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Abstract - Brain-computer interface systems are a promising technology that allows individuals with physical disabilities to 

control various devices and applications through their brain activity. One of the vital challenges in developing effective BCI 

systems is the accurate classification of motor actual/imagery movements from electroencephalography signals. This study 

investigates the classification of actual motor and imagery-based BCI tasks identified using convolutional neural networks. 

Temporal features were extracted through spectrogram analysis, and the resulting images were fed to the CNN model to classify 

the data into four distinct classes. The model achieved an approximate prediction accuracy of 62% with a classification rate of 
100% for Class 1, 50% for Classes 2 and 3, and 75% for Class 4. This model demonstrated a reasonably effective ability to 

detect the intended motor movements from Electroencephalography signals. Additionally, a robotic prototype is developed that 

is capable of performing specific functions, including moving backwards, moving forward, pinching in, and pinching out, based 

on the output of the classification model. 
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1. Introduction  
Brain-computer interface technology has emerged as a 

promising field offering a direct communication pathway 

between external devices and signals acquired from the brain. 

These systems enable people with disabilities such as limb 

paralysis or motor problems to operate assistive tools and 

perform daily tasks using their brain activity. The primary aim 

of a BCI system is to identify accurately the user's intentions 

from their Electroencephalography (EEG) [1, 2]. One of the 

most investigated applications in BCI is Motor-Imagery(MI) 

task classification, where subjects are trained to imagine the 

movement of a body part, and corresponding neural patterns 

are then employed in fulfilling tasks like controlling external 
devices [1, 3].  

One major paradigm used in BCI systems includes 

detecting and classifying motor imagery tasks, which are tasks 

where the user imagines themselves performing certain body 

movements without actually performing them. MI-based BCI 

systems have successfully been applied to control robotic 

wheelchairs, prosthetic limbs and other assistive devices. 

Because the classification of motor imagery tasks well directly 

impacts the responsiveness of these systems and user control 

over a target device, See [4-8] for details. Various signal 

processing and machine learning tactics have been tested with 
the dataset to classify motor-imagery EEG signals [4]. 

In this respect, Convolutional Neural Networks (CNNs) 

have shown promising results, as these can learn 

discriminating features directly from raw EEG signals [1, 4]. 

BCI-based motor detection systems can be classified into 2 

types: actual movement and imagery movement. Both these 

categories stem from different paradigms intended to elicit 
motor-related brain activity [9], and correct classification of 

both real and imagined movements is pivotal towards 

developing efficient BCI systems. 

People with physical disabilities who use artificial 

devices (examples include prosthetics, computer cursors, 

wheelchairs or limbs) operate them through motor imagery. 

Furthermore, motor imagery has also been shown to be 

beneficial in stroke rehabilitation and motor learning therapy 

[4].  This paper uses the CNN method to perform the 

classification of the EEG-based motor movements, both real 

and imagery-based, for robotic arm control. This paper 
introduces a method that uses the Short-Term Fourier 

Transform (STFT) technique to convert 1-Dimensional EEG 

signals to 2-D images. Then, these images are used as input 

for a Google Net-based CNN model. The paper is structured 

as follows. Section I presents an overview of BCI, motor 

detection, and their various applications. Section II focuses on 

the work conducted by other scholars in the same domain. 

Section III examines the proposed framework, the signal 
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processing methods involved, and the classifiers utilized, 

leading to Section IV, where the findings are deliberated. 

Section V presents the conclusions and potential future 

directions. 

2. Related Work  
The paper by Lomelin et al. [10] explores using 

Convolutional Neural Networks to classify MI signals from 

EEG data. The authors tested different spectrograms-based 

data and multi-dimensional raw data and achieved high 

accuracy (up to 93%) with transfer learning. However, they 

acknowledge that using spectrograms requires high 

computational resources. Therefore, they investigated 

alternative EEG representations for raw data in terms of 1D, 
2D, and 3D, achieving promising results that still exceeded 

state-of-the-art ones, suggesting that these alternative methods 

could be valuable for improving MI classification with fewer 

preprocessing steps. Du et. al.'s [11], main contribution is 

proposing a new model for recognizing motor imagery 

electroencephalography signals. This model, a three-

dimensional capsule network (3D-CapsNet), is designed to 

extract spatial and temporal features from MI-EEG signals, 

leading to more accurate identification of motor imagery. The 

authors Sartipi et al. [12] demonstrate the effectiveness of their 

model through experiments on a standard dataset, showing 
that it achieves high accuracy and outperforms other state-of-

the-art methods, particularly in overcoming individual 

variability across subjects. Jain et al. [13] investigate the 

feasibility of predicting hand movement trajectories from pre-

movement EEG signals during a grasp and lift task, with 

potential applications in brain-computer interfaces for motor 

control. EEG data were collected from 10 healthy participants 

performing the tasks, using a 64-channel EEG cap to record 

signals during the pre-movement phase. The researchers 

proposed a CNN-LSTM-based deep learning framework to 

decode the motor information encoded in the EEG. The results 

indicated that EEG signals can be utilized to predict 
movement trajectories, offering promising applications in 

BCIs for motor control tasks. Specifically, their method 

achieved an average prediction accuracy of 74.6% across all 

subjects, demonstrating the viability of using EEG signals for 

trajectory prediction in motor tasks. 

A 3D capsule network model to recognize MI EEG 

signals was suggested by Du et al. [11]. This model can extract 

spatial and temporal features directly from EEG data to 

improve motor imagery task identification. The proposed 

model used a multi-layer 3D convolution module for feature 

extraction and integrated a capsule network to learn the spatial 
relation of features, demonstrating an average accuracy rate of 

84.028% and an average kappa of ∼0.789 on the BCI 

competition IV dataset. These experimental results 

demonstrate the feasibility of patch-based fine-tuning in 

enhancing four-class classification accuracy while mitigating 

patient variability to a certain degree. Arpaia et al. [14] 

presented the wearable brain-computer interface system with 

8 dry EEG sensors for detecting motor imagery. Integrating a 

multimodal feedforward system with the Extended Reality 

environment improves the online detection of neurological 

phenomena. The results showed that participants who 

underwent neurofeedback during the motor imagery tasks 

could achieve a higher mean classification accuracy (69%) 
compared to the control group (62%).  

The work by Lomelin et al. [10] was proof of concept that 

advanced methods, such as Convolutional Neural Networks, 

could be used to detect MI movements from EEG signals. This 

paper studies classifying MI-based EEG signals using 

multiple data representations. The authors used the Physionet 

Motor Movement/Motor Imagery database, which contained 

EEG recordings from 109 subjects, and each subject provided 

14 data files (2 baseline and 12 task-related). Collazos et al. 

[15], proposed a paper that studies MI and BCI systems, 

seeking to improve the interpretability of neural responses 

based on a study group formed by their motor imagination 
ability via a framework for connectivity using a convolutional 

neural network. The authors present a dedicated deep CNN 

framework to study MI patterns from rich high-dimensional 

frequency-domain electroencephalography dynamical data. 

EEG data from 50 subjects were gathered for MI, where each 

subject performed MI tasks involving finger movements while 

EEG signals were recorded. The proposed method involves 

extracting functional connectivity features and clustering 

subjects based on their achieved classifier accuracy. An 

extensive electroencephalography dataset for evaluating 

cross-session matching on an MI-based BCI was provided by 
Ma et al. [16]. The dataset covers five sessions by 25 subjects, 

and for either left-hand or right-hand motor imagery tasks, 

there are 100 trials. The average classification accuracy within 

a session was up to 68.8% (which degraded to 53.7% across 

sessions and increased significantly through cross-session 

adaptation techniques (e.g., an accuracy of 78.9%). For 

example, the detection of motor imagery movements from 

EEG signals in this dataset is one as it promotes fundamental 

research to solve cross-session and cross-subject problems in 

the BCI field. Indeed, the results showed that although the 

average within-session classification accuracy was 68.8%, the 

accuracy degrades to 53.7% with cross-session validation 
since variability exists between sessions. 

Javed et al. [17] proposed a first logistic regression 

method to recognize four individual finger movements of the 

right-hand thumb, index finger and a combination of the 

middle (2nd of right) and ring fingers (4thof left), fist, with 

EEG signal. The method concentrates on active channels in 

alpha and beta bands with the most activity, usually high-

frequency components. This method gave true accuracy at 

almost 65%. Nevertheless, this categorization only applies to 

finger gesture identification and cannot identify the 

movements of other body parts. The paper shows that using 
EEG signals makes it feasible to recognize individual finger 

movement for controlling upper limb prosthesis, and this 
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novelty has great potential in improving the performance and 

dexterity of the devices. A study by Dhongade et al. [18] used 

MATLAB to extract features regarding EEG signals from the 

Physio bank database.  

The K- nearest neighbour algorithm for signal detection 

and servo motor control. It will tell the difference between two 
states: eyes opened or closed. If the classification indicates 

that the eyes are open, the servo motor will rotate 90°, and it 

will also rotate back when the classification indicates the eye 

is closed state. Only 5 out of the 64 EEG channels were used 

in this analysis. While a larger complex disease category is 

expected to emerge over time, there are only two categories to 

choose from, and this binary classification approach limits the 

possibilities. In addition, signal processing, feature extraction, 

and classification can take time- ultimately resulting in it 

taking even longer before power can be applied to control the 

robotic hand. 

Ahmed et al. [19] proposed an algorithm that can control 
an automated arm by focusing on finger movements. A 16-

channel device was used to capture and analyze the brain 

activity of 2 subjects aged 25-35 years.  This work used the 

simple classification approach with too little data. Arshad et 

al. [20] employed various machine learning algorithms, such 

as Random Forest, Gradient Boosting, Logistic Regression, 

Support Vector Machine, and Decision Tree, to classify the 

EEG data collected from four participants. Using a servo 

motor, they acquired data corresponding to the left arm and 

right arm, which showed no movement. Random Forest 

conducted the best classification accuracy of ~76%, while it 
was Decision Tree at almost 74%. Hayta et al. [21] focused on 

a three-class Motor Imagery-based BCI system to control 

robotic arms with six Degrees of Freedom. EEG signals were 

recorded from 64 electrodes involving 12-time windows for 

spatial filtering and classifier calculation. They obtained an 

accuracy of 70%.  

The inferences drawn from the literature review are as 

follows: Our work can focus on improving the analysis of one-

dimensional, two-dimensional, and three-dimensional 

representations of EEG signals. In addition, we can explore 

and incorporate further machine learning algorithms or 

techniques to enhance the accuracy and interpretability of 
neural responses in individuals with varying motor movement 

abilities.  

Our proposed work aims to contribute to the literature in 

the following ways: 

 Extracting temporal correlations between EEG signals 

using the spectrogram technique.  

 Developing a CNN algorithm based on Google Net to 

classify the EEG data into four distinct classes. 

 A robotic arm capable of executing four distinct tasks 

based on the classified output is constructed. 

3. Materials and Methods  
This section describes the study's dataset and how the 

spectrogram technique extracted features.  The details of the 

classification models employed are presented. The proposed 

approach is illustrated in Figure 1. 

 

 

 

 

 

 

Fig. 1 Proposed methodology 

3.1. Data Set  
The study utilized a publicly available EEG database 

containing 1500 recordings, each lasting one or two minutes, 

collected from 109 participants [15]. The data was acquired 

from 106 volunteers using 64-channel EEG signals on the 

BCI2000 platform. Each participant underwent 14 sessions, 

including two one-minute baseline sessions for eyes open and 

eyes closed and three two-minute sessions for each of the four 

designated tasks: 

Task 1: When a target appeared on the right or left side of the 

screen, the subject was instructed to close and open 

the respective fist until the target disappeared. 
Task 2: When a target appeared on the right or left side of the 

screen, the subject was asked to imagine closing and 

opening the respective fist until the target 

disappeared. 

Task 3: When a target appeared on the top or bottom of the 

screen, the subject was instructed to close and open 

both fists when the target was at the top and their feet 

when the target was at the bottom until the target 

disappeared. 

Task 4: Again, when a target appeared on the top or bottom 

of the screen, the subject was asked to imagine 

closing and opening both fists when the target was at 
the top and their feet when the target was at the 

bottom until the target disappeared.  

 

We considered data from 10 subjects and the trials 

corresponding to the above-mentioned tasks for further 

analysis. 

 

3.2. Feature Extraction 

Spectrograms often extract meaningful information to 

analyze raw EEG signals directly and improve classification 

accuracy. A spectrogram shows how the frequencies in a 
signal (such as an EEG) change over time. This gives a 

behavioral model of how the signal behaves in the frequency 
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domain and reveals hidden patterns and features that will not 

be recognized only from the time domain representation. 

Motor imagery and execution activate different areas of the 

brain, inducing frequency-specific modifications in EEG 

bands (e.g., alpha, beta, and mu). Spectrograms are vital for 

motor movement detection since the power distribution across 
different frequency bands is visualized clearly, and this helps 

to identify specific features for a particular movement. STFT 

uses temporal information, which is addressed in several 

studies [22]. So, the approach was better for extracting the 

required features and converting 1-D signals to 2-D images.  

 

This study proposes an unsupervised method for motor 

imagery detection based on self-attention mechanisms applied 

to EEG spectrograms, further emphasizing the significance of 

spectrograms in this domain [23]. Spectrogram images were 

generated using STFT in MATLAB. A Hamming window 

with 1 second overlapping was used to generate 2-D images, 
and the images were cropped to provide input to the CNN 

model. Sample spectrogram images of the four classes are 

shown in Figures 2-5. 

 

 
Fig. 2 Spectrogram image for class1 

 
Fig. 3 Spectrogram image for class2 

 
Fig. 4 Spectrogram image for class3 

 
Fig. 5 Spectrogram image for class4 

3.3. Classifier 

In the current work, the Google Net model is employed to 

train and classify the data into four classes based on the tasks 

outlined in Section A. The input layer holds the raw pixel 

values of the image, such as a 531x601x3 RGB image. The 

Google Net model with the "no weights" algorithm is 

implemented using MATLAB 2024A. 

 

The images are reshaped to 224x224x3, and the output 

layer is modified to have four nodes, as the data corresponds 
to four distinct tasks. The CNN model comprises a 22-layer 

deep architecture renowned for its inception modules, which 

enable effective image classification tasks with relatively low 

computational costs.  The maximum batch size of 32 with a 

maximum epoch of 15 is used with a learning rate 0.001. The 

key components of Google Net are discussed as follows: 

 Input Layer: It receives the initial image data, typically 

224x224 pixels with three colour channels, enabling the 

network to handle various image classification tasks. 

 Initial Convolutional Layer: It employs a 7x7 
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convolutional filter with a stride of 2, extracting 

preliminary features whilst reducing spatial dimensions. 

 Max Pooling: Uses a 3x3 kernel with a stride of 2 to 

further downsample spatial dimensions, thereby reducing 

the computational burden and capturing salient features 

from the previous layer. 

 Inception Modules: this allows for multi-scale processing 

and uses various convolutional filter sizes and pooling 

operations simultaneously to extract a range of features. 

Each module incorporates multiple branches of 1x1 

Convolution for efficient computing and dimensionality 

reduction. The network employs several iterations of 

Inception modules (A, B, and C), each refining feature 

extraction at a different stage. 

 Reduction Layers are positioned between Inception 

modules to decrease the spatial dimensions, reduce 

computational load, and increase network depth. 

 Intermediate Layers: Multiple Inception modules are 

stacked sequentially, each processing the output from the 

previous layer, thereby progressively extracting more 

complex features. 

 Connected Layers: After the chain of Inception modules, 

the network contains a final Global Average Pooling 

layer, followed by a Fully Connected layer and a Softmax 

layer. The choice of Google Net is justified due to its 

state-of-the-art performance in image classification tasks 

and its efficient use of computational resources, making 

it suitable for real-time applications like robotic control.  

 

3.4. Prototype Robotic Model 
The trained model is tested on new data, and the classified 

output controls the robotic arm in four directions. The 

prototype robotic model is developed using an Arduino 

processor, which is connected to the serial port -COM 6 of the 

PC. Based on the classifier's output, the movement with the 

highest probability is selected for the robotic arm operation. 

The decision-making logic implementation based on the 

classifier's output is as follows: If the predicted class is 1, 

move the robotic arm backward. If the predicted class is 2, 

move the robotic arm forward. If the predicted class is 3, move 
the robotic arm to perform a pinch-in action. If the predicted 

class is 4, move the robotic arm to perform a pinch-out action. 

If the classification output does not match any of the above, 

terminate the process. 
 

4. Results and Discussion  
For initial analysis purposes, 10 subject’s data is 

considered. For each subject, 4 tasks are considered in each of 

the three trials. So, 768 images per subject are generated. Each 

class has generated 2560 images and is given as input to the 

CNN model.  
 

The model is trained using 70% of the data, 15 % of the 

data for testing, and the remaining 15% for validation. The 
minimum batch size is 32, and the training is carried out for 

15 epochs. The training process is illustrated in Figure 6. 

 
Fig. 6 Training process of CNN algorithm 

 
Fig. 7 Confusion matrix of CNN model 

The confusion matrix of the CNN model is shown in 

Figure 7. The overall accuracy for the proposed CNN model 

is 62%.  From the confusion matrix, it is seen that the model 

can obtain 88.9% for class 1, 44.8% for class 2, 56.7% for 

class 3 and 69.6% for class 4. The precision rate of class 1 is 

64%, class 2 is 52%, class 3 is 68%, and class 4 is 62%, which 

shows that classes 1 and 4 have higher precision and recall 
rates. The F1-crore for Class1 is 0.74, class 2 is 0.58, class 3 

is 0.61, and Class 4 is 0.57, indicating that Class 2 and 4 need 

further improvement.  The kappa value is ~0.50, which 

indicates a moderate agreement between the predicted and 

actual values.  

 

The output of the prediction model is connected to the 

Arduino processor, and based on the classified output, the 

robotic arm is developed to carry out specific functions like 

moving backward, moving forward, pinching in, and pinching 

out. Around 16 test data, four test cases for each class were 
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given as input for the trained model, out of which all 4 test 

data for class 1 were predicted correctly, 2 test data were 

predicted correctly as class 2 and class 3, 3 test data were 

predicted correctly as class4. The prediction rate of the 

classifier is 100 % for class 1, 50% for classes 2 and 3, and 

75% for class 4. 
 

4.1. Case 1 

The test data that belongs to class 1 is applied, and the 

predicted output is a 1*4 vector, which gives the probability 

of the classes, and the result obtained is Y= 0.3464, 0.3321, 

0.1174, 0.2042 out of the four values the maximum value is 

0.3464, and it belongs to class 1.  The robotic arm moves 

backwards, as shown in Figure 8. 

 

 
Fig. 8 Backward movement of the robotic arm 

 

4.2. Case 2 

The test data that belongs to class 2 is applied, and the 
predicted output is 1*4 vector, which gives the probability of 

the classes, and the result obtained is     Y= 0.2317, 0.4624, 

0.11227. 0.1832, out of the four values, the maximum value is 

0.4624; it belongs to class 2.  The robotic arm moves in the 

forward direction, as shown in Figure 9. 
   

 
Fig. 9 Forward movement of the robotic arm 

 
Fig. 10 Pinching in of robotic arm 

4.3. Case 3 
The test data that belongs to class 3 is applied, and the 

predicted output is a 1*4 vector, which gives the probability 

of the classes and the result obtained Y= 0.1079, 0.1798, 

0.4803, 0.2320. Of the four values, the maximum value is 

0.4803, which belongs to class 3.  The robotic arm is pinched 

in, as shown in Figure 10. 

 

4.4. Case 4 

The test data that belongs to class 4 is applied, and the 

predicted output is a 1*4 vector, which gives the probability 
of the classes and the result obtained Y= 0.2516, 0.1318, 

0.0612,0.553 out of the four values the maximum value is 

0.553 it belongs to class 4.  The robotic arm is pinched out, as 

shown in Figure 11. 

 

 
Fig. 11 Pinching out of robotic arm 
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The proposed model focuses on classification for four 

tasks, which include actual and imaginary movements and the 

implementation of the robotic arm was carried out for 4 

operations, which seems to be better than the other related 

works. The performance rate was increased to a better level 

and is focused on temporal features of the signals, which 
seems to be a vital factor in detecting movement-related tasks.  

 

5. Conclusion  
Detecting motor movements using EEG signals is a 

promising research area that can significantly benefit 

individuals with motor disabilities. Researchers are employing 

sophisticated algorithms to develop systems capable of 
decoding motor intentions precisely and in virtually real time.  

Integration of EEG and neural networks has promised to 

improve communication, controllability, and therapies for 

people with motor disabilities. The spectrogram is analysed to 

extract temporal features and fed these images into a CNN 

model to classify into four states. The model achieved a 

prediction accuracy of approximately 62%, with a 

performance rate of 100% for Class 1, 50% for Classes 2 and 

3, and 75% for Class 4. This model has a modest performance 

in decoding the desired motor movements from the EEG 

signals. To test the framework, a robotic prototype is 

developed that could carry out distinct tasks— e.g., move in 
reverse, go forward, pinch in and pinch out— as they collected 

data to run through the classification model.  

For better performance, further study might be considered 

by integrating more biomedical signals (such as EMG and 

fNIRS) to improve feature extraction and classification.  

Subject size can be further increased to achieve a higher 

prediction rate and F1 score.  The prototype can be further 

implemented using a high processor to match the real-time 

application. Moreover, the real world testing should be 

expanded to see how reliable the algorithm is and how robust 

it will be for practical applications.
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