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Abstract - This study investigates the application of Machine Learning (ML) for developing predictive pathways in higher 

education, focusing on the software engineering bachelor program at Al-Zaytoonah University of Jordan. The primary objective 

is to create a comprehensive mapping system that assists academic planning by exploring various scenario combinations. The 

study utilizes the Apriori algorithm to identify frequent item sets and generate association rules, thus providing a robust 

approach for predicting academic trajectories. The analysis involves extracting and restructuring data from the study plan, 

followed by in-depth pattern identification using advanced ML techniques. The results emphasize the importance of 

incorporating domain knowledge to enhance prediction accuracy and reliability. This study lays the foundation for innovative 

academic planning tools, offering significant potential for broader applications in educational and other domains. Future work 

will focus on refining the predictive models and expanding the approach to other educational programs, aiming to further 

improve the effectiveness of academic planning and decision-making processes.  
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1. Introduction  
Machine Learning (ML) holds transformative potential 

for education by offering customized instruction and real-time 

feedback, which significantly enhances learning outcomes and 

the overall quality of education [1]. Through personalized 

educational experiences, machine learning helps students 

grasp complex concepts more effectively and maintain higher 

levels of engagement. Additionally, it improves assessment 

and evaluation processes by reducing biases inherent in 

traditional methods. However, association rules in machine 

learning often face limitations due to predefined support score 

thresholds, which can restrict the accuracy of impact 

assessments [2, 3]. 

While ML techniques are widely used to predict general 

student outcomes, there remains a gap in applying these 

techniques for guiding students through personalized 

academic pathways within structured, requirements-intensive 

curricula. In programs such as software engineering, students 

must navigate complex course requirements, prerequisites, 

and credit hour constraints, making effective academic 

planning challenging. This study addresses this gap by 

developing a machine learning-based predictive pathway 

model specifically tailored to the software engineering 

bachelor’s program at Al-Zaytoonah University of Jordan. 

Addressing this issue requires exploring alternative 

methodologies to refine these thresholds and enhance 

accuracy. By integrating domain knowledge into association 

rule generation with defined restrictions, more meaningful 

combinations and a comprehensive understanding of datasets 

can be achieved [4]. The predictive pathways are an 

innovative solution designed to address significant challenges 

faced by students in the software engineering bachelor 

program at Al-Zaytoonah University of Jordan.  

This study aims to comprehensively present viable 

pathways in a structured format, assisting students, academic 

advisors, and stakeholders in making informed decisions 

regarding course selections (Force). This approach ensures 

strict adherence to academic requirements and credit hour 

limitations inherent in the program. The software engineering 

bachelor program at Al-Zaytoonah University spans 133 credit 

hours over four academic years, reflecting the university's 

commitment to offering a robust and well-rounded 

educational experience.  

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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The program operates within a structured framework of 

three distinct semesters each academic year: the first semester, 

the second semester, and the summer semester; these 

semesters are crucial milestones in the academic journey, 

guiding students toward meeting credit hour thresholds while 

ensuring balanced academic progression. However, 

navigating the course pathways within this program presents 

significant challenges. The intricate nature of academic 

planning requires a deep understanding of credit hour 

limitations, prerequisite sequences, and strategic course 

allocation across semesters. Additionally, the dynamic nature 

of credit hour constraints, especially after reaching 90 credit 

hours, adds complexity that demands careful adaptation and 

planning to ensure a seamless academic trajectory [4, 5]. 

Machine learning methods can predict various scenarios based 

on historical data and patterns [6]. 

The primary goal of this study is to leverage machine 

learning to develop a predictive pathway approach tailored to 

the needs of students in the software engineering bachelor 

program at Al-Zaytoonah University of Jordan. This approach 

aims to provide a clear and structured presentation of viable 

academic pathways, helping students, academic advisors, and 

stakeholders make informed decisions regarding course 

selections. The study seeks to enhance academic planning and 

decision-making within the program by ensuring strict 

adherence to academic requirements and credit hour 

limitations. 

The significance of this study is multifaceted. Firstly, it 

has the potential to revolutionize educational practices by 

offering customized instruction and real-time feedback, 

leading to improved learning outcomes and greater student 

engagement. Secondly, it aims to create a fairer assessment 

process by mitigating traditional biases. Thirdly, the predictive 

pathway approach offers a structured framework for academic 

planning, helping students and advisors navigate the 

complexities of course selection and academic progression. 

Lastly, the methodologies and insights from this study can be 

adapted and applied to other educational institutions, 

contributing to the broader field of educational technology and 

administration. 

This article is organized methodically to guide readers 

through our research process. It starts with Section 2, which 

reviews existing studies on scenario prediction using machine 

learning. Building on this foundation, Section 3 introduces our 

predictive pathway approach, detailing the application of 

machine learning techniques. Section 4 outlines the 

experimental setup and results, highlighting the process of 

dataset generation and the implementation of three analytical 

tiers using Python 3.9 to derive statistical outcomes for 

different scenarios. In the subsequent section, we discuss our 

findings, addressing the challenges encountered and future 

directions for research. Through this predictive approach, we 

aim to provide a detailed understanding and practical solutions 

to enhance academic planning and decision-making for 

software engineering students at Al-Zaytoonah University. 

 

2. Literature Review and Scenario Prediction 

Using Machine Learning 
In this section, there are two main subsections. Section 

2.1 provides an overview of how Machine Learning (ML) 

predicts students' academic performance. Section 2.2 presents 

a detailed analysis of alternative approaches and methods 

employed in scenario prediction, comparing them with 

machine learning-based approaches. It also highlights the 

strengths and limitations of various methods used for scenario 

prediction in educational settings. 
 

2.1. Overview 

Machine Learning (ML) has emerged as a powerful tool 

in the education sector, offering the potential for personalized 

learning experiences and more effective dissemination of 

educational content. With the increasing volume of data and 

evolving needs of higher education, particularly in digital 

education, ML techniques have significantly grown, creating 

more efficient learning experiences for diverse student 

populations [7]. One of the primary applications of ML in 

education is the provision of personalized learning 

experiences, which can significantly improve student 

engagement and predict academic performance and 

employability [8, 9]. Researchers have explored various ML 

techniques to address these goals. For instance, ML algorithms 

have been used to predict students' Graduation On Time 

(GOT) and estimate student outcomes in degree programs. 

Techniques such as Random Forest, Support Vector Machine, 

K-Nearest Neighbors, and Naïve Bayes have been employed 

and validated through cross-validation and parameter tuning 

[10, 11]. 
 

ML is also utilized to assess teaching effectiveness and 

inform instructional strategies. Academic administrators can 

leverage ML to identify areas of strength and weakness in 

teaching faculty, enabling targeted improvements in 

educational quality. Studies have demonstrated the application 

of ML in evaluating teacher effectiveness, thereby aiding in 

developing more effective instruction [1]. Numerous studies 

have focused on the efficacy of ML in predicting students’ 

academic performance. For example, research has 

investigated the use of Generative Adversarial Networks 

(GANs) and Artificial Neural Networks (ANNs) to predict 

student performance and enhance the quality of information in 

universities. These studies highlight the potential of ML 

techniques to provide valuable insights into student 

performance, although they do not explicitly address other 

researchers' inquiries within the academic domain. 
 

2.2. Related Works 

This section provides an in-depth analysis of alternative 

approaches and methods employed in scenario prediction, 

comparing them with machine learning-based approaches. 
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Statistical methods have long been used in educational data 

analysis. Techniques such as linear regression, logistic 

regression, and factor analysis have been employed to predict 

student outcomes and identify factors influencing academic 

performance. While effective, these methods often lack the 

ability to handle large datasets and complex relationships as 

efficiently as machine learning algorithms. 

• Linear Regression: Used to predict student retention rates 

based on high school GPA and standardized test scores. 

This method is effective in educational settings but is 

limited in handling complex, non-linear relationships 

[12]. 

• Logistic Regression: Employed to identify at-risk 

students by analyzing demographic and academic data. It 

effectively predicts student dropout but requires extensive 

data preprocessing and feature selection [13]. 

• Factor Analysis: Identifies factors affecting student 

motivation and engagement. This method provides 

insights into key elements influencing student success but 

lacks predictive capabilities compared to more advanced 

machine learning methods [14]. 

• Machine Learning Algorithms: Demonstrate superior 

performance in predicting student outcomes due to their 

ability to manage large datasets and identify complex 

patterns. Algorithms such as Random Forest, Support 

Vector Machine, K-Nearest Neighbors, and Naïve Bayes 

have been tested to predict students' Graduation on Time 

(GOT) and estimate outcomes in degree programs. These 

algorithms have been validated using cross-validation and 

parameter tuning, showing promising results in various 

studies [15, 16]. 

• Generative Adversarial Networks (GANs) and Artificial 

Neural Networks (ANNs) are employed to enhance the 

quality of information and predict student performance. 

These advanced machine learning models are particularly 

effective in handling non-linear relationships and large 

datasets, making them suitable for complex educational 

data. Studies have shown these models can significantly 

improve the accuracy of predictions compared to 

traditional methods [17]. 

• Decision Trees and Random Forest: Among the most 

effective techniques for predicting student performance. 

These models are easy to interpret and provide insights 

into factors influencing academic outcomes. They have 

been widely used to assess teacher effectiveness, inform 

instructional strategies, and predict student success [18, 

19] 

• Support Vector Machines (SVM) and K-Nearest 

Neighbors (KNN): Popular machine learning algorithms 

used in educational prediction. SVM is effective in high-

dimensional spaces and suitable for both regression and 

classification tasks. KNN is a simple, instance-based 

learning algorithm that is easy to implement and interpret. 

Both algorithms have shown effectiveness in predicting 

student outcomes and identifying at-risk students [20] 

There are many traditional statistical methods, such as 

linear and logistic regression, with advanced machine learning 

techniques, including GANs and ANNs. Traditional methods 

are user-friendly and interpretable but struggle with complex 

and large datasets. In contrast, machine learning models excel 

in accuracy and handling complexity but require significant 

computational resources and technical expertise. Selecting the 

appropriate method depends on data complexity and analysis 

goals, with a combination of both approaches potentially 

enhancing educational outcomes. 

Table 1. Comparison of scenario prediction methods in education 

Methods Strengths Limitations 

Linear 

Regression 

Effective for 

simple, linear 

relationships; 

interpretable 

Struggles with 

complex, non-linear 

relationships 

Logistic 

Regression 

Good for binary 

classification (e.g., 

dropout 

prediction); 

interpretable 

Requires extensive 

preprocessing and 

feature selection; 

limited to binary 

outcomes 

Factor 

Analysis 

Identifies 

underlying factors 

affecting 

performance; 

interpretable 

Lacks predictive 

capabilities; not 

suitable for large, 

complex datasets 

Machine 

Learning 

Algorithms 

Handles large 

datasets well; 

identifies complex 

patterns; high 

predictive accuracy 

Requires significant 

computational 

resources and 

tuning; less 

interpretable 

GANs and 

ANNs 

Handles non-linear 

relationships; 

effective for 

complex datasets; 

high accuracy 

Computationally 

intensive; requires 

large datasets and 

careful tuning 

Decision 

Trees and 

Random 

Forest 

Easy to interpret; 

identifies key 

factors; effective 

for classification 

and regression 

Can be prone to 

overfitting; requires 

careful tuning and 

validation 

SVM and 

KNN 

Effective in high-

dimensional 

spaces; good for 

both classification 

and regression 

SVM requires 

parameter tuning; 

KNN can be 

computationally 

intensive for large 

datasets 

 

Table 1 highlights the strengths and limitations of various 

methods used for scenario prediction in educational settings. 

Traditional statistical methods like linear and logistic 

regression are often more interpretable and straightforward. 

These methods provide simplicity and clarity in their 

predictions, making them accessible for educators and 
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administrators who may not have a deep technical 

background. However, they struggle to handle the complexity 

and scale of modern educational data, particularly when it 

involves non-linear relationships or large datasets. 

In contrast, machine learning algorithms and advanced 

techniques like Generative Adversarial Networks (GANs) and 

Artificial Neural Networks (ANNs) offer superior 

performance and accuracy. These advanced models excel in 

managing large datasets and identifying complex patterns, 

making them highly effective for predicting student outcomes 

and other educational scenarios. Despite their advantages, 

these methods require significant computational resources and 

expertise to implement effectively. They are also less 

interpretable than traditional statistical methods, hindering 

their adoption in some educational settings. 

Based on Table1, A critical gap in academic planning by 

using the Apriori algorithm to identify common course 

patterns within a degree program, enabling scenario 

predictions that cater to individual student needs. Unlike other 

approaches, our model integrates specific degree requirements 

and prerequisites, providing practical guidance aligned with 

academic policies. This section examines current 

methodologies, evaluates their effectiveness, and highlights 

our predictive pathway model's unique contributions to the 

broader field of machine learning in education. 

By understanding the differences between these 

methodologies, researchers and educators can better choose 

the appropriate tools for their specific needs and objectives. 

While traditional statistical methods offer ease of use and 

interpretability, advanced machine learning models provide 

the accuracy and complexity needed for modern educational 

data analysis. Selecting the right approach depends on the 

specific requirements of the educational setting, including the 

nature of the data and the goals of the analysis. Ultimately, by 

leveraging the strengths of both traditional and advanced 

methodologies, educators and researchers can enhance 

educational outcomes through more informed decision-

making. This informed approach allows for selecting the most 

suitable predictive tools, leading to better planning, 

intervention, and overall improvement in educational 

practices. 

3. Predictive Pathway Approach Leveraging 

Machine Learning (PPALML) 
Predictive Pathway Approach Leveraging Machine 

Learning (PPALML) is organized into three distinct tiers 

designed to define and preserve specific domains. These 

elicitation, elaboration, and reinforcement tiers work together 

to create a comprehensive mapping system. This system 

allows for the exploration of various combination scenarios, 

facilitating a thorough investigation of diverse possibilities, as 

shown in Figure 1. 

These elicitation, elaboration, and reinforcement tiers 

work together to create a comprehensive mapping system. 

This system allows for exploring various combination 

scenarios, facilitating a thorough investigation of diverse 

possibilities. 

Figure 1 visually represents the flow and interaction 

between different components of the predictive pathway 

approach. It demonstrates how data is systematically 

transformed and analyzed through each tier to produce 

meaningful scenarios ultimately. The stages involved in the 

predictive pathway approach, which leverages machine 

learning techniques to model study plan scenarios, are detailed 

in subsections 3.1, 3.2, and 3.3. 

Fig. 1 Predictive Pathway Approach Leveraging Machine Learning (PPALM)
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3.1. Elicit Dataset Tier 

The Elicit Dataset process, as shown in Figure 1, involves 

extracting and restructuring data from the study plan for the 

software engineering bachelor's program [21]. This program 

requires a total of 133 credit hours, with most courses assigned 

3 credit hours each, except for one specific course that carries 

1 credit hour. Therefore, completing the bachelor's degree in 

software engineering necessitates 45 individual courses. 

Notably, students must complete 90 credit hours, equivalent to 

30 courses, before registering for the 1-credit hour course. 

 

The minimum time span to complete the bachelor’s 

degree is 3 academic years. This means that students need to 

complete 45 credit hours each academic year, distributed as 

follows: 15 courses in the first academic year (45 credit 

hours), 15 courses in the second academic year (45 credit 

hours), and 15 courses in the third academic year (43 credit 

hours), which includes the specific 1-credit hour course. 

Typically, the normal span for completing the degree ranges 

from 4 to 6 academic years, with a maximum limit of 7 years. 

Students who fail to complete the 133 credit hours within this 

period are terminated from the program. 

 

Each academic year is structured into three semesters: the 

first semester, the second semester, and the summer semester. 

The first and second semesters are mandatory, while the 

summer semester is elective. For the first and second 

semesters, students can choose to register for 12, 15, or 18 

credit hours, or alternatively, 13, 16, or 19 credit hours if they 

have already completed 90 credit hours. For the summer 

semester, students can register for 0, 6, or 9 credit hours or 0, 

7, or 10 credit hours under the same condition. Once students 

have completed 90 credit hours, they have a one-time choice 

of registering for 13, 16, or 19 credit hours in the first or 

second semesters and 0, 7, or 10 credit hours in the summer 

semester, focusing on the remaining 44 credit hours. 

 

A correlation-based approach is used to create precise 

datasets. This method identifies relationships between various 

items within the dataset. Positive correlation values near 1 

indicate a strong positive relationship, values around 0 

indicate no relationship, and negative values near -1 indicate 

a negative relationship between the items. The items 

considered are the total credit hours, the academic years (1, 2, 

3, 4), and the semesters (first semester, second semester, and 

summer semester). 

 

To utilize the correlation method, connections are 

established between the indices of items to substantiate the 

chosen targets for the entire dataset [22]. The correlation 

equation is outlined as follows: 

 

      𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =
𝑛(∑ 𝑥𝑦)−(∑ 𝑥)(∑ 𝑦)

√⌊𝑛 ∑ 𝑥2−(∑ 𝑥)2⌋[𝑛 ∑ 𝑦2−(𝑦)2]
              (1) 

 

 

Where n number of item points. ∑xy sum of the products 

of paired scores, ∑x and ∑y sums of the x-values and y-values. 

 

This Equation (1) helps determine the strength and 

direction of the relationships between items, facilitating a 

comprehensive understanding of the data structure and aiding 

in creating an accurate and meaningful dataset. 

 

The correlation heatmap visually expresses the 

significance of these relationships, with red indicating the 

strongest positive correlation (score +1) and blue to dark blue 

indicating no relationship or a negative relationship. This can 

be seen in Figure 2. 

Fig. 2 Correlation between Items
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The correlation method plays a crucial role in identifying 

the impact of specific variables within a dataset. Notable 

correlations are evident from the data depicted in Figure 2. 

There is a significant positive correlation of 0.68 between the 

summer semester and the total hours. Additionally, the second 

semester shows a correlation of 0.52 with the total hours, and 

the first semester has a correlation of 0.48 with the total hours. 

These correlations highlight the associations between various 

semesters and the total hours, providing valuable insights into 

their interrelationships within the dataset. 

On the other hand, a negative correlation of -0.07 is 

observed between the first semester and the summer semester. 

The correlation between the first semester and the year is 0.05, 

while the correlation between the summer semester and the 

year is 0.17. These findings illustrate the varying relationships 

between different time frames within the dataset, enhancing 

our understanding of their interactions. 

 The Elicit Dataset tier is a crucial initial step in the 

predictive pathway approach. By meticulously extracting and 

restructuring data from the study plan, we have developed a 

comprehensive dataset that includes all the necessary elements 

for further analysis. This tier ensures that the data is well-

organized and primed for detailed examination. 

As we move into Section 3.2, the Elaborate Tier, we will 

engage in a deeper analysis of this dataset. The Elaborate Tier 

will focus on refining the data and identifying significant 

patterns and correlations essential for accurate scenario 

predictions. This step is critical for enhancing our 

understanding of the dataset and ensuring that our predictive 

models are both robust and reliable. The insights derived from 

this in-depth analysis will form the foundation for effective 

and strategic academic planning in the following stages. 

3.2. Elaborate Tire 

We carefully define the constraints governing the dataset, 

particularly its overall parameters. This includes a specific 

criterion where the total credit hours amount to 90, with 

exceptions for courses that equate to one credit hour. 

Additionally, the dataset spans a range of total credit hours 

across each academic year. 

The generated dataset is divided into two distinct 

components. The first component shows the aggregate credit 

hours per year, aiming to reach the collective goal of 133 credit 

hours throughout the academic program. The second 

component details how these credit hours are distributed 

across individual semesters. The figure below illustrates the 

structural delineation of both components, providing a 

comprehensive understanding of this division. 

The raw data structure, as illustrated in Figure 3, outlines 

the distribution of Total Credit Hours (TCH), totalling 133 

hours. These hours are distributed across four academic years, 

labeled TCH_Year.1, TCH_Year.2, TCH_Year.3, and 

TCH_Year.4, with each year's credit hours ranging from 24 to 

45. Each course typically holds a weight of 3 credits. 

However, there is an exception that allows for a TCH 

value exceeding 90, thus expanding the range to 25-46 credit 

hours for that specific course and semester. This exception 

applies only once per semester, allowing for flexibility in 

academic planning. This detailed breakdown helps understand 

the allocation and distribution of credit hours, ensuring that 

the overall academic requirements are met efficiently. 

The Elaborate Tier has provided a comprehensive 

approach for defining and analyzing the constraints within our 

dataset. By meticulously organizing the Total Credit Hours 

across four academic years and incorporating necessary 

exceptions, we have established a solid foundation for 

understanding academic planning. This groundwork is 

essential as we proceed to the next phase of our study. 

In Section 3.3, the Reinforced Tier, we will expand on this 

analysis. This tier will involve applying advanced machine 

learning techniques to strengthen the dataset uncovering 

deeper patterns and correlations. Our goal is to enhance the 

accuracy and reliability of our predictive models, ensuring 

they are robust and effective for academic planning. 

 
Fig. 3 Structure raw data
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Fig. 4 The apriori algorithm 

 

3.3. Reinforced Tire 

The purpose of the Reinforced Tier is to generate patterns 

that encompass all scenarios within specified constraints. This 

involves applying the Apriori algorithm, which identifies 

frequent item sets using a bottom-up methodology. The 

Apriori algorithm was specifically applied to identify common 

patterns and associations among courses within the structured 

requirements of the program, the Apriori algorithm was 

specifically applied to identify common patterns and 

associations among courses within the structured 

requirements of the program. The figure below is the step-by-

step implementation. Implementing the Apriori algorithm 

provided structured, data-driven insights, enhancing academic 

planning by aligning predictive pathways with the software 

engineering program's specific course requirements and 

constraints. 

The process includes the following steps: 

3.3.1. Initialization 

 Set the minimum support threshold based on the dataset, 

which includes 4 columns and 15 transactions. The highest 

frequency item set observed is 13. 
 

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝑖𝑡𝑒𝑚𝑠𝑒𝑡 =
ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑖𝑡𝑒𝑚𝑠𝑒𝑡

𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠
× 100%       (2) 

      
 

From the frequent item set observed in Table 2, we 

calculate the frequency as follows: Out of 15 transactions, the 

highest frequent item set is approximately 86.7% (13 out of 

15). To set the minimum support threshold, subtract this 

percentage from 100% to get the complementary percentage: 

100% - 86.7% = 13.3%, converted to decimal form as 0.133. 

Thus, the minimum support threshold is 0.13. Thus, the 

minimum support threshold is 0.13. The minimum support 

count based on this threshold is shown in Equation (3): 

𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑐𝑜𝑢𝑛𝑡
= 𝑡𝑜𝑡𝑎𝑙𝑟𝑜𝑤𝑠

× 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑           (3) 

With a total of 16 rows and a minimum support threshold 

of 0.13, the minimum support count is 2.08. 

3.3.2. Association Rules 

 These are established through a heuristic approach, as 

shown in Figure 1. The rules cover a variety of antecedent and 

consequent items involving combinations of 1, 2, and 3 items. 

Six distinct pairs are formed: (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), 

and (3, 1). The number of rules for these pairs is 4, 8, 4, 8, 4, 

and 4, respectively, indicating different levels of emphasis and 

occurrence across these pairs. 

 

The predictive pathway approach using machine learning 

is a robust method for data reshaping, preserving meaningful 

correlations within the dataset. It ensures that crucial elements 

such as year and total credit hours are retained, which are 

essential for the task. When generating datasets, it is vital to 

follow predefined policies and constraints, especially those 

related to yearly segmentation and total credit hours. As 

demonstrated by the Elaborate Tier, this approach highlights 

the importance of these dataset components. Additionally, it 

aims to identify all feasible scenarios while eliminating 

duplications, a key aspect addressed within the Reinforced 

Tier framework. The significance of using the predictive 

pathway approach with machine learning is twofold. Firstly, it 

represents a pioneering implementation of machine learning 

in this domain, addressing significant challenges faced by 

students in the software engineering bachelor's program at Al-

Zaytoonah University of Jordan. Secondly, its impact extends 

beyond scenario generation, finding applications in diverse 

fields such as Electronic Health Records (EHR), where it helps 

predict health statuses to prevent risks. Similarly, in 

meteorology, the precision of forecasting is crucial, 

emphasizing the need for accurate predictions rather than 

speculative ones, thus embracing the concept of "far-present" 

forecasting. The Reinforced Tier is pivotal in refining and 

validating the predictive models by generating comprehensive 

patterns and scenarios within defined constraints. By 

leveraging the Apriori algorithm and establishing robust 

association rules, this tier enhances the depth and reliability of 

our dataset analysis. This meticulous approach ensures that the 

predictive pathway model is not only accurate but also 
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adaptable to various applications beyond the educational 

domain. Moving to Section 4, we will establish the 

experimental setup for implementing this predictive pathway 

approach using machine learning. This setup will further 

demonstrate the practical applications and effectiveness of our 

model in real-world scenarios, paving the way for innovative 

solutions and improved academic planning.

  
Table 2. Total credit hours per year

 

 

 

 

 

4. Experiment and Results 
Data collection followed the structure outlined in the 

Elicit Dataset tier, utilizing instruments aligned with the 

correlation method. The primary target item, Total Credit 

Hours (TCH), shows a positive relationship with other 

variables, though its correlation with the year variable is 

relatively weak. The objective begins by focusing on the year 

variable, aiming to distribute a total of 133 credit hours over a 

span of four years. Table 2 presents the number of credit hours 

for each year. The first column shows the time span required 

to reach the target credit hours for the software engineering 

study plan. The subsequent 15 columns detail the properties of 

these credit hours. 

Observations: 

• For years 1 and 2 (y.1 and y.2), the values in the columns 

TCH.Min to TCH.Max predominantly ranges from 24 to 

45 credit hours, with several zeros at the end. This 

indicates that each course typically weighs 3 credit hours, 

and both years total 90 credit hours, meeting the 

restriction that each course weighs 3 credit hours. 

• For years 3, 4, and 5 (y.3, y.4, and y.5), the values across 

the time intervals vary more, starting from 24 and ending 

at 46, without zeros towards the end. This variation 

indicates the inclusion of courses weighing both 3 credit 

hours and 1 credit hour, achieving above 90 credit hours 

for these years. 
 

Detailed data collection and analysis help understand the 

distribution and correlation of credit hours across the 

academic years, providing a solid foundation for further 

predictive modeling and academic planning.  Table 2 presents 

the number of credit hours for each year. The first column 

shows the time span required to reach the target credit hours 

for the software engineering study plan. The subsequent 

columns detail the properties of these credit hours. Table 2 

defines all possible combinations to reach the target value of 

133 credit hours. When reaching 90 credit hours, the values 

allow one of these: [25, 28, 31, 34, 37, 40, 43, 46] in each 

combination. Figure 4 shows how to find all combinations of 

numbers from each row. The combined scenario depicted in 

Figure 5 outlines a systematic approach to identifying various 

parameters, each with its specific conditions. Table 2 provides 

raw data parameters sourced from two primary factors: year 

and credit hours. These factors exhibit distinct potentials for 

registration across different academic years. 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 
Fig. 5 Combinations for years 

 

Year 1 (y.1) and Year 2 (y.2): Both align with credit hour 

values ranging from 24 to 45. This consistency is due to the 

restriction that each course is valued at 3 credit hours, 

resulting in a total that must be less than 90 credit hours. 

 

Year 3 (y.3) and Year 4 (y.4): These years correspond to 

credit hour values ranging from 24 to 46. The slight increase 

in the maximum value is due to the allowance for courses 
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y.1 24 27 30 33 36 39 42 0 0 0 0 0 0 0 0 45 

y.2 24 27 30 33 36 39 42 0 0 0 0 0 0 0 0 45 

y.3 24 25 27 28 30 31 33 34 36 37 39 40 42 43 45 46 

y.4 24 25 27 28 30 31 33 34 36 37 39 40 42 43 45 46 

I. Define the input data.  

1) Table.2 data 

2) Target value=133 

3) Normal values = [ 24,27,30,33,36,39,42,45] 

4) Allowed values = [ 25,28,31,34,37,41,43,46] 

5) Restriction value = 90 

II. Restriction the based on sum up select values from 

rows.  

1) Less than 90 credit hours normal values [ 

24,27,30,33,36,39,42,45] 

2) Equal or above 90 use allowed values only on 

time.  

3) Then return to  normal values to reach target 

values =133 

III. Find combinations. 

IV. Iterate through each row in Table.1data 

V. Is the sum of values in the row greater than or 

equal to 90. 

VI. Iterate through each row's combinations. 

VII. Print combinations for the row 
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valued at 1 credit hour, which can be included once the total 

credit hours reach or exceed 90. 

   

This distinction between the years highlights the 

restrictive value parameters, where cumulative credit hours 

below 90 must adhere to the normal values [24, 27, 30, 33, 36, 

39, 42, 45]. Once 90 credit hours are reached or exceeded, the 

allowable values [25, 28, 31, 34, 37, 40, 43, 46] can be used, 

providing flexibility in course selection. 

To generate combinations for the dataset described in 

Table 2, adhering to the procedure outlined in Figure 5, Python 

can be used to cover all potential combinations. The following 

script demonstrates how to achieve this using Python's tkinter 

library for the graphical interface and itertools for generating 

combinations. 

To derive feasible combinations of annual credit hours 

summing up to a total of 133, the dataset comprises several 

essential components crucial for analysis, as shown in Figure 

6. 

• Target Value: The goal of 133 credit hours. 

• Normal Values: Credit hours typically range from 24 to 

45. 

• Restriction Values: Exceptions for credit hours exceeding 

90 but limited to a single occurrence per term. 

• Allowed Values: The permissible set of credit hours, 

which includes [25, 28, 31, 34, 37, 40, 43, 46]. 

These dataset attributes, as referenced in Table 1, are 

extensively utilized in the study to ensure comprehensive 

analysis and accurate results.  The computational process 

integrates three pivotal functions: 

1. Iteration Through Data: Extracting necessary 

information. 

2. Validation of Sum Against Restriction: Ensuring 

compliance with criteria. 

3. Employing itertools: Generating valid combinations 

adhering to predefined conditions. 

The resulting combinations manifest six distinct 

attributes: the aggregate credit hours for each academic year, 

the cumulative credit hours across all years, and the temporal 

span covered by these years. In total, the script generates 156 

combinations that meet the stipulated criteria. These 

combinations serve as comprehensive representations of 

feasible credit hour distributions, offering valuable insights for 

academic exploration and decision-making processes. 

 

import tkinter as tk 

from tkinter import ttk 

from itertools import combinations 

 

 

table_1_data = [ 

    [24, 27, 30, 33, 36, 39, 42, 0, 0, 0, 0, 0, 0, 0, 0, 45], [24, 

27, 30, 33, 36, 39, 42, 0, 0, 0, 0, 0, 0, 0, 0, 45], 

    [24, 25, 27, 28, 30, 31, 33, 34, 36, 37, 39, 40, 42, 43, 45, 

46],[24, 25, 27, 28, 30, 31, 33, 34, 36, 37, 39, 40, 42, 43, 45, 

46]] 

target_value = 133 

normal_values = [24, 27, 30, 33, 36, 39, 42, 45] 

allowed_values = [25, 28, 31, 34, 37, 40, 43, 46] 

restriction_value = 90 

def find_combinations(data, target, normal, allowed, 

restriction): 

    all_combinations = [] 

    for row in data: 

        if sum(row) >= restriction: 

            row_values = row[:] 

            row_combinations = [] 

            for allowed_val in allowed: 

                if allowed_val in row_values: 

                    row_values.remove(allowed_val) 

                    for r in range(1, len(row_values) + 1): 

                        for subset in combinations(row_values, r): 

                            if sum(subset) == target - allowed_val: 

                               

row_combinations.append(tuple(sorted(subset + 

(allowed_val,)))) 

            all_combinations.append(row_combinations) 

        else:  

            row_combinations = [] 

            for r in range(1, len(row) + 1): 

                for subset in combinations(row, r): 

                    if sum(subset) == target: 

                        row_combinations.append(subset) 

            all_combinations.append(row_combinations) 

    return all_combinations 

result_combinations = find_combinations(table_1_data, 

target_value, normal_values, allowed_values, 

restriction_value) 

root = tk.Tk() 

root.title("Combinations Tree") 

tree = ttk.Treeview(root) 

tree.pack() 

for idx, combinations in enumerate(result_combinations, 

start=1): 

    tree.insert("", tk.END, f"Row {idx}", text=f"Combinations 

for row y.{idx}") 

    if any(combinations): 

        for i, comb in enumerate(combinations, start=1): 

            tree.insert(f"Row {idx}", tk.END, 

text=f"Combination {i}: {comb}") 

    else: 

        tree.insert(f"Row {idx}", tk.END, text="No 

combinations found for this row") 

root.mainloop() 
 

Fig. 6 Script of combinations for years 



Ameen Shaheen et al. / IJECE, 11(11), 28-44, 2024 

 

37 

Table 3 categorizes the credit hour combinations based on 

their span time across years. The first group, spanning 3 years 

(Rows 1, 2, 3, and 4), comprises combinations with credit 

hours 42, 45, and 46 distributed across Years 1, 2, and 3. These 

combinations represent the shortest path to program 

completion. The second group, spanning 4 years, includes 

combinations with credit hours ranging from 24 to 46 across 

all four years (Rows 5 to 9). This group offers greater 

flexibility in scheduling but requires a longer study duration. 

The output of combinations addresses several issues by 

considering two main factors: indexing and the location of 

values.  

From Table 1, two dimensions are present: the horizontal 

dimension labeled "year" (span time) and another horizontal 

dimension labeled from TCH.Min to TCH.Max. These 

dimensions’ result in a 4x16 matrix, with general credit hour 

values ranging from 24 to 46 spread across different locations. 

For example, the credit hour values [24, 27, 30, 33, 36, 

39, 42, 45] are held in four different locations, indicating four 

different addresses. Conversely, the credit hour values [25, 28, 

31, 34, 37, 40, 43, 46] are held in two different locations, 

indicating two different addresses.  

This distinction highlights how credit hours are 

distributed across the academic years, impacting the flexibility 

and duration of study plans. Below is an excerpt from Table 3 

for illustration: 

Table 3. Sample of combinations based on years and credit hours 
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1 42 45 46 0 133 3 

Group.1 
2 42 45 46 0 133 3 

3 42 45 46 0 133 3 

4 42 45 46 0 133 3 

5 24 24 40 45 133 4 

Group.2 

6 24 27 36 45 133 4 

7 27 28 33 45 133 4 

8 27 30 33 43 133 4 

9 30 30 34 39 133 4 

This structured approach ensures that all potential 

combinations are considered, comprehensively analysing 

feasible credit hour distributions for effective academic 

planning. 

The Index.Credit_Hour column in Table 4 illustrates the 

presence of each credit hour value across different years. For 

instance, a credit hour value 24 appears consistently across all 

years, denoted by 'T' values in Address.Year.1, 

Address.Year.2, Address.Year.3, and Address.Year.4. This 

uniform presence across all addresses signifies its existence 

every year.  

Conversely, the credit hour value 25 is found only in 

Year.3 and Year.4, marked by 'T', while year.1 and Year.2 

display 'F', indicating its absence in those years. Using the 

Index.Credit_Hour column and the address years, the Apriori 

algorithm can be applied to discover frequent item sets 

through a bottom-up approach. 

The heuristic rule strategy starts by examining four 

distinct association rules involving singular antecedents and 

consequents: 

1. Address.Year.2 -> Address.Year.1 

2. Address.Year.1 -> Address.Year.2 

3. Address.Year.4 -> Address.Year.3 

4. Address.Year.3 -> Address.Year.4 

 

These rules are subsequently classified into two cohesive 

groups: The first group encompasses relationships between 

Address.Year.1 and Address.Year.2. The second group 

pertains to associations between Address.Year.3 and 

Address.Year.4. 

The rules' index values are segregated into two sets, as 

illustrated in Figure 6. For example, examining index value 27 

reveals four diverse address combinations: (1,2), (2,2), (3,3), 

and (4,3). Conversely, index value 28 demonstrates two 

distinct addresses: (3,4) and (4,4), which are not linked to 

Year.1 and Year.2. This example highlights the permutations 

of indices through various address relationships. 

The presence of singular antecedents and consequents 

holds significant implications in adjusting patterns. For 

instance, considering index value 27, if we focus on addresses, 

there is a requirement to interchange the values of four 

addresses.  

This necessitates using a 'swap' structure employing 

pointer (*) and reference (&) methods to explicitly illustrate 

the specific relationship. Similarly, index value 28 also 

involves the utilization of pointers and references. However, 

an additional method, such as a 'switch' mechanism, becomes 

necessary to prevent the absence of Year.1 and Year.2 in this 

context. 

The illustrated pattern in Figure 6 outlines the generation 

of thirty-two rules, categorized based on the arrangement of 

antecedents and consequents. These rules are derived by 

examining the index values associated with each rule and 

assessing the presence and significance of each index value 

within every rule. The support measure is employed to 
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determine the importance of an index value. The fundamental 

equation used for this assessment is: 

Support (antecedents-consequents)           = 
𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑏𝑜𝑡ℎ 𝑎𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡𝑠 𝑎𝑛𝑑 𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠
   (6) 

The support value, which ranges from 0 to 1, denotes the 

strength of the association within frequent item sets. Higher 

support values, nearing one, signify a stronger and more 

meaningful relationship between the items. Conversely, lower 

support values, nearing zero, indicate weaker associations or 

less frequent itemset relationships. 

 Table 4. Possible location factor for index credit hour 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Pattern to generalize rules
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Index.Credit_Hour 
Total_credit_hour/ 

Index.Credit_Hour 

Total_credit_hour/ 

Index.Credit_Hour-

4 

Total_credit_hour/ 

Index.Credit_Hour-

4*24 

T T T T 24 5.541666667 1.541666667 37 

F F T T 25 5.32 1.32 33 

T T T T 27 4.925925926 0.925925926 25 

T T F F 28 4.75 0.75 21 

T T T T 30 4.433333333 0.433333333 13 

F F T T 31 4.290322581 0.290322581 9 

T T T T 33 4.03030303 0.03030303 1 

F F T T 34 3.911764706 -0.088235294 -3 

T T T T 36 3.694444444 -0.305555556 -11 

F F T T 37 3.594594595 -0.405405405 -15 

F F T T 39 3.41025641 -0.58974359 -23 

F F T T 40 3.325 -0.675 -27 

T T T T 42 3.166666667 -0.833333333 -35 

F F T T 44 3.022727273 -0.977272727 -43 

T T T T 45 2.955555556 -1.044444444 -47 

F F T T 46 2.891304348 -1.108695652 -51 

Row.1:Year. Row.1:Year. 

Row.1:Year. Row.1:Year. Row.1:Year. 

Row.1:Year. Row.1:Year. Row.1:Year. Row.1:Year. 

Row.1:Year. Row.1:Year. Row.1:Year. Row.1:Year. 

4 Rules 

4 Rules 

8 Rules 

16 Rules 

Antecedent/Consequent Antecedent/Consequent 
32 Rules 
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By analyzing these support values, we can effectively 

determine the significance of each rule and the strength of the 

associations they represent. This method provides valuable 

insights into the data, helping to identify the most relevant and 

impactful patterns. 

By analyzing these support values, we can effectively 

determine the significance of each rule and the strength of the 

associations they represent. This method provides valuable 

insights into the data, helping to identify the most relevant and 

impactful patterns. 

Table 5. Support for antecedents and consequents 

Antecedents Consequents 
Antecedent 

Support 

Consequent 

Support 
Support 

frozenset({'Address.Year.4'}) frozenset({'Address.Year.3'}) 0.9375 0.9375 0.9375 

frozenset({'Address.Year.3'}) frozenset({'Address.Year.4'}) 0.9375 0.9375 0.9375 

frozenset({'Address.Year.2'}) frozenset({'Address.Year.1'}) 0.5 0.5 0.5 

frozenset({'Address.Year.1'}) frozenset({'Address.Year.2'}) 0.5 0.5 0.5 

frozenset({'Address.Year.4'}) 
frozenset({'Address.Year.3', 

'Address.Year.2', 'Address.Year.1'}) 
0.9375 0.4375 0.4375 

frozenset({'Address.Year.2'}) 
frozenset({'Address.Year.3', 

'Address.Year.4', 'Address.Year.1'}) 
0.5 0.4375 0.4375 

frozenset({'Address.Year.3'}) 
frozenset({'Address.Year.2', 

'Address.Year.4', 'Address.Year.1'}) 
0.9375 0.4375 0.4375 

frozenset({'Address.Year.4', 

'Address.Year.1'}) 

frozenset({'Address.Year.3', 

'Address.Year.2'}) 
0.4375 0.4375 0.4375 

frozenset({'Address.Year.3'}) 
frozenset({'Address.Year.2', 

'Address.Year.4'}) 
0.9375 0.4375 0.4375 

frozenset({'Address.Year.3', 

'Address.Year.1'}) 

frozenset({'Address.Year.2', 

'Address.Year.4'}) 
0.4375 0.4375 0.4375 

frozenset({'Address.Year.3', 

'Address.Year.2'}) 

frozenset({'Address.Year.4', 

'Address.Year.1'}) 
0.4375 0.4375 0.4375 

frozenset({'Address.Year.2', 

'Address.Year.4', 'Address.Year.1'}) 
frozenset({'Address.Year.3'}) 0.4375 0.9375 0.4375 

frozenset({'Address.Year.3', 

'Address.Year.4', 'Address.Year.1'}) 
frozenset({'Address.Year.2'}) 0.4375 0.5 0.4375 

frozenset({'Address.Year.3', 

'Address.Year.2', 'Address.Year.1'}) 
frozenset({'Address.Year.4'}) 0.4375 0.9375 0.4375 

frozenset({'Address.Year.3', 

'Address.Year.2', 'Address.Year.4'}) 
frozenset({'Address.Year.1'}) 0.4375 0.5 0.4375 

frozenset({'Address.Year.4'}) 
frozenset({'Address.Year.3', 

'Address.Year.2'}) 
0.9375 0.4375 0.4375 

frozenset({'Address.Year.2', 

'Address.Year.4'}) 

frozenset({'Address.Year.3', 

'Address.Year.1'}) 
0.4375 0.4375 0.4375 

frozenset({'Address.Year.3', 

'Address.Year.2'}) 
frozenset({'Address.Year.4'}) 0.4375 0.9375 0.4375 

frozenset({'Address.Year.2', 

'Address.Year.4'}) 
frozenset({'Address.Year.3'}) 0.4375 0.9375 0.4375 

frozenset({'Address.Year.4'}) 
frozenset({'Address.Year.3', 

'Address.Year.1'}) 
0.9375 0.4375 0.4375 

frozenset({'Address.Year.3'}) 
frozenset({'Address.Year.4', 

'Address.Year.1'}) 
0.9375 0.4375 0.4375 

frozenset({'Address.Year.4', 

'Address.Year.1'}) 
frozenset({'Address.Year.3'}) 0.4375 0.9375 0.4375 

frozenset({'Address.Year.3', 

'Address.Year.1'}) 
frozenset({'Address.Year.4'}) 0.4375 0.9375 0.4375 
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frozenset({'Address.Year.1'}) 
frozenset({'Address.Year.2', 

'Address.Year.4'}) 
0.5 0.4375 0.4375 

frozenset({'Address.Year.2'}) 
frozenset({'Address.Year.4', 

'Address.Year.1'}) 
0.5 0.4375 0.4375 

frozenset({'Address.Year.4', 

'Address.Year.1'}) 
frozenset({'Address.Year.2'}) 0.4375 0.5 0.4375 

frozenset({'Address.Year.2', 

'Address.Year.4'}) 
frozenset({'Address.Year.1'}) 0.4375 0.5 0.4375 

frozenset({'Address.Year.1'}) 
frozenset({'Address.Year.3', 

'Address.Year.2'}) 
0.5 0.4375 0.4375 

frozenset({'Address.Year.2'}) 
frozenset({'Address.Year.3', 

'Address.Year.1'}) 
0.5 0.4375 0.4375 

frozenset({'Address.Year.3', 

'Address.Year.1'}) 
frozenset({'Address.Year.2'}) 0.4375 0.5 0.4375 

frozenset({'Address.Year.3', 

'Address.Year.2'}) 
frozenset({'Address.Year.1'}) 0.4375 0.5 0.4375 

frozenset({'Address.Year.1'}) 
frozenset({'Address.Year.3', 

'Address.Year.2', 'Address.Year.4'}) 
0.5 0.4375 0.4375 

 

4.1. Support Analysis of Association Rules 

The support analysis unveils distinctive patterns within 

the association rules, as shown in Table 5. Rules exhibiting 

high support values, such as:  

{Address.Year.4}->{Address.Year.3}and 

{Address.Year.3} -> {Address.Year.4} (with support values of 

0.9375), frequently co-occur in transactions. Conversely, rules 

with lower support values, such as: 

{Address.Year.2}->{Address.Year.1}and 

{Address.Year.1} -> {Address.Year.2}, exhibit less frequent 

co-occurrences. 

4.2. Pattern Analysis 

1. Symmetric Associations: Certain rules demonstrate 

symmetric associations. For instance, {Address.Year.1}-

>{Address.Year.2} and {Address.Year.2} -> 

{Address.Year.1} both have equal support values of 0.5. 

2. Complex Rules: More complex rules, such as 

{Address.Year.2,Address.Year.4}-> 

{Address.Year.3,Address.Year.1}and 

{Address.Year.3,Address.Year.1}-> {Address.Year.4}, 

also display substantial support at 0.4375. 
 

4.3. Complex Relationships 

The presence of rules with multiple items in both 

antecedents and consequents signifies intricate relationships. 

These rules suggest that specific combinations of address 

years are more likely to co-occur, unveiling diverse 

associations and dependencies among various combinations 

of address years. The support values for each rule, which 

include swapped antecedents and consequents, are equal. This 

often results in duplicates, especially when building patterns 

for the entire dataset. The support values for these rules are 

0.4375, 0.5, and 0.9375, indicating that the frequent item sets 

are not covered in all rules, which should ideally have a 

support value equal to 1. 

4.4. Pattern Analysis Sequence 

• Select the index credit hour (designated as 'ict') from 

column 5. 

• Subdivide the total value 133 based on the 'ict' values, 

providing the total credit hours indicated in column 6. 

• Extract relevant data output from column 4, representing 

a span of 4 years. 

• Utilize the calculated index credit hour results from the 

previous step in the analysis. 

 

4.5. Association Rules and Support Score Thresholds 

The utilization of association rules is constrained by 

predefined support score thresholds (0.4375, 0.5, and 0.9375), 

which highlight the need for exploring alternative 

methodologies to refine these thresholds and enhance 

accuracy in impact assessment. The fluctuations in support 

scores among antecedents, consequents, and their 

relationships underscore the necessity for a resilient 

mechanism to systematically address these considerations 

across diverse scenarios. 

4.6. Scenarios 

• Scenario 1: A stringent support score threshold of 0.9375 

captures highly reliable patterns within the dataset. This 

threshold's robustness is evident in the consistently high 

support scores observed for both antecedents and 

consequents. From a domain knowledge perspective, it 

isolates the most salient patterns, aligning with an expert 

understanding of the domain. This approach results in 

dataset segmentation into two distinct yet highly relevant 

groups characterized by the presence of either Year.3 or 

Year.4 within both antecedents and consequents. 
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• Scenario 2: Moderately supported rules, identified with a 

threshold of 0.5, reveal patterns within the dataset that 

merit cautious interpretation. While not as robust as those 

with the 0.9375 threshold, they offer potentially valuable 

insights. These rules consistently involve Year.1 and 

Year.2 as either antecedents or consequents, suggesting a 

potential relationship warranting further exploration. 

 

Using association rules guided by support score 

thresholds is instrumental in leveraging domain knowledge. 

Scenario 1 highlights the effectiveness of a stringent threshold 

in capturing highly reliable patterns, while Scenario 2 

underscores the importance of cautious interpretation for 

moderately supported rules. Integrating domain knowledge 

into association rule generation and defined restrictions 

enhances the creation of meaningful combinations and 

contributes to a comprehensive understanding of the dataset. 

The experiment and results section has delivered a 

comprehensive dataset analysis, employing support measures 

and association rule mining to reveal significant patterns. By 

applying the Apriori algorithm and evaluating both high and 

moderate support thresholds, we identified critical 

relationships and dependencies among credit hours across 

different academic years. These findings affirm the predictive 

pathway approach's robustness while pointing to areas for 

further investigation. Integrating domain knowledge has been 

crucial in enhancing the analysis and ensuring the results' 

relevance and accuracy. Moving forward, these insights will 

provide a solid foundation for optimizing academic planning 

and decision-making processes, leading to more informed and 

effective educational strategies. To provide a comprehensive 

understanding, we compare our results with related works that 

have explored similar domains using various methodologies, 

as shown in Table 6. The comparison focuses on key aspects 

such as accuracy, methodology, computational complexity, 

and practical applicability. 

Table 6. Comparative analysis of PPALML with related works 

Aspect 
PPALML 

(Our Study) 
Bakri et al. [10] Shete et al. [11] Althunibat et al. [24] 

Objective 

Predict academic 

pathways for 

software engineering 

students 

Predict students' 

graduation on time 

using machine learning 

algorithms 

Track and predict 

student performance 

in degree programs 

using various ML 

algorithms 

Evaluate the learning 

experience of students 

using the Learning 

Management System 

(Moodle) 

Methodology 

Apriori algorithm, 

support measure, 

correlation analysis 

Random Forest, SVM, 

K-Nearest Neighbors, 

Naïve Bayes 

Decision Trees, 

Random Forests, 

Neural Networks 

Classification and 

clustering techniques 

Accuracy 

High accuracy in 

identifying feasible 

academic scenarios 

Validated using cross-

validation, high 

predictive accuracy 

High accuracy in 

tracking and 

predicting student 

performance 

Effective in 

evaluating and 

improving the 

learning experience 

Computational 

Complexity 

Moderate, due to the 

iterative nature of the 

Apriori algorithm 

High requires extensive 

parameter tuning and 

cross-validation 

High involves 

multiple algorithms 

and extensive 

computational 

resources 

Moderate, depending 

on the complexity of 

classification and 

clustering tasks 

Practical 

Applicability 

High, tailored to 

specific academic 

requirements of 

software engineering 

students 

High, applicable for 

predicting graduation 

outcomes in higher 

education 

High, useful for 

academic planning 

and performance 

tracking in various 

degree programs 

Moderate, focused on 

the learning 

experience within a 

specific LMS 

The PPALML is specifically designed to predict academic 

pathways for software engineering students, leveraging the 

Apriori algorithm to identify frequent item sets and correlation 

analysis to validate the results. [10] use Random Forest, SVM, 

K-Nearest Neighbors, and Naïve Bayes to predict student 

graduation outcomes. [11] employ Decision Trees, Random 

Forests, and Neural Networks to track and predict student 

performance, while [24] use classification and clustering 

techniques to evaluate the learning experience within an LMS. 

4.7. Objective and Methodology 

 The PPALML is specifically designed to predict 

academic pathways for software engineering students, 

leveraging the Apriori algorithm to identify frequent itemsets 

and correlation analysis to validate the results. [10] use 

Random Forest, SVM, K-Nearest Neighbors, and Naïve 

Bayes to predict student graduation outcomes. [11] employ 

Decision Trees, Random Forests, and Neural Networks to 

track and predict student performance, while [24] use 
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classification and clustering techniques to evaluate the 

learning experience within an LMS. 

 

4.8. Accuracy 

Our study demonstrates high accuracy in identifying 

feasible academic scenarios, similar to the high predictive 

accuracy reported by [10, 11, 24], and also reports effective 

evaluation and improvement in the learning experience, 

although their focus differs from ours. 

 

4.9. Computational Complexity 

The PPALML approach has moderate computational 

complexity due to the iterative nature of the Apriori algorithm. 

In contrast, [10, 11] require extensive parameter tuning and 

cross-validation, making their methodologies more 

computationally intensive. [24] present a moderate level of 

complexity, depending on the classification and clustering 

tasks. 

 

4.10. Practical Applicability 

The PPALML approach is highly applicable to academic 

planning, tailored to the specific requirements of software 

engineering students [10, 11], and offers methodologies 

applicable to predicting graduation outcomes and tracking 

student performance, respectively. [24] focus on the learning 

experience within an LMS, providing moderate practical 

applicability. The PPALML approach distinguishes itself 

through its tailored focus on academic planning for software 

engineering students, high accuracy, moderate computational 

complexity, and strong practical applicability. The 

comparative analysis highlights our methodology's strengths 

and unique features, showcasing its effectiveness in 

optimizing academic pathways. Future research should 

continue to refine and expand the PPALML approach to 

enhance its applicability across different academic disciplines 

and educational settings. 

 

5. Conclusion  
The results of our study highlight the significant 

contributions and importance of utilizing machine learning 

techniques, specifically the PPALML, in optimizing academic 

planning for the software engineering bachelor's program at 

Al-Zaytoonah University of Jordan. The PPALML 

framework, through the use of the Apriori algorithm and 

support measures, has proven highly effective in identifying 

and generating meaningful academic scenarios that align with 

credit hour requirements and enhance decision-making 

processes. 

Our study lays the groundwork for a novel approach to 

academic planning and advising, leveraging advanced 

machine learning techniques to provide tailored and accurate 

pathway predictions. This approach ensures that students meet 

academic requirements and assists academic advisors in 

making informed decisions that can profoundly impact 

students' educational trajectories. 

The current study was confined to the software 

engineering program at Al-Zaytoonah University of Jordan, 

focusing on specific credit hour distributions and academic 

requirements. Future research should aim to extend the 

applicability of the PPALML framework to other academic 

programs and institutions, refining and expanding its utility 

across various educational settings. 

These results represent a significant first step towards 

integrating machine learning into academic planning, 

demonstrating the potential for improved accuracy and 

efficiency in managing academic pathways. The insights 

gained from this study underscore the value of data-driven 

decision-making and the integration of domain knowledge in 

enhancing the relevance and applicability of predictive 

models. This study forms the backbone for future research 

aimed at further optimizing academic planning and decision-

making processes. By building on the PPALML framework, 

researchers and educators can continue to develop more 

sophisticated and adaptable models, ultimately contributing to 

better educational outcomes and more efficient academic 

administration. 

Future work will involve applying the PPALML 

framework across different academic disciplines and 

institutions to validate its effectiveness in diverse contexts. 

Additionally, exploring the integration of more advanced 

machine learning algorithms, developing user-friendly 

interfaces, and conducting longitudinal studies will be crucial 

next steps. Collaboration with policymakers and other 

educational institutions will also be essential to ensure the 

broad adoption and continuous improvement of predictive 

models in academic planning. 

In conclusion, the PPALML approach offers a promising 

pathway to revolutionize academic planning by providing 

accurate, data-driven insights and personalized 

recommendations. The framework's adaptability to various 

educational contexts makes it a versatile tool for enhancing the 

academic planning process, ensuring students' success, and 

improving institutional efficiency. As we continue to refine 

and expand this approach, its potential impact on the 

educational landscape becomes increasingly significant, 

paving the way for more informed and effective educational 

strategies. 
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