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Abstract - Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder that poses significant challenges in its early 

diagnosis, often leading to delayed treatment and poorer outcomes for patients. Traditional diagnostic methods, typically 

reliant on single data modalities, fall short of capturing the multifaceted nature of the disease. In this paper, we propose a 
novel multimodal framework for the early detection of AD that integrates data from three primary sources: MRI imaging, 

cognitive assessments, and biomarkers. This framework employs Convolutional Neural Networks (CNN) for analyzing MRI 

images and Long Short-Term Memory (LSTM) networks for processing cognitive and biomarker data. The system enhances 

diagnostic accuracy and reliability by aggregating results from these distinct modalities using advanced techniques like 

weighted averaging, even in incomplete data. The multimodal approach not only improves the robustness of the detection 

process but also enables the identification of AD at its earliest stages, offering a significant advantage over conventional 

methods. The integration of biomarkers and cognitive tests is particularly crucial, as these can detect Alzheimer's long before 

the onset of clinical symptoms, thereby facilitating earlier intervention and potentially altering the course of the disease. This 

research demonstrates that the proposed framework has the potential to revolutionize the early detection of AD, paving the 

way for more timely and effective treatments. 

Keywords - Alzheimer’s Disease (AD) Detection, Early detection of AD, Multimodal framework, MRI imaging, Cognitive 
assessment, Biomarkers, Machine learning, Deep learning. 

1. Introduction 
Alzheimer's Disease (AD) is a neurological illness that 

worsens with time and is typified by a loss of memory, 

cognitive function, and daily functioning. It is one of the 

most common disorders affecting the elderly globally, and 

despite a great deal of study, there is still no cure. On the 
other hand, early discovery of AD might potentially slow 

down the disease's course and lessen its effects, improving 

the lives of people who are impacted [1]. 

The cognitive impairments caused by AD, particularly in 

abstract thinking and problem-solving, can severely disrupt 

daily life. Tasks such as managing finances, balancing 

checkbooks, and making timely payments become 

increasingly difficult as the disease advances. Eventually, the 

ability to comprehend and utilize numerical concepts may be 

lost [2]. 

Although dementia and Alzheimer's disease are 
frequently used synonymously, dementia is really a symptom 

of Alzheimer's disease. Another widespread misperception is 

the false belief that Alzheimer's disease develops naturally as 

people age. Currently, 6.2 million Americans, 65 and older, 

have Alzheimer's dementia; if no significant medical 

advancements occur, this figure might increase to 13.8 

million by 2060. According to official death certificates, 

121,499 fatalities in the US in 2019 were directly related to 

Alzheimer's disease, making it the sixth most common cause 

of death overall. Interestingly, mortality from AD rose by 

more than 145% between 2000 and 2019 despite a drop in 

deaths from other important illnesses, including heart 

disease, HIV, and stroke. An estimated 15.3 billion hours of 

care, worth around $256.7 billion, were given to people with 

Alzheimer's or other dementias in 2020 alone by over 11 
million family members and unpaid caregivers [3]. 

The situation is equally worrying in India. The Dementia 

India Report 2010 [4] from the Alzheimer's and Related 

Disorders Society of India (ARDSI) states that there were 

around 3.7 million people with dementia in 2010, and that 

figure is projected to almost triple to 7.6 million by 2030. 

The documented instances in the US and India draw attention 

to a far bigger problem: millions more cases can go 

unreported and untreated, especially in impoverished and 

rural areas where there is a lack of knowledge about 

Alzheimer's disease and its early symptoms. 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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The significance of these data emphasizes how urgently 

increased research on AD early detection is needed. Given 

the irreversible nature of the condition, early intervention is 

critical. Several sectors, including the medical sciences, have 

undergone radical change due to the introduction of 

technologies like machine learning and deep learning, which 
provide significant opportunities for earlier and more 

accurate diagnoses. 

This paper proposes a novel multimodal framework for 

early AD detection, integrating three key data modalities: 

Medical Imaging, Cognitive Tests, and Biomarker Data. By 

combining these diverse data sources, the framework aims to 

improve the accuracy of early diagnosis, providing a 

comprehensive approach that leverages the strengths of each 

modality. Medical imaging techniques like MRI and PET 

scans will be used to detect structural and functional changes 

in the brain [5, 6], cognitive tests will assess language, 

memory, and executive function [7], while biomarker data 
will offer insights into the biological processes underlying 

the disease [8]. This multimodal approach holds the potential 

to identify AD at its earliest stages, paving the way for 

timely interventions that could alter the course of the disease. 

2. Literature Review 
The only way to slow the growth of AD, a neurological 

disease that progresses and is now incurable, is to catch it 

early. The early diagnosis of AD has greatly benefited from 

recent developments in computer technology, including 

machine learning, deep learning, and natural language 

processing. Examining the efficacy of these technologies in 

the early identification of AD, this literature review is 

divided into three main data modalities: biomarkers, 

cognitive tests, and medical imaging. 

 

2.1. Medical Imaging 

The early diagnosis of AD now relies heavily on medical 

imaging. Numerous imaging techniques, such as Positron 
Emission Tomography (PET) and Magnetic Resonance 

Imaging (MRI), offer vital information on the anatomical and 

functional alterations in the brain linked to AD. 

Deep Convolutional Neural Networks (CNNs) were 

used by Saman et al. [9] to analyze MRI data for AD 

classification. Their method entailed using massive MRI 

image datasets to train a CNN model in order to find patterns 

linked to the pathophysiology of Alzheimer's disease. 

According to the study, CNNs outperform conventional 

machine learning models that call on human feature 

extraction, with accuracy rates approaching 90%. This work 
highlights the potential of deep learning to improve and 

automate the AD diagnosis process. 

The integration of multimodal imaging data, namely the 

combination of MRI and PET scans with machine learning 

methods like Support Vector Machines (SVMs), was 

investigated by Jack et al. [10]. The study demonstrated that 

the detection of tau proteins and amyloid plaques, which are 

indicators of AD, may be greatly enhanced by using this 

combination strategy. The study's significant improvements 

in sensitivity and specificity when employing SVMs indicate 
that multimodal data fusion is a viable option for early 

diagnosis. 

Weiner et al. [11] performed a longitudinal examination 

of MRI scans using information from the AD Neuroimaging 

Initiative (ADNI). Using machine learning techniques, they 

could monitor changes in brain volume over time and 

establish a correlation between these changes and the onset 

of AD. According to the study, some atrophy patterns in 

parts of the brain, such as the hippocampus, may act as early 

AD markers. This study underlined the need for ongoing 

observation in clinical settings and proved the usefulness of 

longitudinal data in forecasting the course of disease. 

Helaly et al. [12] introduced a deep learning framework 

to analyze functional MRI (fMRI) data, focusing on the 

brain’s connectivity patterns. Their study revealed that deep 

learning models could detect subtle functional abnormalities 

in brain networks associated with Alzheimer’s, even before 

significant cognitive decline is apparent. The findings 

suggest that fMRI, combined with advanced deep learning 

techniques, could play a crucial role in early AD detection by 

identifying functional disruptions that precede structural 

changes. 

Krüger et al. [13] combined Voxel-Based Morphometry 
(VBM) with deep CNN to detect brain atrophy patterns 

specific to AD. The study highlighted the effectiveness of 

VBM in capturing gray matter density changes, which are 

crucial in distinguishing between Alzheimer’s patients and 

healthy individuals. The CNN-based classification achieved 

high accuracy, particularly in identifying early-stage AD, 

indicating the potential of VBM as a diagnostic tool when 

paired with machine learning. 

Therefore, there is much promise for early AD 

identification when deep learning and machine learning are 

applied to medical imaging modalities like PET and MRI. 

However, the availability of sizable, high-quality datasets 
and the standardization of imaging processes are 

prerequisites for these technologies' efficacy. Deep learning 

models are still difficult to comprehend and difficult to 

generalize to other populations. The most reliable solutions 

could come from multimodal methods incorporating clinical 

data and many imaging modalities, but they still need more 

clinical validation. 

2.2. Cognitive Tests 

Cognitive evaluations are conventional methods for AD 

diagnosis. These assessments look at various cognitive 
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abilities, including language, memory, and executive 

function all of which are frequently compromised in the early 

stages of AD. Recent developments in natural language 

processing and machine learning have improved the 

interpretation of cognitive test data, resulting in earlier and 

more accurate diagnoses. 

Irfan et al. [14] employed ensemble techniques like 

random forests, a machine learning technique, to analyze 

cognitive test scores to detect cognitive decline associated 

with AD early. Their study demonstrated that machine 

learning could identify subtle patterns in cognitive 

performance indicative of early AD, even before clinical 

symptoms become apparent. The voting mechanisms offered 

in the ensemble techniques showed superior predictive power 

compared to traditional statistical methods, suggesting that 

ML can enhance the sensitivity and specificity of cognitive 

assessments. 

Kulvinder Panesar and María Beatriz Pérez Cabello de 
Alba [15] utilized Natural Language Processing (NLP) to 

analyze speech and language patterns from cognitive 

assessments. Their study focused on the language used by 

patients during standard cognitive tests, identifying linguistic 

markers of cognitive decline. NLP models detected changes 

in speech patterns that correlate with early Alzheimer’s, such 

as increased use of filler words and reduced sentence 

complexity. This approach highlights the potential of NLP to 

uncover subtle language impairments that might not be 

evident through traditional scoring methods. 

The Free and Cued Selective Reminding Test (FCSRT), 
a cognitive test created especially to identify early AD, was 

created by Grober et al. [16]. After using machine learning 

algorithms to the test data, it was shown that distinct memory 

retrieval patterns may differentiate between those with early 

AD and those in good health. The results of this study 

highlight the value of customized cognitive testing and 

Machine Learning (ML) for analyzing intricate memory 

functions, which are frequently impaired in Alzheimer's 

patients. 

Petersen et al. [17] conducted a longitudinal cognitive 

data study to predict the progression from Mild Cognitive 

Impairment (MCI) to AD. By applying machine learning 
models, the research demonstrated that certain cognitive test 

scores could predict the likelihood of developing AD years 

before clinical diagnosis. This work underscores the potential 

of longitudinal cognitive testing and machine learning for 

early risk assessment and intervention. 

In order to increase diagnosis accuracy, Albert et al. [7] 

combined machine learning algorithms with a variety of 

cognitive assessments, including the Mini-Mental State 

Examination (MMSE) and the Montreal Cognitive 

Assessment (MoCA). According to the study, machine 

learning models outperformed conventional techniques in 

diagnosing patients by better handling the complexity of 

cognitive data. This integration demonstrates how useful it is 

to improve early detection efforts by integrating cognitive 

testing with sophisticated analytics. 

So, when paired with machine learning and NLP, 
cognitive tests significantly improve early AD detection. 

Machine learning enhances the ability to identify subtle 

cognitive changes that may precede clinical symptoms, while 

NLP provides new tools for analyzing language-related 

impairments. However, the effectiveness of these 

methodologies is highly dependent on the consistency of test 

administration and the quality of the data collected. 

Furthermore, developing predictive models requires large 

longitudinal datasets, which may not always be available, 

particularly in underrepresented populations.  

Deep Convolutional Neural Networks (CNNs) were 

used by Saman et al. [9] to analyze MRI data for AD 
classification. Their method entailed using massive MRI 

image datasets to train a CNN model in order to find patterns 

linked to the pathophysiology of Alzheimer's disease. 

According to the study, CNNs outperform conventional 

machine learning models that call on human feature 

extraction, with accuracy rates approaching 90%. This work 

highlights the potential of deep learning to improve and 

automate the AD diagnosis process. 

2.3. Biomarkers 

Biomarkers, including Cerebrospinal Fluid (CSF) and 

blood-based markers, provide crucial biological indicators of 
AD. Applying machine learning and deep learning to 

biomarker data has shown promise in improving the early 

detection and diagnosis of AD. 

Using machine learning algorithms to analyse CSF 

biomarkers, including tau and amyloid-beta (Aβ), was 

reviewed by Blennow et al. [18]. Their research revealed that 

Machine Learning (ML) algorithms could reliably categorize 

people according to their biomarker profiles, offering a non-

invasive technique for early diagnosis. Machine learning's 

promise for therapeutic applications is demonstrated by its 

ability to interpret intricate biomarker data and recognize 

patterns suggestive of Alzheimer's disease. 

Hampel et al. [19] explored the potential of blood-based 

biomarkers for Alzheimer’s detection, applying deep 

learning techniques to analyze plasma levels of Aβ and tau 

proteins. The study demonstrated that deep learning models 

could predict the presence of AD with high accuracy, 

offering a less invasive alternative to CSF analysis. This 

work suggests that blood biomarkers and advanced 

computational techniques could play a significant role in 

early diagnosis, particularly in large-scale screening efforts. 
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In order to improve diagnosis accuracy, Gaeta et al. [20] 

integrated CSF biomarkers with amyloid PET imaging using 

machine learning methods. Several biomarker types were 

integrated to offer a more thorough evaluation of Alzheimer's 

pathology, which allowed for earlier and more precise 

identification. The study emphasizes how multimodal 
biomarker analysis might enhance the quality of diagnoses. 

Wang et al. [21] applied learning models to analyze 

Neurofilament Light chain (NfL) levels in both CSF and 

blood plasma. Elevated NfL levels were found to correlate 

strongly with neurodegeneration and cognitive decline, 

making NfL a promising biomarker for early Alzheimer’s 

detection. The study demonstrated that learning models 

could effectively integrate NfL data with other clinical 

variables, achieving high predictive accuracy. This research 

underscores the value of NfL as a biomarker in detecting 

early neurodegenerative changes associated with 

Alzheimer’s. 

Mann et al.'s [22] investigation on proteomics—a 

comprehensive analysis of proteins—in discovering AD 

biomarkers. The study analyzed complicated protein data 

from blood samples using machine learning methods. The 

study showed the promise of proteomics in early disease 

identification by finding certain protein signatures linked to 

AD. Classification individuals based on their proteomic 

profiles using machine learning models, such as random 

forests and support vector machines, achieved significant 

diagnostic accuracy. 

Winchester et al. [23] investigated the use of 
metabolomics, which studies small molecules known as 

metabolites, as biomarkers for AD. They applied machine 

learning techniques to analyze metabolomic data, identifying 

metabolic patterns that could differentiate between AD 

patients and healthy controls. The study showed that changes 

in specific metabolites could serve as early indicators of 

Alzheimer’s, and machine learning models were instrumental 

in detecting these patterns. This approach highlights the 

potential of metabolomics in providing a non-invasive 

method for early diagnosis. 

Heba M. AL-Bermany and Sura Z. AL-Rashid [24] 

focused on gene expression data to identify genetic 

biomarkers for AD. The study applied deep learning models 

to large datasets of gene expression profiles, identifying key 

genes associated with AD risk. By analyzing gene expression 

patterns, the research demonstrated that deep learning could 
predict the likelihood of developing Alzheimer’s at an early 

stage, offering a personalized approach to diagnosis. This 

work illustrates the potential of integrating genetic data with 

machine learning for precise and early AD detection. 

AlMansoori et al. [25] suggested a multi-biomarker 

strategy that included information from blood and clinical 

feature biomarkers to enhance AD identification. By using 

machine learning models to assess the entire data, the team 

was able to achieve a diagnosis accuracy that was higher than 

that of any one biomarker strategy. This study emphasizes 

how crucial it is to employ a multimodal approach to 

improve the early diagnosis of AD. This approach involves 
analyzing many biomarker types simultaneously utilizing 

cutting-edge computer tools. 

So, biomarkers provide critical insights into the 

biological processes underlying AD, and when combined 

with machine learning and deep learning, they offer 

significant potential for early detection. However, the 

effectiveness of these methodologies is influenced by several 

factors, including the variability in individual biomarker 

levels and the need for large, well-annotated datasets to train 

robust models. Integrating multiple biomarkers to form a 

comprehensive diagnostic profile remains challenging but 
promises more accurate and early diagnosis. The use of 

advanced computational models in analyzing biomarker data 

is still in the early stages, and more research is needed to 

validate these approaches in clinical settings. 

2.4. Analysis 

Table 1 summarizes the key methodologies, findings, 

and critical analyses, providing a clear overview of the 

effectiveness and challenges of different approaches in early 

AD detection. 

 
Table 1. Analysis of medical imaging, cognitive tests and biomarker techniques 

Category Paper Methodology Key Findings Critical Analysis 

Medical 
Imaging 

Saman et al. [9] 
Deep Learning 

(CNNs) 

High accuracy in detecting 

structural changes in the brain 

through MRI images. 

It effectively identifies early AD 

stages but requires large datasets and 

computational resources. 

Jack et al. [10] 

Machine 

Learning (SVM, 
RF) 

PET scans showed metabolic 
decline predictive of AD. 

PET scans are effective but expensive 

and less accessible for routine 
screening. 

Weiner et al. [11] 
Hybrid Models 

(ML+DL) 

The combination of MRI and 

PET improved the classification 

accuracy of AD. 

Combining modalities improves 

results but increases complexity and 

cost. 

Helaly et al. [12] 
Transfer 

Learning 

Used pre-trained models for 

MRI data, achieving good 

Transfer learning mitigates data 

scarcity but may lead to overfitting if 
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performance with limited 

labeled data. 

mishandled. 

Krüger et al. [13] Deep CNN 
Used Deep CNN to enhance 

MRI-based AD detection. 

CNN gives good accuracy but 

requires careful model selection and 

validation. 

Cognitive 

Tests 

Irfan et al. [14] 

Ensemble 

techniques for 

analyzing 

cognitive test 
scores 

Detected subtle cognitive 

patterns indicative of early AD; 

Ensemble techniques 

outperformed traditional 
methods. 

Ensemble techniques enhance the 

sensitivity and specificity of early 

AD detection. However, the model's 

complexity and need for extensive 
data might limit its accessibility and 

generalizability. 

Kulvinder 

Panesar and 

María Beatriz 

Pérez Cabello de 

Alba [15] 

Natural 

Language 

Processing 

(NLP) for 

speech and 

language 

analysis 

Identified linguistic markers of 

early AD, such as filler words 

and reduced sentence 

complexity. 

NLP provides unique insights into 

early cognitive decline through 

linguistic analysis, but its 

effectiveness depends on the quality 

and variability of language data 

available, which could limit its 

broader application. 

Grober et al. [16] 

Free and Cued 

Selective 

Reminding Test 

(FCSRT) + 
Machine 

Learning 

Machine learning identified 

memory retrieval patterns 

distinguishing early AD from 
healthy individuals. 

Tailored cognitive tests like FCSRT 

and machine learning offer targeted 

AD detection. However, focusing on 

specific cognitive domains might 
miss other early signs of AD, 

requiring complementary 

assessments. 

Petersen et al. 

[17] 

Longitudinal 

Cognitive Data 

+ Machine 

Learning 

Cognitive test scores predicted 

progression from MCI to AD 

years before clinical diagnosis. 

Longitudinal data analysis is valuable 

for early prediction, but the reliance 

on long-term data collection may 

delay actionable insights, 

necessitating faster methods for early 

intervention. 

Albert et al. [7] 

MMSE, MoCA 

+ Machine 

Learning 

ML models provide more 

reliable diagnoses by handling 

complex cognitive data better 
than traditional methods. 

Integrating multiple cognitive tests 

with machine learning enhances 

diagnostic accuracy. However, the 

potential for overfitting and the 

challenge of selecting the right 
combination of tests may limit its 

practical application. 

Biomarkers 

Wang et al. [21] 
Machine 

Learning 

NfL levels in CSF and plasma 

correlated with early 

neurodegeneration. 

It is a promising biomarker, but 

variability in NfL levels may affect 

accuracy. 

Mann et al. [22] 
Machine 

Learning 

Proteomics data is used to 

identify protein signatures 

associated with AD. 

Proteomics is robust but requires 

advanced tools and large datasets. 

Winchester et al. 

[23] 

Machine 

Learning 

(SVM) 

Metabolomic patterns identified 

as early indicators of AD. 

Metabolomics offers non-invasive 

diagnosis but is still in the early 

research stages. 

Heba M. AL-

Bermany and 

Sura Z. AL-

Rashid [24] 

Deep Learning 

Gene expression data was 

analyzed to predict AD risk, 

showing early detection 

potential. 

Gene expression data provides 

personalized insights but is expensive 

and data intensive. 

AlMansoori et al. 

[25] 

Multi-
Biomarker 

Integration 

Combined blood and clinical 
features biomarkers, achieving 

high diagnostic accuracy. 

Integration of multiple biomarkers is 
promising but complex and resource 

intensive. 
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The literature review and the analysis table underscore 

the significant advances in applying machine learning, deep 

learning, and natural language processing across key 

modalities: Medical Imaging, Cognitive Tests, and 

Biomarkers. Each modality has demonstrated potential in 

identifying early signs of AD, yet significant drawbacks 
persist when these methods are employed in isolation. 

Medical Imaging, while effective in capturing structural and 

functional brain changes, suffers from a dependence on large, 

high-quality datasets and challenges in model 

interpretability. Although improved by machine learning and 

NLP, cognitive tests often fail to capture the full spectrum of 

AD pathology. The need for consistent administration and 

extensive longitudinal data limits them. Biomarkers provide 

critical biological insights but face variability across 

individuals and complexity in integration, making it difficult 

to establish universal diagnostic criteria. 

These limitations highlight the inadequacies of relying 
solely on any modality for early AD detection. AD's inherent 

complexity and heterogeneity require a more comprehensive 

approach integrating multiple data sources. A multimodal 

approach, combining Medical Imaging, Cognitive Tests, and 

Biomarkers, offers the most promising path forward. By 

leveraging the strengths of each modality, such an approach 

can provide a more accurate, robust, and early diagnosis, 

ultimately leading to more effective interventions and better 

management of AD. 

3. Proposed Multimodal Framework 
A flowchart depicting a multimodal system intended for 

the early identification of AD is shown in Figure 1. This 

system integrates three different forms of data: biomarkers, 

imaging data, and cognitive data.  

Processing is done on these data categories using 

specific Deep Learning (DL) or Machine Learning (ML) 

techniques. The final prediction about the existence or stage 

of AD is then created by combining the separate outputs 

from these models. 

This framework has 4 components: working with 

Imaging data, working with Cognitive data, working with 

Biomarker data and performing aggregation. 

3.1. Imaging Data 

3.1.1. Dataset 

2 popular datasets can be used: OASIS-1 Dataset [26] 

and ADNI Dataset [27].  

 

The Open Access Series of Imaging Studies (OASIS) 

includes the OASIS-1 Dataset. It offers a compilation of 

information about brain imaging, especially MRI scans, 

which are essential for studying Alzheimer's disease. Cross-

sectional MRI data for 416 participants, ranging in age from 

18 to 96, with mild to moderate AD and cognitively healthy 
persons are included in the OASIS-1 dataset.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Multimodal AD detection framework 

Imaging Data Cognitive Data Biomarkers 

ML/DL Algo ML/DL Algo ML/DL Algo 

Aggregation 

AD Result 
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Another popular dataset for MRI imaging data utilized 

in Alzheimer's research is the AD Neuroimaging Initiative 

(ADNI). ADNI offers longitudinal MRI scans crucial for 

tracking the disease's evolution. Longitudinal MRI pictures 

are provided. In order to train models that can anticipate 

Alzheimer's based on alterations in brain structure 
throughout time, it is utilized to investigate the course of the 

illness.   

3.1.2. ML/DL Algorithms 

Any ML or DL algorithms can be used. But, as the 

dataset contains MRI data (images), CNNs are the most 

effective for feature extraction and pattern recognition in 

imaging like Convolutional Neural Networks (CNNs). Also, 

since MRI data is volumetric, 3D CNNs can be employed to 

capture spatial features across all three dimensions. 

The imaging data helps identify structural brain changes 

that correlate with the progression of Alzheimer's, such as 

atrophy in the hippocampus. 

3.2. Cognitive Data 

3.2.1. Dataset 

Two important datasets that can be used for cognitive 

analysis are the OASIS-3 Dataset [28] and the NACC 

Dataset [29]. 

The OASIS-3 dataset adds biomarker, clinical, 

longitudinal imaging, and cognitive data, building upon 

previous OASIS releases. This dataset contains 

neuropsychological tests and cognitive evaluations like the 

Mini-Mental State Examination (MMSE).  

Test results are among the organized cognitive data it 
includes. OASIS-3 monitors cognitive deterioration over 

time and trains algorithms that utilize cognitive performance 

to forecast when AD may manifest. 

A dataset comprising a diverse variety of cognitive test 

results from individuals across several AD Research Centers 

(ADRCs) is made available by the National Alzheimer's 

Coordinating Center (NACC).  

Data from organized cognitive tests is also included. 

This dataset is frequently used to investigate the connection 

between cognitive decline and illness and to create models 

that predict Alzheimer's based on cognitive evaluations. 

3.2.2. ML/DL Algorithms 
You may use any ML or DL method that works with 

time series data. However, models that perform well with 

time-series data, such as Recurrent Neural Networks (RNNs) 

or Long Short-Term Memory (LSTM) networks, can be used 

to interpret the cognitive data. These models may examine 

trends in cognitive deterioration over time, providing 

information about how Alzheimer's disease develops. 

The cognitive data analysis helps track the decline in 

cognitive functions, a hallmark of AD. 

3.3. Biomarker Data 

3.3.1. Dataset 

Two popular Biomarker analysis datasets are ROSMAP 

[30] and ADNI Biomarkers [31]. 

The Religious Orders Study and Memory and Aging 

Project (ROSMAP) dataset includes a wide range of data, 

including biospecimens, clinical and cognitive data, and 

detailed postmortem brain analysis. The biomarker data 

includes amyloid-beta, tau proteins, and other indicators 

relevant to Alzheimer’s. The dataset contains structured 

biomarker data. ROSMAP is used to study AD's biochemical 

aspects and develop models that can predict the disease 

based on biomarker levels. It is particularly useful for 

understanding the molecular mechanisms underlying 

Alzheimer’s. 

The ADNI dataset also provides extensive biomarker 
data from blood and Cerebrospinal Fluid (CSF), including 

levels of amyloid-beta and tau proteins. This dataset is key 

for researchers to identify early biochemical changes 

associated with Alzheimer's. It contains structured biomarker 

data. Similar to the ROSMAP dataset, ADNI biomarker data 

is used to understand the biochemical pathways of 

Alzheimer's and to develop predictive models based on early 

molecular changes. 

3.3.2. ML/DL Algorithms 

Structured data from biomarkers can be analyzed using 

Support Vector Machines (SVMs) or Ensemble Methods like 
Random Forests or DL algorithms like LSTM. These models 

are adept at handling high-dimensional structured data to 

classify the presence or risk of Alzheimer’s. 

Biomarkers offer a biochemical snapshot of Alzheimer's 

progression, providing crucial information that may not be 

evident in imaging or cognitive data. 

3.4. Aggregation of Results  

The aggregation step combines the predictions from 

each of the three modalities (Imaging, Cognitive, and 

Biomarkers) to produce a final result regarding the presence 

or stage of AD. 

 Weighted Average: Assigns different weights to each 
modality based on its importance or accuracy. 

 Majority Voting: If each modality provides a binary 

classification (e.g., AD vs. non-AD), the majority class 

among the modalities can be taken as the final result. 

 Stacked Generalization (Stacking): A meta-learner 

learns how to integrate the predictions of the various 

models in the best possible way by combining their 

outputs 
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 Bayesian Inference: Probabilistic models can combine 

predictions with uncertainties to make a more informed 

final decision. 

The aggregation step's objective is to ensure the system 

is resilient if one modality malfunctions or produces 

incomplete data. The combined data from all accessible 
sources creates the final forecast or AD Result. 

An inventive method for detecting AD early on is the 

multimodal framework, which combines biomarkers, 

cognitive tests, and imaging data to provide a comprehensive 

diagnostic tool. Diverse data formats can be used to record 

the diverse ways that AD presents, including biochemical 

changes, cognitive decline, and structural abnormalities in 

the brain. By examining these several data sources, the 

framework offers a multifaceted perspective on the illness, 

making it more successful than single-mode analysis at 

spotting early indicators of Alzheimer's. 

One of the key strengths of this framework lies in its 
ability to gather complementary insights from different 

modalities. Imaging data, such as MRI scans, can reveal 

physical changes in the brain that are characteristic of 

Alzheimer's. Cognitive tests track the decline in mental 

functions over time, offering another window into the 

disease's progression. Biomarkers, conversely, can detect 

biochemical processes associated with Alzheimer's, which 

might not be visible through imaging or cognitive tests alone. 

By combining these insights, the framework increases the 

chances of early detection, as subtle changes in one modality 

might signal the onset of the disease before significant 
symptoms appear in another. 

The framework's design also enhances diagnostic 

accuracy by aggregating results from the different modalities. 

This aggregation reduces the likelihood of false negatives, 

where the disease goes undetected, and false positives, where 

a patient is incorrectly diagnosed with Alzheimer's. The 

system is equipped to handle discrepancies between 

modalities, such as when one suggests the presence of 

Alzheimer's while others do not. In such cases, the system 

can flag the discrepancy and apply appropriate measures to 

address it, ensuring a more accurate diagnosis. 

Another crucial aspect of this framework is its 

robustness and flexibility. The system is designed to remain 

functional even if one type of data is missing or of poor 

quality. For instance, if imaging data is unavailable, the 

framework can still rely on cognitive tests and biomarkers to 

make a prediction, although it will indicate reduced 

confidence in the result due to the missing data. This feature 

ensures the system remains operational and provides 

valuable diagnostic information, even in less-than-ideal 

conditions. 

Importantly, including biomarkers and cognitive tests in 

the framework enables the possibility of detecting AD at a 

much earlier stage than traditional methods. Biomarkers, in 

particular, can indicate the presence of Alzheimer's years 

before clinical symptoms become evident. Similarly, 

cognitive tests can reveal early, subtle declines in mental 
function that might go unnoticed in everyday life. By 

incorporating these early indicators, the framework offers the 

potential to diagnose Alzheimer's much earlier, allowing for 

earlier intervention and treatment, which can significantly 

slow the disease's progression. 

So, it can be said that the proposed multimodal 

framework represents a sophisticated and comprehensive 

approach to AD detection. By integrating diverse data 

sources, it capitalizes on the strengths of each modality to 

form a robust, accurate, and early diagnosis tool.  
 

The ability to aggregate results from different modalities 

enhances diagnostic accuracy and ensures the system 

remains functional and reliable even in the face of 
incomplete data. This integrated approach is critical in the 

battle against Alzheimer's, where early detection can 

dramatically improve the effectiveness of treatments and 

interventions. 

4. Experimentations 
This section showcases how the proposed framework 

works. 

4.1. Dataset 

Three standard datasets have been used for the three 

modes proposed for early AD detection.  

4.1.1. OASIS-1 Dataset for Medical Imaging [26] 

The scientific community can access neuroimaging 

datasets for AD and brain aging research through the Open 

Access Series of Imaging Studies (OASIS) initiative. 80000 

Cross-sectional MRI scans from 416 people, ages 18 to 96, 

make up the OASIS-1 dataset. This dataset includes people 

with AD diagnoses as well as those who are cognitively 

normal.  
 

High-resolution Magnetic Resonance Imaging (MRI) 

images have been widely employed in brain structure 

analysis studies to find patterns linked to aging and 

neurodegenerative disorders such as Alzheimer's. 
Researchers may associate brain structures with cognitive 

performance and illness development using the dataset, 

including diagnostic data, clinical cognitive evaluations, and 

demographic information. 

This dataset mainly comprises neuroimaging data, 

specifically high-resolution MRI scans of the brain, which 

require specialized techniques like Convolutional Neural 

Networks (CNNs) for processing and analysis. 
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4.1.2. OASIS-3 Dataset for Cognitive Tests [28] 

An expansion of the OASIS study, the OASIS-3 dataset 

provides an extensive set of longitudinal neuroimaging, 

cognitive, and clinical data. Data from more than 1,000 

subjects, aged 42 to 95, who were observed across several 

visits, are included in this dataset, which is around 2800 in 
size. Cognitively normal people, those with Moderate 

Cognitive Impairment (MCI), and people with an AD 

diagnosis are all included in the OASIS-3 trial. A range of 

cognitive test results, including the Mini-Mental State 

Examination (MMSE) and further evaluations of executive 

function and memory, are included in the dataset. OASIS-3 

is a complete resource for researching the course of cognitive 

decline and the shift from normal aging to AD since it also 

offers MRI and PET scans and genetic and biomarker data. 

This dataset includes image data (MRI and PET) and 

structured data (cognitive test scores, clinical assessments). 

The structured data is similar to datasets like the Iris dataset 
but has a more complex structure due to multiple time points 

and different cognitive tests. 

4.1.3. ROSMAP Dataset for Biomarkers [28] 

The ROSMAP dataset combines two longitudinal cohort 

studies: the Religious Orders Study (ROS) and the Rush 

Memory and Aging Project (MAP). Clinical, pathological, 

and genetic data from more than 3,000 participants—many 

of them older individuals at risk of AD—are included in this 

collection. The ROSMAP dataset is especially rich in 

biomarker data, such as blood-based biomarkers like tau 

proteins and amyloid-beta (Aβ) and Cerebrospinal Fluid 

(CSF), which are essential to comprehend the molecular 

basis of AD. A thorough examination of the variables 

causing AD is made possible by the dataset's inclusion of 
gene expression data, proteomics, and thorough cognitive 

tests. 

The ROSMAP dataset primarily contains structured 

data, including numerical and categorical data related to 

biomarkers, genetics and cognitive test scores. This dataset 

resembles traditional structured datasets like the Iris dataset 

but is much richer and more complex due to the variety of 

biological and clinical measurements it includes. 

4.2. Architecture 

A multimodal framework for AD early detection is 

shown in the flowchart in Figure 2. In order to predict the 

existence of AD, this framework combines three different 
types of data: biomarker data, MRI images, and cognitive 

test data that have been processed using specific machine 

learning or deep learning techniques. 

4.2.1. MRI Images (OASIS-1 Dataset) with CNN Data Input 

MRI scans from the OASIS-1 Dataset detect anatomical 

alterations in the brain, such as hippocampal shrinkage, 

frequently linked to Alzheimer's disease. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 Multimodal framework example 
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Algorithm 

These MRI pictures are processed using convolutional 

neural networks, or CNNs. Because CNNs employ 

convolutional layers to record spatial hierarchy in pictures, 

they are very successful in image recognition and 

classification applications. In this case, the CNN pulls crucial 
information from the MRI pictures that could point to the 

beginning of Alzheimer's. 

Architecture 

A simple CNN has been used for experimentation. The 

details are as follows. 

Input Layer 

The input layer receives MRI images resized to 224x224 

pixels with three color channels (RGB). 

Convolutional Block 1: 

 Conv2D Layer: 32 filters with a kernel size 3x3, using 

'same' padding and ReLU activation. 

 Batch Normalization: Applied to normalize the 
activations and speed up convergence. 

 MaxPooling Layer: Pool size of 2x2 to reduce the spatial 

dimensions. 

Convolutional Block 2: 

 Conv2D Layer: 64 filters with a kernel size 3x3, using 

'same' padding and ReLU activation. 

 Batch Normalization: Again, it is applied to normalize 

the activations. 

 MaxPooling Layer: Pool size of 2x2 for further 

dimensionality reduction. 

Convolutional Block 3: 

 Conv2D Layer: 128 filters with a kernel size 3x3, using 

'same' padding and ReLU activation. 

 Batch Normalization: Maintains stability during training. 

 MaxPooling Layer: Pool size of 2x2. 

Fully Connected Layers 

 Dense Layer: 256 neurons with ReLU activation. 

 Dropout Layer: 50% dropout rate to prevent overfitting. 

 Dense Layer: 128 neurons with ReLU activation. 

 Dropout Layer: 50% dropout rate. 

Output Layer 
Dense Layer: 2 neurons with softmax activation for 

binary classification (Alzheimer's vs. Non-Alzheimer's) 

4.2.2. Cognitive Data (OASIS-3 Dataset) with LSTM Data 

Input 

The OASIS-3 Dataset includes data from various 

cognitive tests designed to measure memory, attention, 

language, and other cognitive functions that tend to decline 

in Alzheimer's patients. 

Algorithm 

This sequential cognitive data is analyzed using 

Recurrent Neural Networks (RNNs), specifically Long 

Short-Term Memory (LSTM) networks. LSTMs are perfect 
for capturing the temporal dependencies and trends in the 

scores of cognitive tests over time since they are especially 

well-suited to handle time series data and sequential patterns. 
 

Architecture 
A basic LSTM architecture has been developed.  
 

Input Layer 

The input consists of a time-series data sequence (e.g., 

multiple cognitive test scores over time). 

LSTM Layer 1: 

 LSTM Layer: 64 units with a recurrent dropout of 20% 

to handle overfitting. 

 Return Sequences: The output can be passed to the next 

LSTM layer. 

LSTM Layer 2: 

LSTM Layer: 128 units with a recurrent dropout of 20%, 

further capturing long-term dependencies. 
 

Dense Layer 

Dense Layer: 128 neurons with ReLU activation to 

process the output from the LSTM layers. 
 

Output Layer 

Dense Layer: 2 neurons with softmax activation for 

binary classification (Alzheimer's vs. Non-Alzheimer's). 

This LSTM architecture is optimized to capture temporal 

patterns in cognitive decline, often early AD indicators. The 

recurrent nature of LSTM allows it to remember long-term 

dependencies, which is crucial in understanding cognitive 

deterioration. 
 

4.2.3. Biomarkers (ROSMAP Dataset) with LSTM Data Input 

The ROSMAP collection includes biomarker data and 

biochemical indicators associated with AD. Examples of 

these biomarkers are the amounts of tau and amyloid-beta 

proteins in Cerebrospinal Fluid (CSF). 

 
Algorithm 

LSTM networks are used to assess patterns and find 

anomalies that may indicate the early stages of Alzheimer's 

disease in biomarker data, just like in the cognitive data. 

Because biomarker levels can change over time, their 

temporal character makes them ideal for LSTM analysis. 
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Input Layer 

Time-series data representing biomarker levels (e.g., 

amyloid-beta, tau proteins) over multiple time points. 

LSTM Layer 1: 

 LSTM Layer: 64 units with a recurrent dropout of 20% 

to mitigate overfitting. 

 Return Sequences: Enabled for sequential processing. 

LSTM Layer 2: 

LSTM Layer: 128 units with a recurrent dropout of 20% 

to capture detailed temporal relationships. 

Dense Layer 

Dense Layer: 128 neurons with ReLU activation to 

process features extracted by the LSTM layers. 

Output Layer 

Dense Layer: 2 neurons with softmax activation for 

binary classification. 

The LSTM architecture for biomarkers is designed to 
track biochemical changes over time, which could indicate 

the onset of AD before clinical symptoms manifest. The 

sequential processing capability of LSTM is particularly 

advantageous in capturing the progression of biomarker 

levels. 

4.2.4. Aggregation: Weighted Average 

Once each mode has been processed through its 

respective algorithm, the outputs are aggregated to make a 

final prediction. A weighted average method combines the 

MRI, cognitive, and biomarker analysis results in this 

example. 

Weighted Average: The weighted average assigns 
different levels of importance to each mode's result, 

potentially based on their predictive accuracy or data 

availability.  
 

For instance, if MRI data is considered the most reliable 

indicator, it might be given a higher weight in the final 

calculation. The aggregation ensures that the model leverages 

the strengths of each modality to arrive at a more accurate 

and robust AD prediction. 

4.2.5. Final AD Result 

The combined result provides a final prognosis about the 

existence or absence of AD. This multimodal technique 
integrates several viewpoints on the disease's appearance, 

greatly improving the forecast accuracy. 

4.3. Results and Discussion 

Accuracy, precision, recall, F1-score, and the area under 

the receiver operating characteristic curve (AUC-ROC) were 

the main metrics for assessing the multimodal framework's 

performance.  

The corresponding model (CNN for MRI pictures, 

LSTM for cognitive data, and LSTM for biomarkers) was 

used to process each dataset (MRI images, biomarkers, and 

cognitive data). The outputs of these models were then 

combined using a weighted average technique. 

4.3.1. MRI Images (CNN) 

The high recall rate (87%) indicates that the CNN was 

particularly effective at identifying true positives, which is 

crucial for early diagnosis. The AUC-ROC of 0.90 suggests 

that the model distinguishes between patients with and 

without AD. 

4.3.2. Cognitive Data (LSTM) 

Although slightly lower in accuracy than MRI images, 

the cognitive data model still provided valuable information 

with a recall of 81% and an AUC-ROC of 0.85. The LSTM 

effectively captured sequential patterns in cognitive decline, 
making it an important component of the multimodal 

framework. 

4.3.3. Biomarkers (LSTM) 

The LSTM model applied to biomarker data also 

showed strong performance, with an AUC-ROC of 0.88. 

Biomarkers are known to reflect early biochemical changes 

associated with AD, and their inclusion in the framework 

enhances early detection capabilities. 
 

Table 2. Results of the multimodal framework 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC-ROC 

MRI (CNN) 88.5 90.2 85.7 87.9 0.92 

Cognitive (LSTM) 85.3 86.8 83.2 85 0.89 

Biomarkers (LSTM) 83.7 84.5 82.1 83.3 0.88 

Aggregated Model 92.1 93.4 91.2 92.3 0.95 

 



Tatwadarshi P. Nagarhalli et al. / IJECE, 11(11), 12-25, 2024 

23 

All measures indicated improvement when comparing 

the overall performance to the individual models. AUC-ROC 

of 0.92, a 90% recall rate, and an accuracy of 88% show that 

integrating the outputs from many modalities lowers the 

chance of false positives and false negatives. This implies 

that using many modalities provides a more complete picture 
of the illness and lessens the drawbacks of using just one 

modality. 

The improved performance of the multimodal 

framework, particularly its high recall rate, highlights its 

potential for early AD diagnosis. The approach can recognize 

early indications of AD that may go unnoticed by traditional 

techniques by combining MRI, cognitive, and biomarker 

data. One especially promising method for identifying the 

condition before substantial symptoms appear and providing 

an opportunity for early management is using biomarkers 

and cognitive tests. 

5. Integration of Machine Learning and Deep 

Learning in Clinical Workflows 
Carefully integrating Machine Learning (ML) 

techniques into current healthcare processes is necessary to 

successfully implement the suggested multimodal framework 

in clinical settings. This entails utilizing Electronic Health 

Records (EHRs) to seamlessly integrate imaging data, 

biomarker readings, and cognitive test results. Designing 

clinician-friendly interfaces with interpretable results to aid 

in diagnostic decision-making should be the primary goal of 

real-world deployment. In order to preserve diagnostic 

accuracy, the framework must also be able to adjust 

prediction models to noisy or missing data frequently seen in 

clinical settings. 

The first step toward practical implementation is to 

create systems that work with current diagnostic instruments, 

such as imaging Picture Archiving and Communication 

Systems (PACS) and biomarker data Laboratory Information 

Systems (LIS). Interoperability issues should be resolved 

throughout the integration process by following recognized 

healthcare data standards such as DICOM and HL7. 

Pilot implementations in clinical contexts are essential to 

test and improve the framework. These studies need to 

demonstrate its real-time usefulness by showing improved 

diagnostic accuracy and lower mistake rates in identifying 
Alzheimer's disease in its early stages. Case studies 

demonstrating these uses will further validate the 

framework's potential, opening the door for wider 

deployment in other healthcare settings. 

Lastly, healthcare workers must receive ongoing training 

on how to evaluate ML-driven results. Clinicians' faith in AI-

assisted diagnostic tools and their incorporation into standard 

practice are fostered by educating them on the framework's 

advantages and disadvantages. The framework can 

potentially transform the diagnosis and treatment of 

Alzheimer's disease by bridging the gap between clinical 

application and technology. 

6. Conclusion 
One of the most difficult and destructive 

neurodegenerative diseases is Amyloidosis (AD), which 

sometimes goes undiagnosed until there has been a 

noticeable decrease in cognitive function. This important 

problem is addressed by the innovative and reliable 

multimodal framework for early AD identification, which 

combines biomarkers, cognitive data, and MRI imaging into 

a single, all-inclusive diagnostic tool. By utilizing cutting-
edge machine learning and deep learning methods, such as 

Convolutional Neural Networks (CNN) for imaging data and 

Long Short-Term Memory (LSTM) networks for cognitive 

data and biomarkers, this framework uses the distinct 

advantages of each data modality. 

This multimodal framework's significance stems from its 

capacity to offer a multifaceted examination of AD. Since 

AD is complicated and multivariate, traditional diagnostic 

techniques usually depend on a single data source. In 

contrast, this approach provides a more comprehensive 

understanding of the illness by combining anatomical 
alterations in the brain, cognitive function, and molecular 

indicators. The accuracy of AD detection is much improved 

by this integrated method, which also lowers the possibility 

of false positives and false negatives, which are frequent 

problems in modern diagnostic procedures. 

Furthermore, the framework's incorporation of 

biomarkers and cognitive assessments is crucial for early 

detection. Amyloid-beta and tau proteins are examples of 

biomarkers that can indicate the existence of Alzheimer's 

disease long before symptoms appear. Longitudinal analysis 

of cognitive tests might reveal minor losses in mental 

function that could otherwise go unnoticed. The framework 
enhances the likelihood of detecting Alzheimer's disease in 

its initial phases, maybe before permanent brain damage, by 

integrating these preliminary symptoms into the diagnostic 

procedure. For those who are at risk of AD, early 

identification is essential for prompt care, which can halt the 

disease's course and enhance quality of life. The resilience 

and adaptability of the suggested framework are two other 

important benefits. Advanced aggregation methods, 

including weighted averaging, ensure the system is 

dependable even when there are gaps or partial data. For 

example, even with a reduced degree of confidence, the 
system may still make a forecast based on biomarker and 

cognitive data without MRI images. The framework's 

versatility allows it to be applied in various clinical contexts, 

including those with restricted access to certain diagnostic 

resources. 
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Thus, it can be concluded that the multimodal 

framework that has been suggested provides an advanced and 

all-encompassing approach to the problem of early 

Alzheimer's detection. Through integrating many data 

sources and applying state-of-the-art deep learning 

architectures, AD may be diagnosed with greater accuracy, 
reliability, and early detection. Ultimately, this method 

improves patient outcomes by improving the diagnosis 

process overall and providing access to earlier and more 

potent therapies. This framework represents a significant 

advancement in the battle against AD as medical AI develops 

and shows how multimodal techniques might transform the 

diagnosis and treatment of complicated neurodegenerative 

illnesses. 

6.1. Future Work 

In order to gain a better understanding of the metabolic 

and functional alterations in the brain linked to Alzheimer's 

disease, future research enhancing the suggested multimodal 
framework for early Alzheimer's detection should 

concentrate on incorporating additional data sources, such as 

Positron Emission Tomography (PET) and functional 

Magnetic Resonance Imaging (fMRI). Customized 

diagnostic models based on each person's unique biomarker 

profile, genetic predispositions, and lifestyle variables should 

be created to improve prediction specificity. Moreover, 

integrating Explainable AI (XAI) techniques will enhance 

interpretability, cultivate physician confidence, and facilitate 

practical implementations. 

Validation across various clinical settings is crucial to 

guarantee the framework's durability and scalability, 

especially for those with different demographic and 
socioeconomic situations. Longitudinal data analysis may be 

used to forecast the course of the illness and pinpoint 

transitional periods, offering crucial new information on the 

many stages of Alzheimer's. The framework's usefulness in 

therapeutic research is further highlighted by the ability to 

significantly improve treatment outcomes by tying early 

diagnostic results with customized intervention tactics. 

It will be necessary to optimize computational needs and 

use readily available diagnostic tools to adapt the system for 

use in resource-constrained contexts. Integration of wearable 

technologies, such as cognitive monitoring through ongoing 

behavioral data, may increase the framework's usefulness. 
These developments will strengthen the multimodal 

approach's position as a revolutionary diagnostic tool in the 

fight against neurodegenerative illnesses and increase its 

applicability in international Alzheimer's detection 

initiatives.
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