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Abstract - Malware detection is a central aspect of cyber security that includes detecting and mitigating malicious software, 

often called malware, that can compromise the safety and integrity of a computer system. Different malware detection techniques 

are used, such as Machine Learning (ML), signature-based detection, and behavioural analysis. Cutting-edge ML models are 

widely applied for malware detection. These techniques analyze large datasets to detect features and patterns related to 

malicious behaviours. Supervised learning trains models on labelled datasets, while unsupervised learning can identify 

anomalies in system behaviours without predefined labels. Deep Learning (DL)-based malware detection improves the 

capability to identify polymorphic and sophisticated risks and promotes a more adaptive proactive cyber security system. This 

study introduces Malware Recognition and Classification using the Tuna Swarm Optimization-based Feature Selection with DL 

(MRC-TSOFSDL) approach. In the MRC-TSOFSDL approach, the feature subset selection process is accomplished using the 

TSO model. The Stacked Sparse Autoencoder (SSAE) method is used to recognise malware automatically. Chimp optimization 

Algorithm (ChoA) based on a hyperparameter tuning process is utilized to improve the malware detection outcomes of the SSAE 
model. The performance analysis of the MRC-TSOFSDL method is examined under a malware dataset. The comparative results 

of the MRC-TSOFSDL technique demonstrated a maximum accuracy value of 98.65% over existing models. 

Keywords - Malware detection, Cybersecurity, Deep Learning, Tuna Swarm Optimization, Feature selection. 

1. Introduction 
The Internet plays a significant role in data transfer 

among various nodes. It comprises many devices, networks, 

and computers [1]. Accordingly, the Internet has become the 
objective of cybercriminals. Examples of cyber-attacks are 

malware, spam, and phishing. Malware is categorized as a 

primary security attack in cyberspace. Malware defines the 

integration of 'mal' from 'malicious' and 'ware' from 'software'. 

It is a code element privately implanted into a computer 

network or system maliciously intended to disturb the normal 

flow of events [2]. According to its functionality, malware can 

be rarely categorized into Trojan horses, worms, and viruses. 

Cybercriminals employ different obfuscation techniques for 

producing malware variants. These techniques include 

malicious challenges into binary and textual information that 
malware detectors determine the complexity for interpretation 

and detection [3].  

 

The malicious pattern can be located within a software 

application or data file. These software applications can 

involve various platforms like Android, Linux, and Windows. 

Malware detection research employing ML is developing in 

popularity because it is a practical approach that could 

produce a higher level of detection accuracy [4]. A few earlier 

studies employed ML methods that will help make decisions 

once they learn from the data patterns. ML defines the 

abstraction of decreasing human involvement in 

computational systems [5]. ML predicts the decisions with the 

help of computer learning techniques and involvements or 

prior data [6]. 
 

The unsupervised and supervised learning techniques are 

employed to examine the features and monitor the model. In 

both scenarios, the machine could be learned to differentiate 

between benign and malicious activities. During the 

supervised learning, the ML method was provided with the 

input and targets and also learned to constantly the regular 

activities with the "normal" classes relate and relate real 

malware patterns with their respective "malware" types [7]. 

The training method is frequent until the technique learns to 

anticipate each sample appropriately. Several ML techniques 
are employed to design malware detection methods [8]. 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Unsupervised learning techniques offer inputs without any 

objectives, and the ML technique will learn to differentiate 

between benign and malware instances. 

 

Moreover, a few researches combined the unsupervised 

and supervised learning methods [9]. Malware detection is a 
significant security aspect that has a robust relationship with 

an organization's reputation and economic and legal issues. 

The DL technique is utilized to create and fix detection 

mechanisms to better resolve several difficulties with 

identifying the malware [10]. 

 

This study introduces Malware Recognition and 

Classification using the Tuna Swarm Optimization-based 

Feature Selection with DL (MRC-TSOFSDL) approach. In 

the MRC-TSOFSDL approach, the feature subset selection 

process is accomplished using the TSO model. The Stacked 

Sparse Autoencoder (SSAE) method is used to automate the 
recognition of malware. Chimp optimization Algorithm 

(ChoA) based on a hyperparameter tuning process is utilized 

to improve the malware detection outcomes of the SSAE 

model. The performance analysis of the MRC-TSOFSDL 

method is examined under a malware dataset. The key 

contribution of the MRC-TSOFSDL technique is listed below. 

 The MRC-TSOFSDL model utilizes the TSO technique 

to enhance Feature Selection (FS) in the malware 

recognition process, confirming that the most relevant 

features are prioritized. This optimization method 

improves the overall accuracy of malware detection. By 
effectually choosing features, the methodology mitigates 

computational complexity while maintaining high 

performance. 

 The MRC-TSOFSDL methodology employs the SSAE 

approach to automate the recognition and identification of 

malware, enabling the effective processing of complex 

data. This model improves the capability to detect subtle 

patterns indicative of malicious behaviour. Utilizing DL 

enhances accuracy and mitigates the time needed for 

manual analysis. 

 The MRC-TSOFSDL model incorporates ChoA for 
hyperparameter tuning, which substantially improves the 

accomplishment of the SSAE model. This optimization 

confirms that the model operates at its best, adapting to 

the complexities of the data. By fine-tuning parameters 

effectively, the methodology achieves enhanced detection 

outcomes in malware classification. 

 The MRC-TSOFSDL approach incorporates TSO for FS 

with advanced AE architectures and optimization 

techniques, creating a more effectual and efficient 

framework for malware detection. The novelty is 

integrating these diverse methodologies, which 

concurrently improves feature relevance and model 
performance. This overall strategy allows for better 

handling of intrinsic data patterns, setting it apart from 

conventional malware detection methods. 

2. Literature Survey 
Borra et al. [11] presented the Optimized Email 

Classification Network (OEC-Net) architecture. This 

technique integrates a Principal Component Analysis (PCA) 

method for extraction. The OEC-Net employs compelling 

features of PSO to combine a DL Convolutional Neural 

Networks (DLCNNs) method for classification. In [12], an 

innovative DEEPSEL (Deep FS) method was introduced, a 

DL-based method for recognizing malware and malicious 

programs. DEEPSEL utilizes a group of aspects to describe 

the Android version and categorizes them as authentic and 

malevolent. The deployment of PSO was considered to 

significantly impact executing FS. In [13], a higher-
performance malware detection method employing DL and FS 

techniques has been presented. Two diverse malware datasets 

could be used to identify and differentiate the malware from 

benign activities. The databases were pre-processed, followed 

by correlation-based FS, which was implemented to generate 

various FS datasets. The dense and Long Short-Term Memory 

(LSTM)-based DL methods were trained by employing 

several FS databases. 

 

In [14], a Deep Hashing (DH)-based malware classifying 

method was developed that comprises two parts: ResNet50-
based DH for malware classification. Numerous DH methods 

have been presented, such as extracting the higher-layer 

outputs at the ResNet50. Likewise, a ResNet50-based Deep 

Polarized Network (RNDPN) was developed for returning 

similar samples to Top K. In the secondary portion, a 

Hamming-distance- and majority-based voting could be 

developed for malware recognition based on the retrieved 

outcomes. Akhtar and Feng [15] employed a hybrid DL 

method, such as the CNN-LSTM method. A revolutionary DL 

method was introduced. 

 

Consequently, automated extraction of higher-level 
representations and abstractions supports the malware 

classification method. Mokkapati and Dasari [16] employ the 

ANN-assisted Intellectual Non-Dependent FS Method (ANN-

INDFSM) technique. The ANN-based FS technique has been 

utilized to remove non-salient features and find 

dimensionality ranges. Numerous techniques are employed 

for FS and extraction. The effectiveness of the ML method 

could be enhanced by eliminating redundant and unnecessary 

features. 

 

Qamar [17] presented new methods in cyber safety 
prevention related to Electronic Health Records (EHR) in FS 

and classification employing DL techniques. The input EHR 

data was handled to remove noise and eliminate null values. 

The processed data was chosen based on their aspects using a 

kernel-assisted gradient. Rahima Manzil and Naik [18] 

introduce a Hamming distance-based FS methodology. The 

model also utilizes a Python tool. Fiza et al. [19] propose a 

model using an Improved COA (ICOA) for FS and a Deep 

Neural Network Framework (DNNF). Polatidis et al. [20] 
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proposed an effective FS model. A pre-processing approach is 

presented to choose optimal features, confirming high 

accuracy in malware detection. 

 

Chaganti, Ravi, and Pham [21] present the DL CNN 

method using a fusion feature set model. Mittal and Pandian 
[22] aim to evaluate the efficiency of ML and DL techniques, 

specifically CNN and RNN. Ravi and Alazab [23] incorporate 

a multi-head attention mechanism and a CNN model. 

Akuthota and Bhargava [24] propose a unique technique 

incorporating ensemble feature extraction methods with 

LSTM networks. Shaukat, Luo, and Varadharajan [25] 

introduce a DL model for malware detection, which extracts 

deep features with a fine-tuned model and utilizes SVM for 

detection, minimizing the requirement for feature engineering 

and domain knowledge. Kumar, Janet, and Neelakantan [26] 

present an Intelligent Malware Classification Method 

(IMCNN) that utilizes deep CNNs. The technique also utilizes 
pre-trained models, namely VGG16, VGG19, InceptionV3, 

and ResNet50 and visualizes malware as grayscale images. 

Features are extracted using ReLU, PCA, and SVD, with k-

NN, Random Forest (RF), and SVM. Jebin Bose and 

Kalaiselvi [27] employ the Metaheuristic Artificial Jellyfish 

Search Optimizer (MH-AJSO) and classify malware types 

with the DDResNet101 classifier. The proposed architecture 

uses a feature extraction technique improved by an 

optimization approach to choose key features but may lose 

crucial data, affecting accuracy. DL techniques for malware 

recognition may need help with generalization to new 

variants, while detection models can face scalability issues 

and overlook interactions among features. Furthermore, 

hybrid models integrating diverse architectures might be 

computationally intensive, and static analysis methods may 
miss dynamic ransomware behaviours. Despite enhancements 

in malware detection using DL and FS techniques, many 

models still struggle with generalization to new malware 

variants and often depend on static analysis, which can miss 

dynamic behaviours. Moreover, there is a requirement for 

more effectual approaches that minimize feature engineering 

while maintaining high accuracy and adaptability across 

diverse datasets. Furthermore, existing models may not 

efficiently incorporate various feature extraction techniques to 

improve classification performance comprehensively. 

 

3. The Proposed Method  
This study introduces a novel MRC-TSOFSDL model. 

The technique involves the concept of FS with an optimum 

hyperparameter selection strategy for enhancing the detection 

results of the malware recognition process. It contains three 

significant processes involving TSO-based FS, SSAE-based 

classification, and ChoA-based tuning. Figure 1 establishes 
the complete structure of the MRC-TSOFSDL method.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Overall flow of the MRC-TSOFSDL approach 
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3.1. FS using the TSO Model 

Initially, the MRC-TSOFSDL technique undergoes the 

feature subset selection process using the TSO technique [28]. 

This model is chosen for FS because it can effectively explore 

complex search spaces and detect optimal feature subsets. Its 

biologically inspired approach replicates the cooperative 
behaviour of tuna, resulting in robust solutions that improve 

the model's performance. Compared to other techniques, TSO 

presents greater convergence speed and accuracy, making it 

specifically effective for dynamic datasets in malware 

detection. 

 

Generally, the tuna is said to be a social animal. They 

usually pick the equivalent predation plan based on the 

objective they are searching for. Spiral foraging is the initial 

plan; when tuna serve, they dip into a spiral to capture their 

food in surface water, then attack and hold it. Parabolic 

foraging is the next strategy in which every tuna monitors the 
preceding individual to create an illustrative outline to encircle 

its target. Tuna effectively hunts over the above dual models. 

TSO depends on this normal foraging behaviour, and the 

system follows the simple guidelines below. 

 

3.1.1. Population Initializes 

TSO begins an optimizer procedure by creating the first 

swarm at random uniformly to upgrade the location. 

 

𝑋𝑖𝑛𝑖 = 𝑟𝑎𝑛𝑑 ⋅ (𝑢𝑏 − 𝑙𝑏) + 𝑙𝑏, 𝑖 = 1,2,… , 𝑁𝑃                    (1) 
 

𝑋𝑖𝑛𝑖 denotes the initial populace; 𝑙𝑏 and 𝑢𝑏 signify the 

lower and upper bounds. 

 

3.1.2. Spiral Foraging 

Generally, the tuna hunts their target by creating a fit 

spiral and hunt their target. In addition, they trade data with 

each other. Every tuna monitors the preceding one, so data is 

dispersed among nearby tuna. Depending upon the above 
standards, the formulations of the spiral foraging tactic are 

defined below: 

 

𝑋𝑖
𝑡+1 = {

𝛼1 ⋅ (𝑋𝑏𝑒𝑠𝑡
𝑡 + 𝛽 ⋅ |𝑋𝑏𝑒𝑠𝑖

𝑡 − 𝑋𝑖
𝑡|) + 𝛼2 ⋅ 𝑋𝑖

𝑡, 𝑖 = 1

𝛼1 ⋅ (𝑋𝑏𝑒𝑠𝑡
𝑡 + 𝛽 ⋅ |𝑋𝑏𝑒𝑠𝑖

𝑡 − 𝑋𝑖
𝑡|) + 𝛼2 ⋅ 𝑋𝑖−1

𝑡 , 𝑖 = 2,3,… ,𝑁𝑃
   (2) 

 

𝛼1 = 𝑎 + (1 − 𝑎) ⋅
𝑡

𝑡max
  (3) 

 

𝛼2 = (1 − 𝑎) − (1 − 𝑎) ⋅
𝑡

𝑡max
    (4) 

 

𝛽 = 𝑒𝑏𝑙 ⋅  cos (2𝜋𝑏)       (5) 
 

𝑙 =  exp (3 ⋅  cos ((
𝑡max+1

𝑡
− 1)) ⋅ 𝜋)   (6) 

 

Where 𝛼1 and 𝛼2 signify the co-efficient that manages the 

individual near the optimum and preceding in the chain, 𝑋𝑏𝑒𝑠𝑡
𝑡  

represents the present optimum individual; 𝑎 refers to the 

constant, which is 0.6, 𝑡 and 𝑡max denotes the existing and 

maximum iterations count, correspondingly, 𝑋𝑖
𝑡+1 denotes the 

location of the 𝑖𝑡ℎ individual in the 𝑡 + 1 generation, and 𝑏 

refers to the random number that uniformly spreads from 𝑧𝑒𝑟𝑜 

to 𝑜𝑛𝑒. When an optimal individual finds it hard to locate 

food, it follows the best individual, creating a random 

coordinate as a position for a spiral search.  
 

This allows every individual to find a larger area, 

enabling TSO to traverse the search space effectually. The 

mathematical method is defined as follows: 
𝑋𝑖
𝑡+1

= {
𝛼1 ⋅ (𝑋𝑟𝑎𝑛𝑑

𝑡 + 𝛽 ⋅ |𝑋𝑟𝑎𝑛𝑑
𝑡 − 𝑋𝑖

𝑡|) + 𝛼2 ⋅ 𝑋𝑖
𝑡,  𝑖 = 1

𝛼1 ⋅ (𝑋𝑟𝑎𝑛𝑑
𝑡 + 𝛽 ⋅ |𝑋𝑟𝑎𝑛𝑑

𝑡 − 𝑋𝑖
𝑡|) + 𝛼2 ⋅ 𝑋𝑖−1

𝑡 ,  𝑖 = 2,3, … , 𝑁𝑃
    (7) 

 

Metaheuristics normally execute a wide global search in 

the initial phase, monitored by a gradual change to exact local 

growth. So, as iterations count upsurges, TSO swaps the 

position point from arbitrary to optimum individuals for spiral 

foraging. Overall, the last mathematical method of the spiral 

foraging tactic is defined below: 

𝑋𝑖
𝑡+1 

=

{
 
 

 
 𝛼1 ⋅ (𝑋𝑟𝑎𝑛𝑑

𝑡 + 𝛽 ⋅ |𝑋𝑟𝑎𝑛𝑑
𝑡 − 𝑋𝑖

𝑡|) + 𝛼2 ⋅ 𝑋𝑖
𝑡, 𝑖 = 1

𝛼1 ⋅ (𝑋𝑟𝑎𝑛𝑑
𝑡 + 𝛽 ⋅ |𝑋𝑟𝑎𝑛𝑑

𝑡 − 𝑋𝑖
𝑡|) + 𝛼2 ⋅ 𝑋𝑖−1

𝑡 , 𝑖 = 2,3,… ,𝑁𝑃
, 𝑖𝑓 𝑟𝑎𝑛𝑑 <

𝑡

𝑡max

𝛼1 ⋅ (𝑋𝑏𝑒𝑠𝑡
𝑡 + 𝛽 ⋅ |𝑋𝑏𝑒𝑠𝑡

𝑡 − 𝑋𝑖
𝑡|) + 𝛼2 ⋅ 𝑋𝑖

𝑡, 𝑖 = 1

𝛼1 ⋅ (𝑋𝑏𝑒𝑠𝑡
𝑡 + 𝛽 ⋅ |𝑋𝑏𝑒𝑠𝑡

𝑡 − 𝑋𝑖
𝑡|) + 𝛼2 ⋅ 𝑋𝑖−1

𝑡 , 𝑖 = 2,3, … , 𝑁𝑃
, 𝑖𝑓 𝑟𝑎𝑛𝑑 ≥

𝑡

𝑡max

    (8) 

3.1.3. Parabolic Foraging 

Additionally, tuna generate a parabolic cooperative 

feeding creation to feed over a spiral creation. The tuna is 

served in a parabolic outline utilizing prey as a position point. 

Also, the tuna can search for prey by watching everywhere. 

Let's consider that the selection probability is 50 percent, and 

both models have been performed simultaneously. Tuna hunt 

coactively over these two foraging tactics and then discover 
their target. 

𝑋𝑖
𝑡+1

= {
𝑋𝑏𝑒𝑠𝑡
𝑡 + 𝑟𝑎𝑛𝑑 ⋅ (𝑋𝑏𝑒𝑠𝑡

𝑡 − 𝑋𝑖
𝑡) + 𝑇𝐹 ⋅ 𝑝2 ⋅ (𝑋𝑏𝑒𝑠𝑡

𝑡 − 𝑋𝑏𝑒𝑠𝑡
𝑡 ), 𝑖𝑓 𝑟𝑎𝑛𝑑 < 0.5

𝑇𝐹 ⋅ 𝑝2 ⋅ 𝑋𝑖
𝑡, 𝑖𝑓 𝑟𝑎𝑛𝑑 ≥ 0.5

  

(9) 

 𝑝 = (1 −
𝑡

𝑡𝑚𝑎𝑥
)
(

𝑡

𝑡max
)

                                      (10) 

 

In this formulation, 𝑇𝐹 denotes the randomly generated 

number within [1, -1]. 
 

3.1.4. Condition of Termination  
The TSO technique constantly upgrades and computes all 

separate tuna until the last condition is detected, giving back 

the equivalent fitness values and best individual.  FS aims to 

enhance classification performance by choosing the best 

optimum feature set [29]. A trimmed database delivers quicker 

training time and better accuracy. So, a Fitness Function (FF) 

is utilized, which fulfils goals such as increasing classification 

accuracy and reducing features. The FS model is deliberated 

in this framework by employing the TSO technique. 
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𝐹 = max (𝐴𝑐𝑐 + 𝑤𝑓 (1 −
𝐹𝑠

𝐹𝑡
))     (11) 

Here, 𝑤𝑓 denotes the weight factor, 𝐴𝑐𝑐 signifies the 

accuracy, 𝐹𝑠 represents the length of nominated features and 

𝐹𝑡 refers to the overall feature number. The weight factor value 

is set nearer to one, representing that both objectives, such as 

feature minimization and accuracy enhancement, are similarly 

considered vital. 

3.2. SSAE-Based Classification Process 

This work applies the SSAE model to recognize and 
identify malware automatically [30]. The SSAE is ideal as it 

learns hierarchical representations, capturing intrinsic patterns 

indicative of malicious behaviour. Its capability to mitigate 

dimensionality while conserving crucial features is significant 

for handling large datasets. The sparsity constraint 

concentrates on relevant features, improving discriminative 

power. Furthermore, the stacked architecture enables more 

profound learning, allowing for better generalization across 

various malware variants and making SSAEs a superior choice 

to conventional methods in accuracy and robustness. An SAE 

is a typical 3-layered artificial neural network (ANN), which 
uses unsupervised learning to acquire input. The compressed 

code captures the reduced dimensions of the raw input, with 

AE serving as an effective feature extractors for DL models. 

Typically, an SAE consists of the decoder 𝜙 and encoder 𝜙 

 

𝜑: 𝑍 = 𝜎(𝑊𝑋 + 𝑏)                                                                 (12) 
 

𝜙:𝑋′ = 𝜎′(𝑊𝑍 + 𝑏′)                                                             (13) 
 

Whereas 𝑅𝑀 refers to the compressed code. 𝜎,𝑊, 𝑏, and 

𝜎’, 𝑊′, 𝑏′ denote the encoding and decoding process's 
corresponding activation function, weight coefficient 

matrices, and bias vector. 𝑍 ∈ 𝑋′ ∈ 𝑅𝑁 denotes the vector of 

reconstruction. 𝑋 ∈ 𝑅𝑁 refers to the input. The SAE converts 

the input 𝑋 into hidden variable 𝑍, and then rebuild 𝑋′ over 

the decoder. So, the optimizer AE trains 𝑊’ and 𝑊. This 

enables the decoder output to closely approximate the original 

input. For an assumed data set 𝑋, the reconstruction error is 

defined below: 

 

𝐿(𝑋, X′) = ‖𝑋, X′‖2 = ‖𝑋 − 𝜎′[𝑊′𝜎(𝑊𝑋+ 𝑏) + 𝑏′]‖2      (14) 

 

The stacked self‐encoder system is an NN that contains 

numerous AE layers that use the prior output of the AE layer 
as an input for the next one. For an assumed training sample 

𝑋(𝑖) set, 𝑖 represents the sample count. The loss function for 

the SAE is stated in the below-mentioned method: 

 

𝐽(𝑊, 𝑏) =
1

𝑚
∑ [

1

2
‖𝜎(𝑊𝑋(𝑖) + 𝑏) − 𝑌(𝑖)‖

2
]𝑚

𝑖=1 +

𝜆

2
∑ ∑ ∑ [𝑊𝑗𝑖

(𝐿)
]
2𝑠𝑙

𝑟

𝑗=1

𝑠𝑙
𝑐

𝑖=1
𝑛−1
𝑙=1         (15) 

 

Here, 𝑚 specifies the total samples, and 𝑌 depicts the 

equivalent 𝑋 label. The 2nd term is the weight reduction 

regularization term, employed to avert overfitting. 𝜆 denotes 

the weight reduction co-efficient, which alters the relative 

weight of the 1st and 2nd term. 𝑊𝑗𝑖
𝑙  signifies the connection 

weight among neurons in dual layers. 𝑠𝑙
𝑟 and 𝑠𝑙

𝑐  represent the 

total neuron count in layer 𝑙. The sparsity factors can be 
attained by inserting terms in Equation (15), and the entire 

feature extractor procedure is improved. Then, the SSAE loss 

function is conveyed as follows: 

 

𝐿𝑠𝑝𝑎𝑟𝑠𝑒(𝑊, 𝑏) = 𝐽(𝑊, 𝑏) + 𝛽∑ 𝐾
𝑠2
𝑗=1 𝐿(𝜌𝜌𝑗)    (16) 

 

𝐾𝐿(𝜌𝜌𝑗) = 𝜌 log 
𝜌

�̂�𝑗
+ (1 − 𝜌)log 

1−𝜌

1−�̂�𝑗
              (17) 

 

While 𝜌 represents the value of mean activation, 𝜌 and 𝛽 
refer to the sparseness and divergence constant, 

correspondingly, and 𝑠2 denotes the number of HL neurons.  
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3.3. Hyperparameter Tuning  

Finally, the ChoA-based hyperparameter tuning 

procedure is accomplished to enhance the malware detection 

outputs of the SSAE method. This model is chosen for its 

effectual balance between searching for new solutions and 

refining existing ones, enabling it to navigate complex 
parameter spaces efficiently. Its unique evolutionary approach 

replicates the behaviour of chimpanzees, resulting in 

enhanced convergence rates and optimal solutions. Compared 

to conventional tuning methodologies, ChoA improves the 

model's performance by systematically refining 

hyperparameters, resulting in more accurate and robust 

malware detection. Figure 2 illustrates the flowchart of ChoA. 

 

This technique appeals to motivation from chimpanzee 
cleverness and breeding behaviour in group hunting [31]. 

Equation (18) signifies the distance (D) between the 

chimpanzee and its target, whereas Equation (19) denotes the 

chimpanzee’s location upgrade formulation; 𝛼𝑝𝑟𝑒𝑦  refers to 

the vector of prey locations and 𝛼𝑐ℎ𝑖𝑚𝑝 signifies the 

chimpanzee's position vector. 

 

𝐷 = |𝐶 ⋅ 𝛼𝑝𝑟𝑒𝑦 −𝑚 ⋅ 𝛼𝑐ℎ𝑖𝑚𝑝|                      (18) 
 

𝛼𝑐ℎ𝑖𝑚𝑝(𝑛 + 1) = |𝛼𝑝𝑟𝑒𝑦 − 𝑎 ⋅ 𝑑|                      (19) 
 

The constant vectors are 𝑚, 𝑐, and 𝑑 and are expressed by 

Equation (20) through (22). 

𝑎 = 2 ⋅ 𝑙 ⋅ 𝑟1 − 1                       (20) 
 

𝑐 = 2 ⋅ 𝑟2                         (21) 
 

𝑚 = 𝑐ℎ𝑎𝑜𝑡𝑖𝑐 𝑣𝑎𝑙𝑢𝑒                        (22) 
 

Whereas 𝑙 denotes a static value that droplets beside a line 

from 2.5 to 0 through the iterations, 𝑟1 and 𝑟2 are said to be 

arbitrary values among (0,1), and 𝑚 signifies the chaotic 

vector. The Attacker, Driver, Chaser, and Barrier (ADCB) are 
the finest results with optimum abilities for arithmetically 

pretending to use this method. 𝐶 denotes the arbitrary variable 

that affects the location of the victim within [0,2] on the 

specific place of chimpanzees (when 𝐶 < 1 and 𝐶 > 1, the 

grade of influence weakens and strengthens, respectively). 

The locations of other chimpanzees in the populace are 

defined by the locations (d) of ADCB and the location upgrade 

Equations (23), (24), (25), and (26). 

 

𝑑𝑎𝑡𝑡𝑎𝑐𝑘 = |𝐶1 ⋅ 𝛼𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 −𝑚1 ⋅ 𝑥𝑛|                     (23) 
 

𝑑𝑏𝑎𝑟𝑟𝑖𝑒𝑟 = |𝐶2 ⋅ 𝛼𝑏𝑎𝑟𝑟𝑖𝑒𝑟 −𝑚2 ⋅ 𝑥𝑛|                     (24) 
 

𝑑𝑐ℎ𝑎𝑠𝑒𝑟 = |𝐶3 ⋅ 𝛼𝑐ℎ𝑎𝑠𝑒𝑟 −𝑚3 ⋅ 𝑥𝑛|                     (25) 
 

𝑑𝑑𝑟𝑖𝑣𝑒𝑟 = |𝐶4 ⋅ 𝛼𝑑𝑟𝑖𝑣𝑒𝑟 −𝑚4 ⋅ 𝑥𝑛|                      (26) 

Where 𝛼 signifies the four chimp positions vector. 

Ensuing this, the chimpanzees' following points 
(𝑥1, 𝑥2, 𝑥3 𝑎𝑛𝑑 𝑥4) are modernized by employing Equation 

(27) through (30): 

𝑥1 = 𝛼𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 − 𝑎1 ⋅ 𝑑𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟                              (27) 
 

𝑥2 = 𝛼𝑏𝑎𝑟𝑟𝑖𝑒𝑟 − 𝑎2 ⋅ 𝑑𝑏𝑎𝑟𝑟𝑖𝑒𝑟                              (28) 
 

𝑥3 = 𝛼𝑐ℎ𝑎𝑠𝑒𝑟 − 𝑎3 ⋅ 𝑑𝑐ℎ𝑎𝑠𝑒𝑟                              (29) 
 

𝑥4 = 𝛼𝑑𝑟𝑖𝑣𝑒𝑟 − 𝑎4 ⋅ 𝑑𝑑𝑟𝑖𝑣𝑒𝑟                               (30) 
 

The positions are updated by utilizing Equation (31): 

𝑥𝑐ℎ𝑖𝑚𝑝 =
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4

4
                             (31) 

 

Then, Equation (32) is executed once the locations are 

updated. 

𝛼𝑐ℎ𝑖𝑚𝑝(𝑛 + 1) = {
𝛼𝑝𝑟𝑒𝑦 − 𝑥 ⋅ 𝑑, ∅ < 0.5

𝑐ℎ𝑎𝑜𝑡𝑖𝑐 , ∅ < 0.5
                         (32) 

 

Fitness selection is a crucial aspect that affects the 

accomplishment of the ChoA technique. The optimization 

process comprises a solution encoding model to evaluate the 

efficiency of potential candidate outputs. Also, the ChoA 
method regards accuracy as the vital principle for projecting 

the FF, which can be expressed below.  
 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  max (𝑃)                             (33) 
 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                   (34) 

 

From the above equation,  𝑇𝑃  and 𝐹𝑃 indicate the 

true and false positive values. 
 

4. Experimental Validation 
The malware detection outputs of the MRC-TSOFSDL 

approach are investigated using a malware database [32] 

comprising 10868 instances with nine classes, as described in 

Table 1. 

Table 1. Dataset specification 

Labels Class Instance Numbers 

C-1 Ramnit 1541 

C-2 Lollipop 2478 

C-3 Kelihos_ver3 2942 

C-4 Vundo 475 

C-5 Simda 42 

C-6 Tracur 751 

C-7 Kelihos_ver1 398 

C-8 Obfuscator.ACY 1228 

C-9 Gatak 1013 

Total Number of Instances 10868 
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Figure 3 depicts the confusion matrices of the MRC-

TSOFSDL method under 80:20 and 70:30 of TRAPH/TESPH. 

The experimentations indicate the improved outcome with 

nine classes. 

 
Fig. 3 Confusion matrices under (a-b) 80:20, and (c-d) 70:30 of 

TRAPH/TESPH. 

Table 2. The malware detection output of the MRC-TSOFSDL 

approach under 80:20 of TRAPH/TESPH 

Labels 𝑨𝒄𝒄𝒖𝒚 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 𝑭𝒔𝒄𝒐𝒓𝒆 MCC 𝑮𝒎𝒆𝒂𝒏 

TRAPH (80%) 

C-1 98.38 93.34 99.23 94.35 93.41 94.35 

C-2 98.48 98.17 98.57 96.69 95.72 96.70 

C-3 97.95 97.98 97.94 96.32 94.93 96.33 

C-4 98.45 75.65 99.51 81.22 80.66 81.45 

C-5 99.67 12.12 100.00 21.62 34.76 34.82 

C-6 98.37 86.98 99.21 88.01 87.14 88.01 

C-7 98.87 81.85 99.51 83.99 83.43 84.02 

C-8 98.73 94.00 99.33 94.29 93.58 94.30 

C-9 98.68 92.95 99.25 92.77 92.04 92.77 

Average 98.62 81.45 99.17 83.25 83.96 84.75 

TESPH (20%) 

C-1 98.80 95.36 99.31 95.36 94.67 95.36 

C-2 98.16 97.67 98.31 96.18 94.98 96.19 

C-3 97.61 96.46 98.01 95.45 93.83 95.45 

C-4 98.44 75.28 99.42 79.76 79.10 79.90 

C-5 99.59 00.00 100.00 00.00 00.00 00.00 

C-6 98.39 86.84 99.26 88.29 87.44 88.31 

C-7 98.85 78.57 99.67 84.08 83.70 84.28 

C-8 98.16 94.64 98.64 92.51 91.49 92.53 

C-9 99.03 94.06 99.59 95.15 94.62 95.16 

Average 98.56 79.88 99.14 80.75 79.98 80.80 

 
Fig. 4 Average of the MRC-TSOFSDL methodology under 80:20 of 

TRAPH/TESPH 

 

Table 3. Malware detection outputs of the MRC-TSOFSDL 

methodology under 70:30 of TRAPH/TESPH 

Labels 𝑨𝒄𝒄𝒖𝒚 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 𝑭𝒔𝒄𝒐𝒓𝒆 MCC 𝑮𝒎𝒆𝒂𝒏 

TRAPH (70%) 

C-1 98.29 94.69 98.88 93.99 93.00 94.00 

C-2 97.75 95.56 98.39 95.04 93.59 95.04 

C-3 98.48 98.27 98.55 97.25 96.20 97.25 

C-4 98.66 80.23 99.53 84.40 83.83 84.52 

C-5 99.66 00.00 100.00 00.00 00.00 00.00 

C-6 97.96 85.16 98.90 85.08 83.99 85.08 

C-7 98.61 79.00 99.36 80.73 80.03 80.75 

C-8 98.32 92.90 99.02 92.69 91.74 92.69 

C-9 98.55 91.17 99.29 91.97 91.18 91.97 

Average 98.48 79.67 99.10 80.13 79.28 80.14 

TESPH (30%) 

C-1 98.47 95.29 99.00 94.68 93.79 94.68 

C-2 97.82 95.82 98.44 95.38 93.96 95.38 

C-3 98.50 98.36 98.54 97.17 96.16 97.18 

C-4 98.68 81.68 99.39 83.27 82.60 83.28 

C-5 99.54 06.25 100.00 11.76 24.94 25.00 

C-6 98.62 89.22 99.34 90.20 89.46 90.20 

C-7 99.02 81.20 99.68 85.59 85.21 85.71 

C-8 98.53 94.08 99.07 93.30 92.47 93.30 

C-9 98.68 92.86 99.32 93.29 92.56 93.29 

Average 98.65 81.64 99.20 82.74 83.46 84.23 

 

A wide-ranging malware detection analysis of the MRC-

TSOFSDL method can be reported with 70:30 of 

TRAPH/TESPH, as shown in Table 3 and Figure 5. The 

experimental values denote the improved malware detection 

outcomes of the MRC-TSOFSDL technique. Based on 70% of 
TRAPH, the MRC-TSOFSDL technique attains average 

𝑎𝑐𝑐𝑢𝑦, 𝑠𝑒𝑛𝑠𝑦 , 𝑠𝑝𝑒𝑐𝑦, 𝐹𝑠𝑐𝑜𝑟𝑒, MCC, and 𝐺𝑚𝑒𝑎𝑛 of 98.48%, 

77.5

82.5

87.5

92.5

97.5

102.5

A
v
g
. 

V
a
lu

e
s 

(%
)

Training Phase (80%) Testing Phase (20%)



V. S. Pavankumar et al. / IJECE, 11(10), 247-257, 2024 
 

254 

79.67%, 99.10%, 80.13%, 79.28%, and 80.14%, respectively. 

Moreover, with 30% of TESPH, the MRC-TSOFSDL 

technique gains average 𝑎𝑐𝑐𝑢𝑦, 𝑠𝑒𝑛𝑠𝑦, 𝑠𝑝𝑒𝑐𝑦, 𝐹𝑠𝑐𝑜𝑟𝑒, MCC, 

and 𝐺𝑚𝑒𝑎𝑛 of 98.65%, 81.64%, 99.20%, 82.74%, 83.46%, and 
84.23%, respectively. 

 

 
Fig. 5 Average of the MRC-TSOFSDL methodology under 70:30 of 

TRAPH/TESPH 

 
The performance of the MRC-TSOFSDL approach with 

70:30 of TRAPH/TESPH is shown in Figure 6 under Training 

Accuracy (TRAA) and Validation Accuracy (VALA). This 

figure illustrates the evaluation of the MRC-TSOFSDL 

technique over various epochs, showing continuous 

improvement in TRAA/VALA and confirming its 

effectiveness.  

The improved results in VALA exhibit the MRC-

TSOFSDL method’s capability to change to the TRA data and 

better classify unseen data precisely, underscoring the robust 

generalization capabilities. 

 
Fig. 6 𝑨𝒄𝒄𝒖𝒚 curve of the MRC-TSOFSDL methodology under 70:30 of 

TRAPH/TESPH 

Figure 7 displays the Training Loss (TRLA) and 

Validation Loss (VALL) outputs of the MRC-TSOFSDL 

approach under 70:30 of TRAPH/TESPH under diverse 

epochs. The steady decrease in TRLA reflects the MRC-

TSOFSDL approach, optimizing weights and minimizing 

errors in TRA/TES data, while the figure highlights its 

efficiency in pattern detection. Significantly, the MRC-

TSOFSDL method continuously improves its parameters in 

lesser discrepancies among the anticipation and real TRA 
classes. 

 
Fig. 7 Loss curve of the MRC-TSOFSDL methodology under 70:30 of 

TRAPH/TESPH 

Figure 8 highlights the enhanced PR values of the MRC-
TSOFSDL technique with 70:30 TRAPH/TESPH. This 

examines the enhanced capabilities of the MRC-TSOFSDL 

technique in detecting diverse classes and displaying 

proficiency in class detection.  

 

Similarly, in Figure 9, the MRC-TSOFSDL technique 

with 70:30 of TRAPH/TESPH exhibited improved ROC 

outputs in categorizing multiple labels.  

It highlights the trade-off between TPR/FRP across 

thresholds and epochs, demonstrating the MRC-TSOFSDL 

approach's improved classifier outputs and effectiveness in 
classification challenges. 

 
Fig. 8 PR curve of the MRC-TSOFSDL methodology under 70:30 of 

TRAPH/TESPH 
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Fig. 9 ROC curve of the MRC-TSOFSDL methodology under 70:30 of 

TRAPH/TESPH 

The 𝑎𝑐𝑐𝑢𝑦 and Computational Time (CT) outputs of the 

MRC-TSOFSDL method compared to recent techniques is 

shown in Table 4 [33]. The 𝑎𝑐𝑐𝑢𝑦 results of the MRC-

TSOFSDL method with recent approaches are exhibited in 

Figure 10. These results indicate that the RBF-SVM, CNN, 

and DLMD methods obtain reduced 𝑎𝑐𝑐𝑢𝑦 values of 93.82%, 

95.62%, and 95.21%, respectively. Although linear SVM and 

MLP methods accomplish closer 𝑎𝑐𝑐𝑢𝑦 values of 96.82% and 

97.18%, the MRC-TSOFSDL technique surpasses the others 

with an increased 𝑎𝑐𝑐𝑢𝑦 of 98.65%. 

Table 4. Accuracy and CT outputs of the MRC-TSOFSDL model with 

other techniques 

Methods Accuracy (%) CT (sec) 

MRC-TSOFSDL 98.65 5.09 

Linear-SVM 96.82 14.23 

RBF-SVM 93.82 12.69 

MLP 97.18 18.2 

CNN 95.62 9.62 

DLMD 95.21 18.42 

 

 
Fig. 10 Accuracy result of the MRC-TSOFSDL model with other techniques 

 

The Computational Time (CT) results of the MRC-

TSOFSDL technique with recent approaches are shown in 

Figure 11. These findings specify that the MLP and DLMD 

models showed increased CT values of 18.2s and 18.42s, 

respectively. However, RBF-SVM, linear SVM, and CNN 

models achieve closer CT values of 12.69s, 14.23s, and 9.62s; 

the MRC-TSOFSDL method is excellent than the other 

models with lessened CT of 5.09s. Thus, the MRC-TSOFSDL 

technique can be used for accurate malware detection. 

 

 

Fig. 11 CT outcome of MRC-TSOFSDL model with other techniques
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5. Conclusion 
In this research, a novel MRC-TSOFSDL technique is 

introduced. The MRC-TSOFSDL technique involves the 

concept of FS with an optimum hyperparameter selection 

strategy for enhancing the recognition results of the malware 

recognition process. It contains three significant processes 

involving TSO-based FS, SSAE-based classification, and 

ChoA-based parameter tuning. Initially, the MRC-TSOFSDL 

technique undergoes the TSO model and carries out the 

feature subset selection process. The SSAE model is followed 

for the automatic recognition and identification of malware. 

The ChoA-based hyperparameter tuning process is applied to 

improve the SSAE model's malware detection results. The 

performance analysis of the MRC-TSOFSDL technique is 

investigated using a malware dataset. The comparative results 

of the MRC-TSOFSDL technique demonstrated a maximum 

accuracy value of 98.65% over existing models. The 

limitations of the MRC-TSOFSDL technique comprise its 
reliance on specific datasets, which may hinder generalization, 

and the computational complexity that could affect scalability. 

Future work may concentrate on expanding the dataset for 

greater diversity, enhancing the algorithm's efficiency, 

exploring hybrid detection methods, and incorporating real-

time detection capabilities to improve practical applicability.
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