates may be chosen at 

random or according to fitness. 

Update Solutions 

The worst solutions are swapped out for the best brand-

new ones, and then𝑔𝑏𝑒𝑠𝑡, 𝑝𝑏𝑒𝑠𝑡 are updated. Until the stop 

criteria are satisfied, the previous processes are repeated. 

However, the Gauss distribution with an arbitrary 

statistic is denoted as 𝐿 in Equation (24). In contrast, the 

tuning of the mayfly optimization initially suffers, but a 

weighted parameter is also included to increase this progress 

efficiency. In this case, the MO enhances the approximatively 

FO derivative models and finally addresses the multi-
objective issues. 

4.3. Generalization Process 

Fractional calculus is identified with advantages of such 

kinds and it can be considered as a generalization of method 

to describe the characteristics, including integer-order values. 

To ensure convergence of the cost function and parameter 

values generalization of the model, selecting the appropriate 

batch size is crucial. There has been some research on how to 

decide, but there is no agreement. The study employs a 

hyperparameter search in practice, and the objective is to 

experiment with the hyperparameters to discover parameter 
values that minimize a cost function. Also, it was suggested 

in this study that the Simulated Annealing (SA) technique be 

improved to find the best hyperparameters with unique target 

values. The effectiveness and dependability of the produced 

model’s final verification demonstrate the fractional-order 

optimizer’s controllability. 

4.3.1. Simulated Annealing 
Simulated Annealing (SA) is a probabilistic 

implementation of the Metropolis algorithm that accepts non-

improving movements. In a single-objective SA, the 

neighbourhood of the present solution 𝑋, which is defined as 

all the solutions that can be reached by a single move from 𝑋, 

is used to select a new solution, 𝑋′. The representation chosen 

to encode a workable solution determines the moves that can 

be made in a SA. The problem domain, on the other hand, has 

a significant impact on solution representation. For a 

minimization issue, 𝑋′ is allowed if its objective function 

value is less than 𝑋. If 𝑋′ is worse than 𝑋, it is accepted with 

a probability 𝑝𝑎𝑐𝑐 , grounded on the objective function’s 

worsening amount and the system’s current temperature and 

is calculated as follows: 𝑝𝑎𝑐𝑐 = 𝑚𝑖𝑛{1, 𝑒𝑥𝑝(− ∆𝐹 𝑇𝑐𝑢𝑟⁄ )}. 

Where ∆𝐹 is the objective function’s worsening amount and 

𝑇𝑐𝑢𝑟 is the system’s current temperature. 

Simulated annealing prevents the Particles, in this case, 
from becoming stuck in regionally optimal solutions. It uses 

a probabilistic method, where the algorithm initially allows 

the particles to accept sub-optimal solutions with a high 

likelihood, assisting them in leaving local optimum locations 

(minimums or maximums, depending on the nature of the 

problem). The algorithm will gradually reduce the likelihood 

of accepting less-than-ideal solutions. The local best solution 

and the global best solution, in addition to the Simulated 

Annealing acceptance criteria, will still influence the 

particles’ velocity and direction. The Simulated Annealing 

acceptance criterion will be applied to the particle’s local best 
solution. The simulated annealing algorithm for the 

suggested method is illustrated in Table 1 below. 

Table 1. Simulated annealing algorithm 

Algorithm 1: Simulated Annealing-Based Acceptance 

Criteria 

Input: Initial solution, initial position, initial metric, 

maximum number of iteration 
Output: The best solution 

if current Metric>previous Metric then 

previous metric = current metric 

previous position = current position 

if current Metric > local Best Metric, then 

local Best Metric = current Metric 

local Best Position = Current Position 

end 

else 

random number = Get a random number between 0 and 1 

metric Difference = current metric – previous metric 

threshold = 𝑒𝛽∗𝑚𝑒𝑡𝑟𝑖𝑐𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑇⁄  
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if the random Number < threshold, then 

previous position = current position 

previous metric = current metric 

end 

end 

if epoch 𝑚𝑜𝑑 𝑘 == 0 then 

𝑇 = 𝛼 ∗ 𝑇 
end 

In method 1, “𝑇” stands for the present “temperature,” 

which estimates the likelihood that less-than-ideal solutions 

will be accepted. The acceptance probability will decrease as 

the temperature drops after 𝑘 epochs. The scaling factor for 

the temperature is 𝛼, and the user-adjustable normalizing 

constant is 𝛽, with a default value of 1.3. 

The error rate is an objective that the SA algorithm takes 
into account in this study, and it only accepts a new solution 

𝑋′ if it is superior to the current answer 𝑋 in terms of this 

single objective value. The SA chooses the option with the 

fewer FLOPs, even if 𝑋 and 𝑋′ have the same error rate. In 

“Local Moves,” the composite motion produced 𝑋′ is 
defined. Use a real-time initial temperature selection 

approach to define𝑇𝑖𝑛𝑖𝑡 . This method does not calculate 𝑝𝑎𝑐𝑐  

using the equation𝑝𝑎𝑐𝑐 = 𝑚𝑖𝑛{1, 𝑒𝑥𝑝(− ∆𝐹 𝑇𝑐𝑢𝑟⁄ )}. The 
acceptance of the worsening moves is specified as having a 

predetermined beginning probability value, which is advised 

to be 0.5. Where, ∆𝐹𝑎𝑣𝑒 is the average deteriorating penalty 

amount determined by carrying out a brief “burn-in” phase 

and is then used to calculate 𝑇𝑖𝑛𝑖𝑡  as −(∆𝐹𝑎𝑣𝑒 (𝑙𝑛(𝑝𝑎𝑐𝑐))⁄ ). 

𝑇𝑓𝑖𝑛𝑎𝑙  is defined using a similar real-time temperature 

adjustment method. The SA stopping criterion in this study is 

specified by the total iteration budget, and the number of 

inner and outer iterations is determined by the cooling 

strategy and this iteration budget. However, each position 

vector component is considered as a value for a hyper-

parameter of a particular method while evaluating the particle 

position. 

4.4. Comparison of Proposed Method with Existing Models 

The proposed Charef rational approximation method for 
fractional-order systems offers distinct advantages over 

existing models, particularly in enhancing time response 

accuracy and stability. Unlike traditional integer-order 

models, which can struggle with the complexities of 

fractional dynamics, the Charef method employs a pole and 

zero model that allows for greater flexibility in system 

representation, with poles that are not constrained by the 

order of the integrator. This flexibility enables better 

alignment with real-world system behaviours, especially 

when combined with optimization techniques like the Mayfly 

Optimization Algorithm (MOA), which further refines the 
time responses of FMINCON-based fractional-order 

derivative models. Compared to other fractional-order 

modelling approaches, the proposed method demonstrates 

superior performance in approximating system dynamics, as 

evidenced by numerical examples highlighting its broad 

applicability and acceptable accuracy, making it a valuable 

tool for engineers and researchers in various fields. The 

proposed Charef rational approximation model can be 

applied in real-world scenarios, such as optimizing 
temperature control in chemical reactors, leading to improved 

response times and stability. In robotics, it enhances motion 

control for robotic arms, enabling smoother and more precise 

trajectory tracking. These case studies demonstrate the 

model’s effectiveness in practical applications by providing 

superior time response accuracy and adaptability in complex 

systems. 

4.4.1. Limitations of the Current Study 

The current study utilizing the Charef Approximation 

Method for fractional-order system models, in conjunction 

with the hybrid FMINCON-Mayfly Optimization Algorithm, 

has certain limitations. While the approach demonstrates 
effectiveness across various applications, it may not fully 

capture the complexities of highly nonlinear systems or 

varying dynamic conditions, which could affect performance. 

Additionally, the reliance on numerical examples limits the 

generalizability of the findings; further validation through 

experimental studies is necessary. Lastly, the computational 

efficiency of the proposed method, particularly in real-time 

applications, warrants further exploration to determine its 

practicality in dynamic environments. 

5. Experimentation and Results Discussion 
A fractional order transfer function with MOA-based 

FOPID control is made using MATLAB software. This 

Matlab model includes the magnetizing inductor. This model 

for the suggested MOA-FOPID control consists of a voltage 

control loop based on MA at the external and a current control 

loop based on FOPID at the internal. For the specified output 

power and input voltage, 50 kHz is chosen as the switching 

frequency to fulfil the resonant converter’s functions.  

The converter operates with an input voltage of 100 volts 

DC and an output voltage kept at a level close to 5 volts DC. 

Harmonic distortions and power factors are not considered 

because the suggested method’s input operates in DC. Table 

2 depicts the simulation system configuration for the 

proposed work. 

Table 2. Simulation system configuration 

MATLAB Version R2021a 

Operation System Windows 10 Home 

Memory Capacity 6GB DDR3 

Processor Intel Core i5 @ 3.5GHz 

Simulation Time 10.190 seconds 
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The relevant converters’ input and output requirements 

are specifically considered. It has been evaluated as a 

standard value. These converters function at maximum 

efficiency. The details of the parameter values, components, 

and units will be utilized in the proposed converter. The 

MOA procedure is simulated using a MATLAB script, which 
starts with 100 mayflies (as Nm=100).  

The dimension of the position vector changes at each 

time step as a result of this algorithm’s determination of the 

duty ratio value. Every repetition includes a 0.01-second 

pause. Using random vectors produced by the Gauss 

distribution G, the location vectors are updated. Using the 

results of simulations, the frequency response and the time 

response produced by the approximation approaches have 

then been compared. Numerical examples are provided to 

demonstrate the method’s broad application and to 

demonstrate the acceptable accuracy for approximations. 

5.1. Numerical Examples for Charef Approximation 
Example 1: Let’s use the following transfer function as 

the first example. 

𝐺(𝑠) =
(5𝑠+1)0.5

(47𝑠+1)0.5          (29) 

The aforementioned transfer function’s approximation 

will be constructed for a pulsation range of 10-3 [sec-1], with 

a maximum error ∆= 1 [dB]. 

∃𝑛𝛼 = 0 … 𝑁𝛼, ∃𝑛𝛽 = 0 … 𝑁𝛽:𝑧𝑛𝛼 = 𝑧𝑛𝛽⋁𝑝𝑛𝛼 = 𝑝𝑛𝛽   (30) 

Calculate the order of the two components of the 

approximation using this equation; in other words, 𝑁𝛼 = 5, 

𝑁𝛽 = 6. 

 
Fig. 3 Exact bode magnitude plot for the transfer function 

Figure 3 depicts the precise Bode magnitude plots for the 

plant described by (29), respectively. These plots were 

created using MATLAB/SIMULINK. However, the Bode 

magnitude plots are exact and approximated, as illustrated in 

Figure 4. 

 
Fig. 4 Exact and approximated bode magnitude plots for the transfer 

function 

The largest error in the approximation (∆𝑠) for this 
situation is less than 0.06 [dB]. Looking at the graphs in 

Figure 4, it can be concluded that the approximation is 

accurate, and its maximum error is not more than 0.06 [dB]. 

This error is much smaller than the maximum estimated error. 

The maximum value of the approximation error ∆𝑠 (ω) in this 

case is 1.3 [dB]. After comparing these results, the 

cancellation poles or zeros in the proposed approximation 

affect its performance negatively. 

 
Fig. 5 Bode diagrams of the original and reduced-order fopid 

controllers 

Figure 5 displays the Bode diagrams of the original and 

simplified control systems, showing very similar behaviours 

in the relevant frequency range. To highlight the benefits of 
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the suggested FOPID controller, a PID controller is also 

designed using the same approach. The system’s frequency 

response where the desired phase margin 𝜑𝑑 ≈ 60° can be 

corroborated 

 
Fig. 6 Zero-frequency exponential distribution graph 

Figure 6 illustrates the distribution of zero-frequency 

exponential distribution for overtime, which closely 
resembles an exponential distribution. In this context, the 

single parameter ‘l’ represents the mean value, with l being 

1.095. The Lg values for 0.2, 0.6, 1, and 1.4 demonstrate a 

good match between the exponential distribution and the 

measured frequency of overtime hours. Consequently, an 

exponential distribution can be used to describe overtime 

duration, with the average overtime duration being the only 

parameter to consider.  

 
Fig. 7 Pole frequency exponential distribution graph 

In Figure 7, the pole frequency exponential distribution 

graph is depicted. When σ is set to 1.25, the two poles are 

extremely close, rendering the dominant pole approximation 

invalid, as the precise response (magenta) does not align with 

the approximations featuring a first-order pole dominating 

(red and blue lines). The step response for this scenario 

exhibits a distinct time scale compared to the previous two 

cases. When σ is 10, the complex poles dominate, causing the 
system to behave approximately like a second-order system. 

The real pole (associated with the swift part of the response) 

can be disregarded in this scenario. 

 
Fig. 8 Phase frequency characteristics curve 

In Figure 8, the phase frequency characteristics curve of 

the proposed work is displayed. This figure illustrates the 

vibration response and phase attributes at various mode 

frequencies, with the sense mode set to 5000. A notable 

observation is that when the two-mode frequencies align, the 

vibratory response of the sense mode reaches its peak, while 

the phase delay also experiences a significant shift. 

 
Fig. 9 Ordered-frequency characteristics curve 



Sanjay Ambadas Patil & Uday Pandit Khot / IJECE, 11(10), 186-201, 2024 

 

197 

The Ordered-Frequency Characteristics Curve of the 

proposed work is presented in Figure 9. It is measured for the 

𝜇 values of 0.1, 0.3, 0.5, 0.7, and 0.7. Selecting the control 

gain value 𝑝 = −0.05, the frequency amplitude curve that by 

adjusting different time delays, a better control effect can be 
obtained, and the peak value of the response can be 

significantly reduced 

 
Fig. 10 Closed-loop step response of fractional order transfer function 

In Figure 10, the closed-loop step response of the PID 

converter transfer function with a controller is shown. The 

effectiveness of the proposed structure in regulating output 

voltage in buck converters can be corroborated. Response 

velocity can be characterized by its time-related performance 

parameters rise time 𝑡𝑟 = 8.75µ𝑠, peak time 𝑡𝑟 = 21.29µ𝑠 

and settling time 𝑡𝑠 = 74.17 µ𝑠, respectively. 

 
Fig. 11 Magnitude response graph for the proposed method 

Figure 11 reveals the magnitude of the response to the 

proposed methodology. The roll-off rate is the rate of change 

of the output of the filter versus frequency. It is expressed as 

a loss per decade or octave, a two-time increase in frequency. 

The magnitude response for the MOA reveals the best 

performance value and achieves optimal results. 

 
Fig. 12 Frequency responses of PID controller 

 
Figure 12 shows the Frequency Responses graph for the 

proposed controller. The parameters provide a frequency 

response comparable to the one of the PID in the range 10 ÷
1000 𝑟𝑎𝑑/𝑠, but with different magnitude slopes and 

asymptotic phase values outside this range. 

 
Fig. 13 Cost function for the proposed work 

Figure 13 shows the output plot for the cost function of 

the work. In which the plot is produced between several 

iterations and the cost. From the graph, there is a constant 

decrement in cost for the increased no. of iterations 

corresponding to the number of iterations being 2000, and it 

measures the cost function value as approximately equal to 

0.1, respectively. 
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Table 3. Performance values of the proposed method 

Parameters Values 

Zero-Frequency Exponential 

Distribution 
21 

Pole Frequency Exponential Distribution 21.5 

Phase Frequency 9.8 

Ordered-Frequency 9.7 

Step Response 0.98 

Magnitude Response 1.73 

Frequency Responses 0.2 

Cost Function 0.6 
 

Table 3 reveals the performance values for the proposed 

work, which consist of zero and pole-frequency exponential 
distribution values of 21 and 21.5. However, phase and 

ordered frequency values are 9.8 and 9.7. The step response, 

magnitude response and frequency responses are 0.98, 1.73 

and 0.2, and the cost function values for the proposed work 

are 0.6, respectively. 

 
Fig. 14 Comparative step response of fractional-order transfer 

function 

The comparative step response of the proposed MOA 

algorithm is compared with the existing three models 

provided in Figure 14. The comparison methods are GDO-

MSBL, ALO, and MM methods, respectively. The 

performance of the proposed DE approach with model 

reduction allows a very competitive level of performance 

when compared to the ALO method. Obviously, the order 

reduction implies a loss of performance, but the accuracy of 

the MOA algorithm permits maintaining a good 

approximation, respectively. Table 4 reveals the comparison 
table for step response; it contains the proposed method 

values along with the existing GDO-MSBL, ALO, and MM 

Methods. While compared to these existing methods, the 

proposed method produces higher performance value. 

However, the step response for the proposed method is 49.98; 

accordingly, the other existing method produces lower values 

than this method, which are 49.2, 49.64, and 49.7, 

respectively. 

Table 4. Comparison table for step response 

T (s) 

Techniques 20 40 60 80 100 

GDO-

MSBL 
21.9 35.75 40.64 46.08 49.2 

ALO 22.1 35.8 40.7 46.1 49.64 

MM 

Method 
22.4 36 40.9 46.3 49.7 

Proposed 

MOA 
22.5 36.1 41 46.4 49.98 

 

 
Fig. 15 Comparison graph of efficiency for different loads 

Figure 15 shows the efficiency comparisons against 

different load percentages. This graph indicates the efficiency 

drop when there is a variation in the load that crosses the 

control limit of the corresponding controllers. The Dual PI 

control can able to achieve high-efficiency load only. 

Whereas, in DFO and PI control models, it outperforms the 

best Dual PI work. The control range of the MOA-FOPID 

converter can be evaluated with the help of input inductor 
value and is evaluated particularly for input and output 

parameters within their specific range. In MOA-FOPID 

control, it executed that the performance can be much better 

than both the conventional works with linear steadiness and 

also greater efficiency over the load variations. 

Table 5. Comparison table for efficiency 

Load (%) 

Techniques 20 40 60 80 100 

Dual PI Control 33.5 66 80.1 89.6 98.6 

DFO+PI 81 90 92.5 94 97.5 

Proposed 

(MOA-FOPID) 
85.8 92.1 95.9 96 99.4 
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Table 5 showcases the comparison results for efficiency, 

featuring the proposed method alongside the established Dual 

PI Control and DFO-PI techniques. The proposed method 

outperforms the others, boasting an efficiency of 99.4%. In 

contrast, the existing methods exhibit lower efficiencies of 

98.65% (Dual PI Control) and 97.5% (DFO-PI), respectively. 

 
Fig. 16 Convergence comparison graph (integral squared error) 

Figure 16 showcases the comparison results for the 

convergence diagram, featuring the proposed Fmincon-MOA 

algorithm versus the existing Fmincon-PS algorithm. The 

optimization problem’s progression towards the optimal 

solution is visualized through this convergence graph. As 

depicted in Figure 16, the MOA-based FOPID algorithm 

initially exhibits a notably faster convergence rate than the 

hybrid Fmincon pattern search algorithm. Compared to the 

proposed fmincon MOA algorithm and a hybrid Fmincon 
pattern search algorithm, the fmincon MOA algorithm 

achieves a 38% reduction in average error at iteration 200. 

This significant improvement has the potential to enhance the 

convergence rate substantially. 

Table 6. Comparison results for convergence graph 

Iterations 

Techniques 50 100 150 200 500 

Fmincon 

PSA 
560 523 520 500 507 

Proposed 

(Fmincon 

MOA) 

400 344 284 250 257 

 

Table 6 compares convergence graphs, highlighting that 

the proposed method achieves a lower error rate. Specifically, 

it records errors of 344 (iteration 100) and 257 (iteration 500). 

In contrast, the existing Fmincon PSA method yields higher 

error values of 523 (iteration 100) and 507 (iteration 500). 

This demonstrates that the proposed method delivers a more 
enhanced performance by exhibiting a reduced error rate 

compared to existing techniques. 

6. Research Conclusion 
In recent years, fractional calculus has gained 

prominence due to its applications in solving various 

engineering problems. This work focuses on analyzing a 

rational approximation of the infinite-dimensional 
Fractional-Order System (FOS) using the Charef 

approximation method. The FMINCON-based Mayfly 

Optimization algorithm is employed to improve approximate 

FO derivative models to enhance controller performance. The 

study also examines the Simulated Annealing (SA) algorithm 

for determining optimal hyperparameters with custom target 

values. The proposed fractional-order optimizer 

demonstrates effective controllability. The results of the 

improved approximate FO model obtained using FMINCON-

MOA are compared with those of approximate Fmincon PSA 

models for popular FO approximation methods. MATLAB 
software is utilized for the optimization process. The derived 

mathematical model is implemented in a program based on 

the required algorithm. The simulation results validate the 

magnitude response efficiency and stability of the proposed 

different order FO, surpassing some recently published 

research papers. To clarify the study and results, the paper 

presents the details of the proposed FMINCON-MOA 

method as an example. The proposed method is compared 

with other existing techniques like GDO-MSBL, ALO, 

 MM, and dual PI Controllers. Comparisons of time and 

frequency responses confirm that the proposed method has 

successfully improved time responses without affecting the 
frequency response negatively. The study also compares the 

performance of the approximation obtained using the 

optimization technique with the ideal frequency response of 

the system under consideration. The results of the trials show 

that the FOPID parameters are optimized with the support of 

the modified Mayfly algorithm. This regulating system 

enhances dynamic performance compared to other well-

known particle search techniques, resulting in improved 

system performance by reducing undesired elements at 

specific frequencies and obtaining the desired response faster 

than another existing method.
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