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Abstract - EEG-based emotion classification reflects both external and internal emotional states and has applications in the 

interactive brain-computer interface, patient psychological health monitoring, and entertainment consumption behaviour. This 

leads to more accurate, organic, and meaningful human-computer interaction—variations in experimental settings and cognitive 

health factors present difficulties for EEG-based emotion recognition in practical applications. The second most prevalent 

neurodegenerative condition, Parkinson’s Disease (PD), impairs the ability to recognize and express emotions. This research 

proposes a novel method in EEG signal-based emotion detection of Parkinson’s patients by classification and feature extraction 

utilizing Deep Learning (DL) methods. EEG brain waves from Parkinson’s patients are used as the input, cleaned up and 
normalized to produce EEG fragments. Quantum convolutional learning has been used to extract features from the processed 

input EEG signal. Then, the extracted features are classified utilizing spatial encoder back propagation neural networks, and 

the classified output shows the detected emotions of Parkinson’s patients. The experimental analysis is carried out for different 

Parkinson patient’s EEG brain wave datasets regarding accuracy, precision, recall, F-1 score, SNR, RMSE and MAP.  
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1. Introduction 
Emotional states are linked to a wide range of human 

emotions, ideas, and behaviours; as a result, they impact our 

capacity for rational behaviour in situations involving 

decision-making, perception, and human intelligence. As a 

result, research on emotion recognition utilizing emotional 

signals improves the effectiveness of Brain-Computer 

Interface (BCI) methods for use in therapeutic settings and 

social interactions [1]. Emotional states are being studied in 

order to understand better therapies for psychological diseases 

such as Autism Spectrum Disorder (ASD), Attention Deficit 
Hyperactivity Disorder (ADHD), and anxiety disorder [2]. 

EEG-based emotion recognition systems have recently 

attracted the attention of cognitive scientists. Automated 

emotion processing is built on either internal, involuntary 

physiological responses or external, voluntary expressions. 

Heartbeats and Electroencephalogram (EEG) are innate to the 

human body and difficult to falsify or disguise, but they are 

physiological responses to a particular emotion. Recent 

research trends demonstrate the close relationship between 

EEG processing cognition and intrinsic emotion perception 

[3]. People with PD exhibit deficits in emotional prosody, 

diminished startle responsiveness to highly upsetting 
unpleasant images, and the capacity to distinguish emotions 

from facial expressions. Event-Related Potential (ERP) data 

supporting early emotional prosody processing are few. A few 

research concentrate on the PD perception of valence and 

arousal components in addition to specific emotions. Previous 
research demonstrates that PD patients have impaired 

sensitivity to highly stimulating images and impairment in 

recognizing positive and negative valence emotions from 

prosody and facial expressions. In addition to interpreting 

non-verbal social behaviour like emotional voice and facial 

expressions, the ability to recognize emotions is essential for 

effective social interaction and communication [4]. Unable to 

be purposefully suppressed, implicit physiological or bio-

signals indicate the distinctive functioning of the central 

nervous system. Recent research has extensively used 

biosignals to examine how healthy participants perceive 

emotions. 
 

In comparison to other modalities, EEG, MRI, MEG, and 

PET provide trustworthy data on emotional states. EEG is 

non-invasive, has a high temporal resolution, and can detect 

minute changes in brain activity. Emotions have been linked 

to specific EEG frequency bands [5]. CNNs may 

automatically learn cognitive and emotional correlations, 

whereas hand-coded EEG descriptors like Spectral Power 

Vectors enable emotion identification [6]. 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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The contribution of this article is as follows: 

1. To propose a novel approach in EEG signal-based 

emotion detection of Parkinson’s patients by 

classification and feature extraction using deep learning 

techniques.  

2. EEG brain waves from Parkinson’s patients are collected 
and processed for noise removal and normalization to 

obtain EEG fragments.  

3. The processed input EEG signal features were extracted 

using quantum convolutional learning.  

4. Then, using spatio encoder back propagation neural 

networks to classify the extracted features, the output 

shows the emotions of Parkinson’s patients that were 

discovered. 

2. Related Works 
Along with motor symptoms, PD patients also exhibit 

cognitive and emotional abnormalities [7]. Meanwhile, [8, 9] 

notice reduced recognition of disgust, indicating PD 

abnormalities in recognizing the facial emotions of fear and 

disgust. PD patients with left hemisphere disease report 

diminished surprise recognition and impaired anger 
recognition. While [10] highlights that anger and fear are less 

likely to be recognized, note deficiencies in perceiving 

sadness, rage, and disgust in PD. An initial PD deficit [11] for 

negative emotions and a later deficit for positive emotions are 

seen, according to a meta-analysis. In certain research [12], 

auditory and verbal cues, for example, are used to measure PD 

emotion deficits. Patients with Parkinson’s disease generally 

have decreased expression and recognition in an emotive 

voice test [13]. Reduced recognition of fear, surprise, and 

disgust from text is observed and confirms this result [14]. 
However, several researches suggest that PD only slightly 

affects the ability to recognize facial expressions [15]. Earlier 

attempts have utilized the potential of EEG for emotion 

elicitation using a variety of standard feature extraction 

approaches [16]. In conventional methods, SVM and LDA 

classifiers are utilized to study FFT, STFT, DWT, statistical 

features, PSD, and a combination of these features [17]. The 

influence of a number of emotion classes evaluated by the 

same research is lowered from the SEED dataset’s accuracy 

of 83.81% for 3 classes of emotion to the SEED-IV dataset’s 

accuracy of 58.87%, a substantial accuracy drop of 24.94% 

[18]. Post-hoc interpretability may be a solution, which 
involves building a sophisticated neural model and then 

analyzing it [19]. 

Along with surrogate models, gradient-based techniques 
like those used in saliency maps and Locally Interpretable 

Model Explanations (LIME) can also create interpretability. 

Alternatively, machine learning models that are interpretable 

by design can be trained. In this vein, the SincNet new model 

has been put out [20-22]. 

Fig. 1 The overall proposed architecture 
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3. Materials and Methods 
3.1. The System Model 

This section discusses a novel method for classifying and 

extracting features from EEG signals to identify Parkinson’s 

patients’ emotions. Here, the input is gathered as EEG brain 

waves from Parkinson’s patients, which are then processed for 

noise removal and normalization to produce EEG fragments. 

Quantum convolutional learning has been used to extract 

features from the input EEG signal that has been processed. 

Then, using a spatio encoder back propagation NN to classify 

the extracted features, the output shows the emotions of 

Parkinson’s patients that were discovered. In Figure 1, the 

suggested architecture is shown. 

The recordings were made for 5 minutes at a sampling 
rate of 128 Hz while the subject was at rest to achieve a calm 

wakefulness. 14 channels of an emotive EPOC neuro headset 

were employed. Before the recording, the participants were 

instructed to find a quiet place to sit and not move their bodies 

(such as blinking their eyes) while it was being recorded. The 

signals were divided into 2-s window lengths after the 

recording. A threshold approach was utilized to exclude signal 

amplitudes greater than 100 lV to reduce eye blinking 

artefacts. The frequency range of 1-49 Hz was then filtered 

using a forward reverse filtering method with a 6th-order 
bandpass Butterworth filter. Finally, 1588 epochs without 

artefacts were analyzed for more research. 

3.2 Quantum Convolutional Learning-Based Feature 

Extraction 

In the qubit neuron model, quantum states and neuron 

states are connected, and operations resulting from quantum 

calculations are used to transfer between neuron states. A 

random neuron’s state |𝜑⟩ is determined by Equation (1), 

|𝜑⟩ = 𝛼|0⟩ + 𝛽|1⟩                               (1) 

Where |1| and |0| are, respectively, a firing neuron and a 

nonfiring neuron. Additionally, 𝛼|2 and |𝛽|2  represent the 
likelihood that a qubit will measure 0 or 1. Consequently, we 

have Eqution (2), 

|𝛼|2 + |𝛽|2 = 1                                (2) 

The inner product and the products that follow fit into the 
right side of the conventional model. T has two possible 

quantum states by Equation (3). 

|𝜙𝑥⟩ =
1

√𝑚
∑  

𝑚−1

𝑗=0

 𝑥𝑗|𝑗⟩ 

|𝜙𝑤⟩ =
1

√𝑚
∑  𝑚−1

𝑗=0  𝑤𝑗|𝑗⟩                              (3) 

State |j is the jth weight state, and wj is the encoded 
weight’s value in Equation (6), which is the same. The inner 

product is followed by Equation (4). 

⟨𝜙𝑥 ∣ 𝜙𝑤⟩ =
1

𝑚
∑  𝑚−1

𝑗=0  𝑥𝑗𝑤𝑗                             (4) 

It has a parameter of 
1

𝑚
 Moreover, it represents the linear 

equation of every neuron. Starting from the quantum state |0, 

𝜙, 𝜓⟩ inner product of 2 quantum states is calculated. After 

that, use a Hadamard gate to transform the system’s state into 

the superposition 
1

√2
(|0, 𝜙, 𝜓⟩ + |1, 𝜙, 𝜓⟩). After that, convert 

the superposition into 
1

√2
(|0, 𝜙, 𝜓⟩ + |1, 𝜓, 𝜙⟩).It implies that 

by reading out the outcome of the first qubit’s measurement, 

we can obtain ||||. It is not always positive, nevertheless, for 

feature vector x as well as weight vector w to be combined. It 

implies that it is insufficient to have absolute value merely. 

We can calculate the likelihood of measuring the first qubit to 

be in state |0 using the analysis above by Equation (5): 

𝑃0 =
1

2
+

1

2
|⟨𝑥 ∣ 𝑤⟩|2                                  (5) 

𝑥𝑇 ⋅ 𝑤⃗⃗⃗ = 2√2𝑃0 − 1                                   (6) 

The range of this equation’s x|w is [0, 1]. We should scale 
the appropriate portion of the equation suitably to address the 

issue that the inner product is always positive. In reality, dot 

product x⃗ T ⋅ w⃗ is anticipated rather than the actual inner 
product x|w. That says it is possible to get the right answer to 

the neuron equation if x⃗ T ⋅ w⃗is derived from the entire inner 

product x|w. Think about Equation (7). 

𝑥𝑇 ⋅ 𝑤⃗⃗⃗ = 2√2𝑃0 − 1 − 1                               (7) 

This falls inside the range [1, 1]. The probability 

amplitudes are first converted from classical data into a 
quantum state by normalizing vectors x and w by Equation (8). 

        (
𝑥0

𝑍𝑥
,

𝑥1

𝑍𝑥
, … ,

𝑥𝑚−1

𝑍𝑥
) (

𝑤0

𝑍𝑤
,

𝑤1

𝑍𝑤
, … ,

𝑤𝑚−1

𝑍𝑤
)                        (8) 

Where𝑍𝑥 is √𝑥0
2 + 𝑥1

2 + ⋯ + 𝑥𝑚−1
2  and 𝑍𝑤 is 

√𝑤0
2 + 𝑤1

2 + ⋯ + 𝑤𝑚−1
2  Obviously, it has eqn (9) 

(
𝑥0

𝑍𝑥

)
2

+ (
𝑥1

𝑍𝑥

)
2

+ ⋯ + (
𝑥𝑚−1

𝑍𝑥

)
2

= 1 

(
𝑤0

𝑍𝑤
)

2

+ (
𝑤1

𝑍𝑤
)

2

+ ⋯ + (
𝑥𝑚−1

𝑍𝑤
)

2

= 1                      (9) 

The result of dividing the aforementioned equations by 
two on both sides is by Equation (10).  
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𝑥0
2

2𝑍𝑥
2

+
𝑥1

2

2𝑍𝑥
2

+ ⋯ +
𝑥𝑚−1

2

2𝑍𝑥
2

=
1

2
 

                  
𝑤0

2

 2𝑍𝑤
2 +

𝑤1
2

2𝑍𝑤
2 + ⋯ +

𝑥𝑚−1
2

2𝑍𝑤
2 =

1

2
                          (10) 

Another half needs to be added on both sides to meet the 
requirement that probability sum equals one by eqn (11): 

𝑥1
2

2𝑍𝑥
2

+ ⋯ +
𝑤𝑚−1

2

2𝑍𝑥
2

+
𝑤1

2

2𝑍𝑤
2

+ ⋯ +
1

2
= 1 

                 
𝑤1

2

2𝑍𝑥
2 + ⋯ +

𝑤𝑚−1
2

2𝑍𝑥
2 +

𝑤1
2

2𝑍𝑤
2 + ⋯ +

1

2
= 1             (11) 

Equations (15) and (16) separately relate to the 

normalizing parameters by Equatiion (12). 

(
𝑥0

√2𝑍𝑥

,
𝑥1

√2𝑍𝑥

, … ,
𝑥𝑚−1

√2𝑍𝑚−1

,
1

√2
) 

                

   (
𝑤0

√2𝑍𝑤
,

𝑤1

√2𝑍𝑤
, … ,

𝑤𝑚−1

√2𝑍𝑚−1
,

1

√2
)                           (12) 

 

𝑃0 =
1

2
+

1

2
|

1

2
⟨𝑥′ ∣ 𝑤 ′⟩|

2

 =
1

2
+

1

2
|

1

2
(𝑥0

′ 𝑤0
′ + 𝑥1

′ 𝑤1
′ + ⋯ +

𝑥𝑚−1
′ 𝑤𝑚−1

′ ) +
1

2
|

2

  

=
1

2
+

1

2
|

1

2
𝑥 ′𝑇 𝑤⃗⃗⃗ ′ +

1

2
|

2

                                          (13) 

Now, it is possible to solve Equation (10) and use the 

quantum neuron. The coefficient vector is enlarged by one 

dimension using this technique; it should be noted. This 

implies that an additional qubit will be required if the 

dimension of the coefficient is 2n before it is normalized in 

order for it to store all the data of classical data. CNN layers, 

which lessen noise and identify certain morphological 

patterns, are regarded as fuzzy filters. Transformation applied 

by neural layers is initially parameterized by its weight, w.  

𝑥𝑖
𝑙 = 𝑓(∑𝑗  𝑤𝑖𝑗

𝑙 𝑥𝑗
𝑙−1 + 𝑏𝑖

𝑙)                                              (14) 

The output of the convolutional layer is shown by x l I 
while b l I represents the bias coefficient of neuron ith in layer 

l, which is set in CNN layers and fully linked layers. Equation 

(2) is used to calculate this ReLU(x) function by Equation 

(15). 

𝑓(𝑥) = max(0, 𝑥𝑖)                                                         (15) 

 
Fig. 2 Architecture of emotion recognition process using Convolutional learning
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In order to segment a convolutional region that can 

improve the resilience of features as well as decrease the 

dimensionality of the physiological signals vector, the cross-

entropy loss function is then established in a fully connected 

layer to evaluate emotion recognition, as shown in Equation 

(16). 

𝐸 =
1

2
∑𝑗=1

𝑁  (𝑦𝑖 − 𝑐𝑗)
2
                                         (16) 

Figure 2 depicts the deep learning-based model for 

emotion recognition. Additionally, the way input vectors are 

transformed in local patches inside a convolution window is 
understood. 

3.3. Spatio Encoder Back Propagation Neural Networks 

The stochastic metapopulation model’s system state is 

represented by the nsm matrix (𝑡) = (𝑵 (𝑘) 𝑖 (𝑡))=1,…,𝑛𝑠 

,𝑘=1,…,𝑚, where 𝑵 (𝑘) 𝑖 (𝑡) is number of members. Given the 

total number of agents, na, the set of all potential method states 
is represented by Mn by Equation (17). 

𝕄𝑛𝑎
: = {𝑁 = (𝑁𝑖

(𝑘))
𝑖=1,…,𝑛𝑠,𝑘=1,…,𝑚

∈

ℕ0
𝑛𝑠,𝑚

: ∑𝑖=1
𝑛𝑠  ∑𝑘=1

𝑚  𝑁𝑖
(𝑘)

= 𝑛𝑎}                               (17) 

Similar to this, an adoption event in subpopulation k from 
status I to status j causes a change in the system state of type 

(𝑡) → (𝑡) − 𝐸 (𝑘) 𝑖 + 𝐸 (𝑘) 𝑗. Let 𝑃 (𝑁, 𝑡) ∶= P(𝑵(𝑡) = 𝑁)indicate 

the likelihood that the system will be in state 𝑁∈ M𝑛𝑎 at time 

t. We regard Equation (7) of the ABM as an analogue to 

Equation (18). 

 
𝑑

𝑑𝑡
𝑃(𝑁, 𝑡) = ℒ𝑃(𝑁, 𝑡) + 𝐶𝑃(𝑁, 𝑡) 

ℒ𝑃(𝑀): = ∑𝑁∈𝕄𝑛𝑎
 ℒ̂𝑁𝑀 ⋅ 𝑃(𝑁)                          (18) 

When 𝑁 = (𝑁 (𝑘)  ) ∈ M𝑛𝑎, the indicator ansatz functions 

are defined by Equation (19) 

Φ𝑁(𝑋, 𝑆): = ∏𝑘=1
𝑚  ∏𝑖=1

𝑛𝑠  𝜙
𝑁𝑖

(𝑘)(𝑋, 𝑆) 

With 

𝜙
𝑁𝑖

(𝑘)(𝑋, 𝑆): = 𝛿
𝑁𝑖

(𝑘) (∑𝛼=1
𝑛𝛼  𝛿𝐴𝑘

(𝑥𝛼)𝛿𝑖(𝑠𝛼))        (19) 

Where 𝛿 stands for set-based indicator functions as well 
as the Kronecker delta. In other words, N (X, S) is equal to 1 

when there are exactly N (k) I agents with position 𝑥𝛼∈𝐴𝑘and 

status s = I and zero otherwise.  

Since these ansatz functions satisfy ∑ 𝑁∈M𝑛𝑎𝛷𝑁 (𝑋, 𝑆) 

= 1 for all (𝑋, 𝑆) ∈ Y for any (𝑋, 𝑆) ∈ Y and are hence non-
negative, they constitute a partition of unity. The inner product 

of 2 functions 𝑓, 𝑔∶ Y → R is therefore defined as by Equation 

(20). 

⟨𝑓, 𝑔⟩: =
1

(𝜇(𝕏)𝑛𝑠)𝑛𝑎
∑𝑆∈𝕊𝑛𝑎  ∫

X𝑛𝑎  𝑓(𝑋, 𝑆)𝑔(𝑋, 𝑆)𝑑𝑋 

𝑄𝑣 = ∑𝑁∈𝕄𝑛𝑎
 
⟨Φ𝑁,𝑣⟩

⟨Φ𝑁 ,𝟙⟩
Φ𝑁                                         (20) 

Finding matrix representations ℒ̂ = (ℒ̂𝑁𝑀)
𝑁,𝑀∈𝑀𝑛𝑎

𝒢̂ =

(𝒢̂𝑁𝑀)
𝑁,𝑀∈M𝑛𝑎

of the projected operators QLQ and QGQ for 

operators L and G described in (5) and (6) is the objective at 

this point. We start by thinking about spatial dynamics. Define 

by Equation (21) 

    𝜆𝑖
(𝑘𝑙)

: =
⟨𝛿𝐴𝑙

,𝐿𝑖𝛿𝐴𝑘
⟩X

⟨𝛿𝐴𝑘
,𝟙⟩

X

=
∫X  𝛿𝐴𝑙

(𝑥)(𝐿𝑖𝛿𝐴𝑘
)(𝑥)𝑑𝑥

∫X  𝛿𝐴𝑘
(𝑥)𝑑𝑥

                 (21) 

Where 1 stands for constant 1-function on X and X is the 
usual scalar product for functions in L2 (X). Here, we examine 

first- and second-order adoptions independently as the two 

essential situations by Equation (22): 

𝛾𝑖𝑗
(𝑘)

: =
⟨𝑦𝑖𝑗 , 𝛿𝐴𝑘

⟩
X

⟨𝛿𝐴𝑘
, 𝟙⟩

X

=
∫

X
 𝛾𝑖𝑗(𝑥)𝛿𝐴𝑘

(𝑥)𝑑𝑥

∫
X

 𝛿𝐴𝑘
(𝑥)𝑑𝑥

 

Where 

                    𝑓̂𝑖𝑗
(𝑘)

(𝑁): = 𝛾𝑖𝑗
(𝑘)

𝑁𝑖
(𝑘)

.                              (22) 

The spatio-temporal master equation is a form of the 
SMM equation provided by (23): 

𝑑𝑃(𝑁, 𝑡)

𝑑𝑡
= −∑𝑘,𝑖=1

𝑘≠𝑙

𝑚  ∑𝑛𝑠  𝜆𝑖
(𝑘𝑙)

𝑁𝑖
(𝑘)

𝑃(𝑁, 𝑡) 

+∑𝑘,=1=1
𝑘≠𝑙

𝑚  ∑𝑖=1
𝑛𝑠  𝜆𝑖

(𝑘𝑙)(𝑁𝑖
(𝑘)

+ 1)𝑃(𝑁 + 𝐸𝑖
(𝑘)

− 𝐸𝑖
(𝑙)

, 𝑡) 

−∑𝑖,𝑗=1
𝑛𝑠  ∑𝑘=1

𝑚  𝑓̂𝑖𝑗
(𝑘)

(𝑁)𝑃(𝑁, 𝑡) 

+∑𝑖,𝑗=1
𝑛𝑠  ∑𝑘=1

𝑚  𝑓̂𝑖𝑗
(𝑘)(𝑁 + 𝐸𝑖

(𝑘)
− 𝐸𝑗

(𝑘))𝑃(𝑁 + 𝐸𝑖
(𝑘)

− 𝐸𝑗
(𝑘)

, 𝑡)                           

(23) 

Where the first 2 phrases on the right-hand side describe 

alteration brought about by subpopulation exchange. In a 

pathwise notation, the stochastic process ((𝑡))∈T described by 

(24) can be represented as follows: 

𝑁(𝑡) = 𝑁(0) + ∑𝑘=1=1
𝑘≠1

𝑚  ∑𝑖=1
𝑛𝑠  ℛ𝑖

(𝑘𝑙)
(∫

0

𝑡
 𝜆𝑖

(𝑘𝑙)
𝑁𝑖

(𝑘)
(𝑠)𝑑𝑠) (𝐸𝑖

(𝑙)
−

𝐸𝑖
(𝑘)

) + ∑𝑖,𝑗=1
𝑛𝑠  ∑𝑘=1

𝑚  𝒫𝑖𝑗
(𝑘)

(∫
0

𝑡
 𝑓̂𝑖𝑗

(𝑘)
(𝑁(𝑠))𝑑𝑠) (𝐸𝑗

(𝑘)
− 𝐸𝑖

(𝑘)
)     (24) 

Where 𝒫𝑖𝑗
(𝑘)

 and ℛ𝑖
(𝑘𝑙)

denote separate Poisson processes 

with a unit rate.  
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N̂(𝑡) = N̂(0) + ∑𝑘,𝑙=1,𝑘∉𝑙
𝑚  ∑𝑖=1

𝑛𝑠  𝒫𝑖
(𝑘𝑙)

(∫
0

𝑡
 𝜆𝑖

(𝑘𝑙)
𝑁̂𝑖

(𝑘)
(𝑠)𝑑𝑠) (𝐸𝑖

(𝑙)
−

𝐸𝑖
(𝑘)

) + ∑
𝑖,𝑗=1
𝑛𝑠  ∑

𝑘=1
𝑚  ∫

0

𝑡
 𝑓

𝑖𝑗
(𝑘)(𝑁̂(𝑠))𝑑𝑠 (𝐸𝑗

(𝑘) − 𝐸𝑖
(𝑘)

)             (25) 

The deterministic status-adoption dynamics for our 
example of two-status dynamics in a double-well potential are 

given by Equation (26). 

N̂(𝑡0 + 𝜏) = 𝑁̂(𝑡0) + ∑𝑘=1
𝑚  ∫

𝑡0

𝑡0+𝜏
 𝑓̂12

(𝑘)
(𝑁̂(𝑠)) (𝐸2

(𝑘)
− 𝐸1

(𝑘)
) 𝑑𝑠                             

(26) 

𝜏<𝑡1 − 𝑡0 represent time points of two consecutive 
stochastic transition occurrences that were brought about by 

the first line of (27). Following ODE is obtained for N(k) 2 of 

agents in subpopulation k with status 2 using the definition 

(19) of f(k)12: 

𝑑𝑁̂2
(𝑘)

(𝑡)

𝑑𝑡
= 𝛾̂12

(𝑘)
⋅ 𝑁̂1

(𝑘)
(𝑡)𝑁̂2

(𝑘)
(𝑡)                            (27) 

Where 𝑡0 <𝑡<𝑡1 . This number is constant across two 

transition occurrences; therefore, we may change N`(𝑘) 1 (𝑡) 

= 𝑛 (𝑘) 0 – N` (𝑘) 2 (𝑡) in Equation (28) to get to, 

𝑑𝑁̂2
(𝑘)

(𝑡)

𝑑𝑡
= 𝛾̂12

(𝑘)
N̂2

(𝑘)
(𝑡)(𝑛0

(𝑘)
− 𝑁̂2

(𝑘)
(𝑡))                  (28) 

The logistic function provides the answer; therefore, we 
can solve the problem analytically by Equation (29). 

𝑁̂2
(𝑘)(𝑡) = 𝑛0

(𝑘)
(1 + 𝑒−𝛾̂12

(𝑘)
𝑛(𝑘)(𝑡0)𝑡 (𝑛0

(𝑘)
− 𝑁̂2

(𝑘)(𝑡0)))

−1

   (29) 

For 𝑡0 <𝑡<𝑡1, treating diffusive transitions between 

subpopulations as random occurrences that cause jumps in the 

PDMM process’s state N.  

Then the function is the partial derivative of weight space 
(5a). Similar to that, these three changeable parameters’ partial 

derivatives are functions by Equation (30). 

𝑓𝐴
′ =

∂𝑓(𝐴𝑗 , 𝑈𝑗 , 𝐿𝑗 , 𝑇𝑗)

∂𝐴𝑗

= −
(𝑦𝑗 − 𝑈𝑗)(𝑦𝑗 − 𝐿𝑗)

𝑇𝑗(𝑈𝑗 − 𝐿𝑗)
 

            𝑓𝑈𝑗
=

∂𝑓(𝐴𝑗,𝑈𝑗,𝐿𝑗,𝑇𝑗)

∂𝑈𝑗
=

1

1+𝑒
−𝐴𝑖/𝐽𝑗

                              (30) 

As for the output unit, the following is the evaluation 
function for the error signal of A, U, L, and T by Equation 

(31): 

𝛿𝐴𝑗
= 𝑓𝐴𝑗

′ (𝑑𝑖 − 𝑦𝑖) 

𝛿𝑈𝑗
= 𝑓𝑈𝑗

′ (𝑑𝑗 − 𝑦𝑗) 

                                𝛿𝐿𝑗
= 𝑓𝐿𝑗

′ (𝑑𝑗 − 𝑦𝑗)                           (31) 

The aforementioned functions, however, do not apply to 

the middle layer [6] since there is not an optimum output there. 

According to function (7a), the connecting unit’s error signal 

and connection weights are used to calculate the middle layer 

unit’s error signal.  

Similar to how the connection unit’s BP value is utilized 
to calculate the error signal of middle layer units U, L, and T 

by Equation (32). 

𝛿𝐴𝑗
= 𝑓𝐴𝑗

′ ∑𝑘  𝛿𝐴𝑘
𝑤𝑗𝑘 

𝛿𝑈𝑗
= 𝑓𝑈𝑗

′ ∑𝑘  𝛿𝑈𝑘
𝑤𝑗𝑘 

𝛿𝐿𝑗
= 𝑓𝐿𝑗

′ ∑𝛿𝐿𝑘
𝑤𝑗𝑘 

𝛿𝑈𝑗 = 𝑓𝑈,
′ ∑𝛿𝑈𝐽

𝑤𝑗𝐿 

                        𝛿𝑈𝑗
= 𝑓𝑈𝑗∑𝑘  𝛿𝑈𝑘

𝑤𝑗𝑘                         (32) 

 

Connection weights, thresholds, U, L, and T of each unit 

must be modified in accordance with the estimated error signal 

during the BP process, as follows by Equation (33): 

Δ𝑤𝑖𝑗(𝑛 + 1) = 𝜂𝐴𝛿𝐴𝑗
𝑦𝑗 + 𝛼𝐴Δ𝑤𝑖𝑗(𝑛) 

Δ𝜃𝑗(𝑛 + 1) = 𝜂𝐴𝛿𝐴𝑗
+ 𝛼𝐴Δ𝜃𝑗(𝑛) 

Δ𝑈𝑗(𝑛 + 1) = 𝜂𝑈𝐿𝛿𝑈𝑗
+ 𝛼𝑈𝐿Δ𝑈𝑗(𝑛) 

Δ𝐿𝑗(𝑛 + 1) = 𝜂𝑈𝐿𝛿𝐿𝑗
+ 𝛼𝑈𝐿Δ𝐿𝑗(𝑛) 

                     Δ𝑇𝑗(𝑛 + 1) = 𝜂𝑇𝛿𝑇𝑗
+ 𝛼𝑇Δ𝑇𝑗(𝑛)               (33) 

The enhanced BP learning algorithm will be outlined in 
the sections that follow. Similar to the function (8c), upper 

limitU can only be modified and then improved for the middle 

layer unit when U j δ is greater than zero. L also needs to be 

lowered.  

The revised BP learning algorithm’s step-by-step 

procedure is as follows: 

1. Initialize the upper and lower limits, temperature, and 

connection weights of the network using random values 

of (-0.5, +0.5): DoFor each training pattern with 1 U =, 0 

L =, and T = 1. 

2. a set of desired output values and input values; 

3. Evaluate real output j y from functions (2) and (4) for each 

PU j during the forward propagation stage of the pattern; 

4. Evaluate the error signal from functions (5) and (6) and 

backpropagate to all linked middle layer units for each PU 
j; otherwise, if j is the middle layer unit, evaluate the error 

signal from functions (5) and (7);  

5. For each PU j Update w,θ and T by the function (8a), 

(8b)and (8c)}};  

6. Evaluate RMS using formula (1); then, examine errors 

while considering that. 

7. End. 
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4. Results and Discussion 
In this section evaluates the performance of the proposed 

model based on various assessment parameters and compares 

the same with existing methods. The proposed hybrid model 

requires the following hardware and software tools to evaluate 

the performance: 64-bit Operating System (OS), Intel(R) 

Core(TM) i5 processor, 8GB RAM, Windows 10, and the 

software tool such as Python 2.7 programming language with 

various python libraries NumPy, Pandas, Keras, and SciPy 

frameworks. 

4.1. Dataset Description 

In this research work, we used the SEED dataset, which 

is the publicly available dataset for researchers. In this work, 

a total of 15 participants or subjects were involved (7 males 

and 8 females) with an average age of 23.3 and a Standard 

Deviation (SD) of 2.4. The EEG dataset consists of the signals 

that were taken while the subjects were watching emotional 

video tapes. In order to compare neural patterns and notable 

responses across different subjects and EEG sessions, 
participants were asked to complete the trials for three 

sessions each. This dataset includes information from 45 

various experiment sessions as a result. There was a week or 

more in between each subject’s sessions.  

The AMIGOS dataset uses the EEG, ECG, and GSR 
signals of 40 subjects to register their mood and affect, and 

due to the stimulation brought on by watching both short and 

long videos, personality. 

Table 1. Analyzing the differences between the suggested and existing methods using a variety of EEG Parkinson datasets  

Dataset Techniques Accuracy Precision Recall F1_Score SNR RMSE MAP 

SEED 

STFT 81 75 66 54 41 32 51 

SVM_LDA 85 77 68 59 43 34 53 

EEG_PP_DL 89 79 72 61 45 36 55 

AMIGOS 

STFT 85 81 73 63 47 39 56 

SVM_LDA 88 83 75 65 49 42 58 

EEG_PP_DL 92 85 78 71 52 44 60 

 

 
                                                                      (a)  Accuracy                                                                             (b) Precision 

 
     (c) Recall                                                                                   (d) F-1 score 
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                                                                          (e) SNR                                                                                               (f) RMSE 

 

 

 
(g) MAP 

Fig. 3 Parametric comparison for SEED dataset in terms of (a) Accuracy, (b) Precision, (c) Recall, (d) F-1 score, (e) SNR, (f) RMSE, and (g) MAP. 

 

 

 

  
                                                            (a) Accuracy                                                                                                     (b) Precision 
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                                                                 (c) Recall                                                                                                      (d) F-1 score 

  

        
                                                              (e) SNR                                                                                                                   (f) RMSE 

 

 
 

(g) MAP 

Fig. 4 Parametric comparison for AMIGOS dataset in terms of (a) accuracy, (b) precision, (c) recall, (d) F-1 score, (e) SNR, (f) RMSE, and (g) MAP. 
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Table 1 above displays the parametric comparison of the 
suggested and existing techniques. Here, the accuracy, 

precision, recall, F-1 score, SNR, RMSE, and MAP of the 

AMIGOS and SEED datasets have been compared. The STFT 

and SVM_LDA current techniques are compared to the 

EEG_PP_DL suggestion. Analysis of the datasets used by 

both the proposed and existing techniques has been done. As 

shown in Figures 3(a)-(f), the proposed EEG_PP_DL 

achieved accuracy of 89%, precision of 79%, recall of 72%, 

F-1 score of 61%, SNR of 45%, RMSE of 36%, MAP of 55% 
for the SEED dataset, while STFT attained accuracy of 81%, 

precision of 75%, recall of 66%, F-1 score of 54%, SNR of 

41%, RMSE of 32%, MAP of 51%. From the aforementioned 

AMIGOS dataset analysis, the proposed technique obtained 

an improved accuracy rate with precision and a low RMSE in 

comparison to other existing techniques and other parameters. 

Secondly, for the AMIGOS dataset, the proposed 

EEG_PP_DL achieved an accuracy of 92%, the precision of 

85%, recall of 78%, F-1 score of 71%, SNR of 52%, RMSE 

of 44%, MAP of 60% as shown in Figures 4(a)-(f); whereas 

STFT attained an accuracy of 85%, precision of 81%, recall of 
73%, F-1 score of 63%, SNR of 47%, RMSE of 39%, MAP of 

56%, SVM_LDA obtained accuracy of 88%, precision of 

83%, recall of 75%, F-1 score of 65%, SNR of 49%, RMSE 

of 42%, MAP of 58%. The proposed method outperformed all 

other techniques in terms of EEG signal extraction with 

classification-based emotion detection, according to the 

aforementioned parametric analysis. The proposed method 

improved the results for emotion recognition using the 

AMIGOS and SEED datasets, according to the analysis of the 

two datasets.  

5. Conclusion 
This research proposes a novel method in EEG signal-

based emotion detection of Parkinson’s patients by 

classification and feature extraction using deep learning 

techniques. The processed input EEG is recorded by 

nanotechnology, and the signal features have been extracted 

using quantum convolutional learning and classified using 
spatio encoder back propagation neural networks. This 

framework is reliable for real-time applications like 

psychological profile monitoring for hospitalized patients, 

especially those with cognitive deficits. Only one second of 

the EEG signal is required to elicit emotional states. In this 

study, the relationship between electrodes and electrode 

hidden layer representations with significant frequency bands 

is further investigated. In terms of accuracy, precision, recall, 

F-1 score, SNR, RMSE, and MAP, experimental analysis is 

done on various Parkinson patients’ EEG brain wave datasets. 

When applied to the SEED dataset, the proposed EEG_PP_DL 

achieved an accuracy of 89%, precision of 79%, recall of 72%, 
F-1 score of 61%, SNR of 45%, RMSE of 36%, and MAP of 

55%. When applied to the AMIGOS dataset, the proposed 

EEG_PP_DL achieved an accuracy of 92%, precision of 85%, 

recall of 78%, SNR of 52%, RMSE of 44%, and MAP of 60%.  
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