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Abstract - The Internet of Things (IoT) is crucial for technological advancement, attracting significant interest from researchers 
worldwide. However, the exponential growth of IoT devices and their huge volumes of data introduce substantial risks related 

to several security threats and vulnerabilities. The increasing implementation of IoT infrastructure has led to challenges such as 

device failures, elevated risks, and greater exposure to attacks, anomalies, and potential security breaches. Tackling and 

alleviating these concerns represent a critical area of focus within the broader field of IoT. By utilizing the IoTID20 dataset, 

precisely designed for IoT anomaly detection, the study suggests a novel approach for anomaly classification in IoT environments 

using a Deep Learning (DL) model optimized by a Normalized Bayesian Optimization Algorithm (NBOA) and a Convolutional 

Neural Network (CNN) architecture is employed for classifying anomaly, benefiting from the spatial pattern recognition 

capabilities of CNNs. The study employs a Machine Learning (ML) approach that utilizes Decision Tree (DT) and feature 

selection through the Harris Hawk Optimization (HHO) algorithm. The study validates the efficiency of using NBOA and HHO 

in boosting anomaly classification, ensuring faster convergence and improved accuracy. The outcomes demonstrate the superior 

performance of the DL model with 95.67% accuracy, surpassing the proposed ML and other state-of-the-art models. Combining 
these advanced optimization techniques with the DL and ML models, the study addresses the security challenges in the rapidly 

expanding IoT landscape, offering a robust solution for real-time anomaly detection. 
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1. Introduction 
In the past few decades, internet services and products 

have experienced significant growth. The exponential growth 

of the IoT is one such significant and beneficial breakthrough 

[1]. The IoT is a decentralized network that links physical 

objects to the internet through various network devices or 

routers. These all-devices exchange data autonomously 

without human intervention, increasing automation, data 

capture, and speed of operation. Several sensors are utilized in 
IoT to sense various objects and automate the process [2]. The 

sensed and collected data are then analyzed to produce 

appropriate information for optimal policy decisions. IoT is 

becoming a key technology in smart homes, industries, retail, 

transportation, and more due to its rapid ascent. Despite its 

benefits, the phenomenal expansion of network infrastructure 

has significantly increased landscape vulnerability, making 

interception a constant possibility during these situations due 

to weak authentication policies [3]. 

 

The absence of strong security and the increase in viruses 
explicitly created for security devices become very alarming. 

Intrusion occurs when an unauthorized user accesses the 

privacy, dignity, availability, and protection of resources 

connected to a network. An Intrusion Detection System (IDS) 

has been developed to detect these intrusions accurately. IoT 
networks are susceptible to various security threats, like 

Denial of Service (DoS), Mirai, and Man-in-the-Middle 

(MITM) ARP Spoofing attacks, each exploiting specific 

weaknesses in IoT devices and their communication protocols.  

 

Mirai, for instance, is a self-propagating malware that 

targets IoT devices with weak or default credentials, using 

them as botnets to launch large-scale DDoS attacks. DoS 

attacks flood a network with traffic, rendering devices or 

services unavailable, while MITM ARP Spoofing enables 

attackers to intercept or alter communications between IoT 
devices. These vulnerabilities often arise from weak 

authentication protocols, outdated firmware, and poor security 

practices in IoT device design [4]. Detection and classification 

of these anomalies are crucial to mitigate such attacks in IoT 

applications across various sectors. In a DoS attack, the 

attackers deny all the network services to the original users. 

During the scanning process, the hardware and system 

information are collected. Mirai is a self-propagating worm 

that exploits security to infect as many devices as possible.  

 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Conventional security measures for IoT networks are 

often insufficient because of their processing power and 

energy consumption. Therefore, advanced anomaly 

classification techniques using artificial intelligence are 

increasingly being utilized [5]. These techniques analyze huge 

streams of IoT data and help identify deviations from normal 
behavior to avert security incidents. Effective anomaly 

classification allows overall resilience in IoT systems, permits 

early threat detection and response, and ensures data 

confidentiality, integrity, and availability. This study proposes 

a DL and ML model with optimized feature selection methods 

for effective anomaly classification in IoT security. The main 

contributions of the research are listed below: 

 To develop a Deep Learning (DL) model using Bayesian 

optimization for anomaly classification in IoT security. 

 To develop a Machine Learning (ML) model using Harris 

Hawk Optimizer (HHO) for anomaly classification in IoT 
security. 

 To implement multiclass classifiers to categorize the 

anomalies present in IoT security. 

 To assess and compare the efficiency of the suggested 

methods. 

 

The structure of the remaining section of the paper is 

organized as follows: Section 2 discusses related works. The 

suggested models with enhanced feature optimization 

techniques are explained in Section 3. The results and a 

discussion of the suggested models are presented in Section 4. 

The study is finally summarized in Section 5 with a conclusion 
of the contributions. 

 

2. Literature Review 

Altulaihan et al. [6] proposed an IDS mechanism using 

anomaly detection and ML to detect DoS attacks. The study 

employed the IoTID20 dataset alongside four supervised 
classification algorithms to observe network traffic 

continuously for deviations from standard profiles. The 

models used various feature selection algorithms and 

compared the results. The results demonstrated that DT and 

Random Forest (RF) enhanced with Genetic Algorithm (GA) 

provide superior performance. The study had limitations in 

varying computational resource requirements for different 

classifiers. Guan et al. [7] introduced a two-tiered framework 

for classifying anomalies using a hybrid DL model that 

integrates Bidirectional Long Short-Term Memory (Bi-

LSTM) and CNN. Particle Swarm Optimization (PSO) was 

employed for feature selection, and data imbalance was 
addressed. The model surpassed other machine learning 

models with an accuracy of 88%. The study faced challenges 

in detecting new or unusual anomalies, which were not 

represented in the training process.  

Xin et al. [8] investigated CNN and Variational 

Autoencoders (VAE) to improve anomaly detection. The CNN 

model demonstrated superior performance, and the VAE 

model effectively detected anomalies and irregularities in the 

data. The study had limitations in data balance, leading to 

biased classification outcomes. Khan and Alkhathami [9] 

utilized a publicly available IoT dataset of 33 types of IoT 

attacks with non-biased supervised ML models. The models 

were analyzed by eliminating highly correlated features and 

speeding up training time. The RF model outperformed other 
models, demonstrating superior accuracy in reduced and all 

feature spaces. The study faced challenges in varying network 

conditions and real-time operational constraints. 

 

Lai et al. [10] analyzed traditional and ensemble ML 

methods and Bayesian Optimization (BO) to detect 

cybersecurity attacks in IoT. The models were evaluated 

across diverse datasets, highlighting the set of influencing 

configurations and optimal hyperparameter tuning. The study 

suggested that Extreme Gradient Boosting (XGB) and 

Gradient Boosting Machines (GBM) achieved high accuracy. 

The study did not investigate the interaction of different IoT 
devices with various network protocols. Tahir et al. [11] 

proposed RF, DT, SVM, and GBM models for ML-based 

anomaly detection. The abnormity negotiation function and 

the self-adaptive defense procedures were combined to 

analyze the strength of IoT networks. The GBM model 

surpassed other models with 89.34% accuracy. The study 

lacked assessments of scalability and overfitting.  

 

Sharma et al. [12] utilized a Deep Neural Network (DNN) 

model incorporating filter-based feature selection techniques. 

The UNSW-NB15 dataset, which included four attack classes, 
was used in the study. The model achieved 84% accuracy. To 

generate synthetic data of minority attacks, Generative 

Adversarial Networks (GANs) were used, and the model 

achieved 91% accuracy with a balanced class dataset. Senthil 

et al. [13] developed a hybrid DL model combining CNN and 

XGB to detect anomaly-based intrusions in IoT environments. 

Principal Component Analysis (PCA) extracted features from 

three publicly available datasets. The results demonstrated that 

the hybrid model using the CICDDoS 2019 dataset achieved 

93.21 % accuracy. 

 

Rahim et al. [14] explored the DL model for face 
recognition and anomaly detection in IoT devices. Six models 

were proposed, and the model combining the effectiveness of 

Logistic Regression (LR), HistGB classifiers, and CNN 

excelled with an accuracy of 94% and an AUC of 0.92 for 

anomaly detection. The challenges posed in interpreting 

predictions potentially limit the trustworthiness and 

transparency of the model. Lawal et al. [15] analyzed the 

security of network anomaly mitigation methods in IoT 

networks. The UNSW-NB15 dataset, which contains nine 

categories of attacks, was employed to evaluate the 

performance of various classification algorithms. With an 
accuracy of 94.38% and 94.71%, respectively, for the 

information gain feature selection methods and the correlation 

coefficient, the outcomes presented that the kNN model 

outpaced other models.  
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A critical gap identified across the studies is the challenge 

of generalizing anomaly detection models in dynamic and 

diverse IoT environments, particularly in relation to detecting 

novel or evolving threats. While several studies demonstrate 

high accuracy using specific datasets and models, they often 

face limitations in addressing real-world scenarios where new 
attack vectors are not represented in the training data. 

Additionally, many approaches do not sufficiently explore the 

interaction between various IoT devices and network 

protocols, which can significantly influence detection 

capabilities. The dependence on static datasets raises concerns 

about the adaptability and scalability of these models in 

practice. Furthermore, issues such as data imbalance, 

overfitting, and the interpretability of model predictions 

remain inadequately addressed, hindering the deployment of 

these systems in operational settings. Addressing these gaps 

improves the strength and pertinence of anomaly detection 

mechanisms in IoT security. 

3. Materials and Methods 
In IoT devices, anomaly classification is essential for 

ensuring security and reliability by maintaining data integrity. 

The system detects abnormal behavior in potential security 

breaches and prevents failures by examining data for 

deviations from normal behavior and operational 

efficiency. An ML model is suggested in this study to classify 

anomalies in IoT security. The dataset with four categories of 

anomalies and one normal is preprocessed and feature 

optimized. The output is fed into the DL and ML classifiers to 

classify between the categories. Figure 1 represents the block 

diagram of the suggested model. 
 

3.1. Dataset  

A well-designed dataset is required for new techniques 

and detection algorithms for IoT security. The study utilized a 

new IoTID20 dataset [16] comprising more comprehensive 

network and flow-based features. A typical smart home 

environment uses an artificial intelligence speaker, laptops, 

smartphones, and Wi-Fi cameras (EZVIZ) as interconnected 

network components. SKT NGU speakers and EZVIZ are the 

IoT victim devices used to generate the IoTID20 dataset, while 

other devices are the attacking equipment. With its high rank 

features, this new IoT botnet dataset provides a reference point 
for recognizing anomalies across various IoT networks. This 

dataset consists of four anomaly categories (Mirai, scan, DoS, 

and MITM ARP Spoofing) and one normal category. The 

dataset consists of 77 features. Figure 2 illustrates the sample 

data and dataset description. Tables 1 and 2 provide the data 

distribution for binary and category label distributions. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Block diagram of the suggested model 

Table 1. Binary label distribution 

Binary label Count 

Anomaly 585,710 

Normal 40,073 
 

Table 2. Category label distribution 

Category label Count 

Mirai 415,677 

MITM ARP Spoofing 35,377 

Scan 75,265 

DoS 59,391 

Normal 40,073 

 

3.2. Preprocessing and Exploratory Data Analysis 

Several techniques are applied to enhance the training 

process during data preprocessing, including data cleaning, 

normalization, and encoding. In the data cleaning phase, it is 

essential to remove null values, as missing data can result in 

erroneous predictions and adversely affect model 

performance.  

No null points were presented in the dataset. Each 

categorical (string) value is converted into a numerical 
(integer) value using a label encoder. Table 3 illustrates the 

label encoding. 

5 class labels 
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(a) 

 
(b) 

Fig. 2 (a) Sample dataset, and (b) Dataset description. 

Data normalization is structuring data within a database 

to eliminate redundancy and enhance data integrity, ensuring 

the information is stored efficiently and consistently [17]. Z-

score normalization transforms features into a ‘0’ mean and 

standard deviations of ‘1’. The process helps to speed up 

convergence during training. The normalization function is 

represented by Equation 1.  

                                          𝑥′ =
𝑥−𝜇

𝜎
                                (1) 

Where 𝑥 represents the original value of a feature, 𝜇 

represents the mean, and 𝜎 is the standard deviation of the 

feature. Exploratory Data Analysis (EDA) involves examining 

the distribution and features of the data through various data 

visualization techniques [18]. Figure 3 represents the count of 

different anomaly categories. Figure 4 provides the feature 

distribution of the dataset. 
 

Table 3. Label feature of the IoTID20 dataset 

Label Category 

0 Mirai 

1 Scan 

2 DoS 

3 Normal 

4 MITM ARP Spoofing 

 
Fig. 3 Visualization of the count of different anomaly categories 
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Fig. 4 Feature distribution of the dataset

 
 

 

 
 

 

Fig. 5 Workflow of the suggested DL model

3.3. Proposed Deep Learning Model Using Normalized 

Bayesian Optimization Algorithm 

In an era where the IoT is rapidly expanding, ensuring 

robust security against anomalies has become paramount. This 

section presents a proposed deep learning model that utilizes 

a normalized Bayesian optimization algorithm to classify 

anomalies in IoT environments effectively. Figure 5 

demonstrates the workflow of the suggested DL model. 
 

3.3.1. Normalized Bayesian Optimization Algorithm  

The NBOA was chosen for its capability to balance 

exploration and exploitation in high-dimensional parameter 

spaces, ensuring efficient convergence to optimal solutions. 

Unlike traditional optimization techniques like particle swarm 

optimization or genetic algorithms, NBOA leverages a 

Gaussian process to model the objective function and refine 

predictions iteratively. This makes it particularly suited for 

tuning the hyperparameters of complex deep learning models, 

as it minimizes computational costs while maximizing 
performance. The BOA aims to minimize the scalar objective 

function 𝑓(𝑥) for variable 𝑥, producing different outputs 

based on whether the function is deterministic or stochastic 

[19]. The minimization process comprises three key elements: 

a Gaussian process model representing 𝑓(𝑥), a Bayesian 

update that refines the Gaussian model with each new 

evaluation of 𝑓(𝑥), and an acquisition function 𝑎(𝑥) that 
directs the search for optimal solutions. The next evaluation 

point is identified by maximizing 𝑎(𝑥). A gaussian process is 

a gathering of random variables with a specified mean 𝑚(𝑥) 
and covariance 𝑘(𝑥, 𝑥’) expressed as Equation 2.  

  

                            𝑓(𝑥) = 𝒢𝒫(𝑚(𝑥), 𝑘(𝑥, 𝑥’)                      (2) 

 

Equation 3 defines the mean and covariance functions. 
𝑚(𝑥) = 𝔼[𝑓(𝑥)] 

 

             𝑘(𝑥, 𝑥′) = 𝜎2exp(−
(𝑥−𝑥′)2

2𝑙2
)                        (3) 
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CNN Feature 

Extraction  
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Fig. 6 Gaussian function and utility function after 9 steps 

Given a set of observed data 𝕏 = {𝑥1, 𝑥2, …… 𝑥𝑛} having 

corresponding function values 𝕪 =
{𝑓(𝑥1), 𝑓(𝑥2),……𝑓(𝑥𝑛)}, the Gaussian process provides a 

posterior distribution, as in Equation 4, over the function 

values at new points 𝑥∗. The posterior distribution improves 

as the number of observations increases, exploring the more 

valuable region in the parameter space.  

 

                              𝑓∗|𝕏, 𝕪, 𝑥∗~𝒩(𝜇∗, Σ∗)                       (4) 

 

Where𝜇∗ = 𝕂∗
𝑇𝕂−1𝑦, Σ∗ = 𝕂∗∗ − 𝕂∗

𝑇𝕂−1𝕂∗ and 𝑓∗ is 

the best observed value. Here, K is the covariance matrix, K_* 
is the covariance between observed and new points and K (**) 

is the covariance between new points. The Gaussian process 

and the utility function are shown in Figure 6.  

 

By balancing between exploration and exploitation, the 

acquisition function decides the position of the next sample 

[20]. At each step, the Gaussian process fits the explored 

points, and the next points to be explored are determined 

according to the corresponding distribution combined with the 

exploration strategy. 

The expected improvements are defined by Equation 5. 

                   𝐸𝐼(𝑥) = 𝔼[max (0, 𝑓∗ − 𝑓(𝑥))]                            (5) 

Where 𝑓(𝑥) is the Gaussian process prediction at 𝑥. The 

probability of improvement is expressed in Equation 6. 

                            𝑃𝐼(𝑥) = 𝜑 (
𝜇(𝑥)−𝑓∗−𝜉

𝜎(𝑥)
)                        (6) 

Where 𝜑 is the cumulative distribution function, and 𝜉 is 

a small positive constant. The upper confidence bound is given 

by Equation 7. 

                            𝑈(𝑥) = 𝜇(𝑥) + 𝜅𝜎(𝑥)                                 (7) 

The acquisition function is maximized to find 𝑥∗ as in 

Equation 8. 

                            𝑥∗ = 𝑎𝑟𝑔max
𝑥

𝛼(𝑥)                                        (8) 

The true objective function is evaluated, the gaussian process 

is updated with the new data, and the process repeats until the 

stopping criterion. Figure 7 illustrates the action of Bayesian 

optimization. 

 

To normalize the Bayesian optimizer, it is necessary to 

normalize the 𝑃𝑟(𝑑𝑎𝑡𝑎) of the Bayes’ Theorem in Variational 

Bayes. The Bayes theorem denotes the posterior distribution 

as expressed in Equation 9. The variational approximation 
seeks to minimize the Kullback-Leibler (KL) divergence 

between the approximate distribution and the actual posterior, 

effectively refining the estimate of the true distribution by 

finding the closest approximation.    

    Pr(params|data) =
Pr(data|params)Pr(params)

Pr(data)
               (9) 

 
Fig. 7 Bayesian optimization in action 

3.3.2. Deep Learning Model for Anomaly Classification 
CNN can automatically classify and extract significant 

features from network traffic datasets, effectively 

distinguishing between normal and malicious activities. [21] 

Due to this, the model does exceptionally well to capture any 

spatial patterns, making them ideal for analyzing any visual 

data. The features to be fed to the CNN are optimized using 

NBOA. A basic CNN is structured with several layers, as 

illustrated in Figure 8.  

 
CNN extracts the features from the given input to fed into 

the next layer. The pooling operation is done by applying a 

filter over the feature map and calculating the average of the 

elements within each patch, which filter overlaps. Each input 

node is now connected to the preceding output layer to form a 

fully connected network. The basic convolution operation is 

given by Equation 10. 

 

             𝑦[𝑎, 𝑏] = ∑ ∑ 𝑎[𝑎 + 𝑖, 𝑏 + 𝑗]𝑘−1
𝑗=0

𝑘−1
𝑖=0 . 𝑤[𝑖, 𝑗]        (10) 
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Where 𝑤[𝑖, 𝑗] represents the filter values at position 

(𝑖, 𝑗), 𝑎[𝑎 + 𝑖, 𝑏 + 𝑗] is the input feature map, and 𝑦[𝑎, 𝑏] 
represents the output feature map at position (𝑖, 𝑗). A dense-

type CNN with a ReLU activation function is used in this 

study. The last dense layer employs A softmax activation 
function to produce the predicted class probabilities. The 

suggested architecture for the CNN model is shown in Figure 

9. 

3.4. Proposed Machine Learning Model Using Harris Hawk 

Optimization Algorithm 

With the evolvement of the IoT landscape, safeguarding 

these interconnected systems from anomalies is critical for 

maintaining security and functionality. This section outlines a 

proposed machine learning model that utilizes the HHO 

algorithm to enhance anomaly classification in IoT security. 

Figure 10 illustrates the workflow of the suggested ML model. 

3.4.1. HHO Feature Selection 

The HHO algorithm is employed for feature selection to 

improve classification accuracy and training speed. Feature 

selection involves eliminating inappropriate and redundant 

features to select the most important one. The population-

based, nature-inspired HHO slope optimization method 

mimics the chasing style of Harris hawks’ birds [22]. Harris 
Hawks’ attacks use a variety of chasing styles, originating 

from ma+ny directions to surprise their prey. 

 

 

 

 

 

 

 

 

 

 

Fig. 8 Basic CNN architecture 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9 Proposed CNN architecture 

 

 

Fig. 10 Workflow of the suggested ML model 
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The exploration and exploitation strategies are derived 

from a standard HHO algorithm grounded on the attacking 

behaviors of Harris Hawks’, like predation, preaching, and 

surprise pounce strategies. There are four phases for 

exploitation and two for exploration in HHO. Figure 11 

illustrates the various phases of HHO.  

 
Fig. 11 Various phases of HHO 

 

During the initialization phase, the initial population 

assigns parameter values, defining the solution space of the 

objective function.  

 

During the exploration phase, the Harris Hawks actively 

hunt for the prey. Although the hawks’ attractive eyes aid in 

locating and following their prey, it is not always easy to 
realize the prey.  

Here, the hawks watch and wait in hopes of seeing their 

prey. In every iteration, all Harris Hawks represent candidate 

solutions, with their fitness values assessed based on the 

targeted prey. Based on Equation 11, the Harris hawks wait at 

specific locations to find their prey. 

 𝑋(𝑡 + 1) =

{
𝑋𝑟𝑎𝑛𝑑(𝑡) − 𝑟1|𝑋𝑟𝑎𝑛𝑑(𝑡) − 2𝑟2𝑋(𝑡)𝑞 < 0.5

(𝑋𝑝𝑟𝑒𝑦(𝑡) − 𝑋𝑚(𝑡)) − 𝑟3(𝐿𝐵 + 𝑟4(𝑈𝐵 − 𝐿𝐵))𝑞 ≥ 0.5
                                                                                                

(11) 

Where 𝑋(𝑡) and  𝑋(𝑡 + 1) represents the Hawks’ position 

in iteration 𝑡and (𝑡 + 1) iterations, respectively, 𝑋𝑝𝑟𝑒𝑦  

denotes the position of prey in the current population, having 

chosen a random solution 𝑋𝑟𝑎𝑛𝑑(𝑡), 𝑟1, 𝑟2 , 𝑟3 , 𝑟4 , 𝑞 ∈ [0,1] are 

the random scaled factors, which are updated in each iteration. 

UB and LB represent the upper and lower bounds of variables. 

𝑋𝑚(𝑡)is the average number of solutions given by Equation 

12.  

                             𝑋𝑚(𝑡) =
1

𝑁
∑ 𝑋𝑖(𝑡)
𝑁
𝑖=1                     (12) 

Where, according to chaos theory, 𝑋𝑖(𝑡) denotes the 

position of each solution in iteration t. The next phase is the 

evolution from exploration to exploitation, depicted in Figure 
12, which shows how HHO moves in response to the prey’s 

energy E.  

 

HHO assumes that the prey’s energy diminishes 

progressively due to its escaping actions, as in Equation 13.   

                       𝐸 = 2𝐸0 (1 −
𝑡

𝑇
) , 𝐸0 ∈ [−1,1]                        (13) 

Where 𝐸0 is the prey’s initial energy, and T represents the 

maximum number of iterations. In the exploitation phase, 

HHO employed four possible approaches as follows for 

mimicking the attacking strategy, relying on two variables: the 

probability of escaping, r, and the escaping energy |𝐸| [23]. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12 Phase transitions based on energy 
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Equation 14 provides the condition of escaping 

probability.   

𝑟 =

{
𝑟 < 0.5,ℎ𝑖𝑔ℎ𝑒𝑟𝑐ℎ𝑎𝑛𝑐𝑒𝑜𝑓𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑒𝑠𝑐𝑎𝑝𝑒

𝑟 ≥ 0.5ℎ𝑖𝑔ℎ𝑒𝑟𝑐ℎ𝑎𝑛𝑐𝑒𝑜𝑓𝑢𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑒𝑠𝑐𝑎𝑝𝑒
                                                 

(14) 

In the soft besiege scenario, where 𝑟 ≥ 0.5 and |𝐸| ≥ 0.5, 

the prey possesses adequate energy to evade capture, while the 

hawks gently encircle the prey to deplete its energy further 

before executing a surprise attack. Equation 15 shows the 

mathematical expression for soft besiege. 

              𝑋(𝑡 + 1) = ∆𝑋(𝑡) − 𝐸|𝐽𝑋𝑝𝑟𝑒𝑦 −𝑋(𝑡)|        

                       ∆𝑋(𝑡) = 𝑋𝑝𝑟𝑒𝑦 − 𝑋(𝑡),      

                            𝐽 = 2(1 − 𝑟5), 𝑟5 ∈ [0,1]                        (15) 

In this case, 𝑟5 is a random variable, J is the prey’s jump 

strength, and ∆X(t) is the difference between the prey’s 

location at iteration t and the current position vector.  

 

In hard besiege, where 𝑟 < 0.5 and |𝐸| ≥ 0.5, the prey 
has less possibility to escape and is tired. Here, the hawks are 

circling their prey close to prepare for one last surprise attack. 

The updated solution is represented by Equation 16. 

                  𝑋(𝑡 + 1) = 𝑋𝑝𝑟𝑒𝑦(𝑡) − 𝐸|∆𝑋(𝑡)|                    (16) 

In soft besiege with progressive rapid dives, where 𝑟 <
0.5 and |𝐸| ≥ 0.5, the prey retains energy to avoid capture. 

The hawk skilfully navigates around the prey, waiting 

patiently before making a sudden dive for the surprise attack.  

 

This approach involves a two-step update of the hawk’s 

position. Initially, the hawks approach the prey by predicting 

its subsequent movement, as represented by Equation 17. 

              𝑌 = 𝑋𝑝𝑟𝑒𝑦(𝑡) − 𝐸|𝐽𝑋𝑝𝑟𝑒𝑦(𝑡) − 𝑋(𝑡)|                  (17) 

Then, the hawk evaluates whether to dive by contrasting 

the results of earlier dives with the expected outcomes. If it 
decides against diving, the hawks engage in irregular dives, 

guided by the principle of Lévy Flight (LF), as described in 

Equation 18. 

               𝐿𝐹(𝑥) = 0.001 ×
𝑢×𝜎

|𝑣|
1
𝛽

, 𝜎 = (
Γ(1+𝛽)×𝑠𝑖𝑛

𝜋𝛽

2

Γ(
1+𝛽

2
)×𝛽×2

(
𝛽−1
2

)
)

1

𝛽

                            

                                𝑍 = 𝑌 + 𝑆 × 𝐿𝐹(Dim)                          (18) 
 

Where Dim denotes the dimension of the solution, S 

represents a random vector of size 1 × 𝑑𝑖𝑚, 𝛽 is a constant 

with value 1.5 and 𝑢, 𝑣 ∈ [0,1]. Thus, the update in the hawk’s 

position with progressive rapid dives is expressed in Equation 

19. 

                    𝑋(𝑡 + 1) = {
𝑍𝑖𝑓𝐹(𝑍) < 𝐹(𝑋(𝑡))

𝑌𝑖𝑓𝐹(𝑌) < 𝐹(𝑋(𝑡))
           (19) 

Where 𝑌 and 𝑍 are evaluated using Equations 17 and 18, 
respectively. In hard besiege with progressive rapid dives, 

where 𝑟 < 0.5 and |𝐸| < 0.5, the prey cannot escape due to 

insufficient energy, prompting the hawks to perform swift 

dives to capture it, leading to a successful surprise pounce. 

Equation 20 represents the movement pattern of hawks in this 

condition. 

                  𝑋(𝑡 + 1) = {
𝑍𝑖𝑓𝐹(𝑍) < 𝐹(𝑋(𝑡))

𝑌𝑖𝑓𝐹(𝑌) < 𝐹(𝑋(𝑡))


             (20) 

Where 𝑍 and 𝑌 are evaluated using Equations 21 and 22, 

respectively. 

                      𝑌 = 𝑋𝑝𝑟𝑒𝑦(𝑡) − 𝐸|𝐽𝑋𝑝𝑟𝑒𝑦(𝑡) − 𝑋𝑚(𝑡)|                                 

                              𝑍 = 𝑌 + 𝑆 × 𝐿𝐹(Dim)                         (21) 

Subsequently, the classification error rate, represented as 

in Equation 22, and the selected features’ minimum number 

are included in the fitness function calculation. 

                          𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =∝ 𝛾𝑅(𝐷) + 𝛽
|𝑅|

|𝑁|
                       (22) 

Where∝∈ [0,1]and 𝛽 = (1 − 𝛼), 𝛾𝑅(𝐷) denotes the 

classifier error rate, |𝑅| is the number of features that have 

been selected, and |𝑁| is the features’ total number. Here, the 

HHO algorithm selected 21 features out of the total available 

features in the dataset, reducing the dimensionality of the data 

while improving the model’s performance.  

 

3.4.2. Machine Learning Model for Anomaly Classification 

DT are utilized for anomaly classification due to their 
applicability in regression and classification tasks [24]. It 

consists of a tree structure where the root node is the starting 

point on behalf of the entire dataset, making it simple to 

identify anomalies in the data. It splits into two or more 

subsets based on the attribute that maximizes the separation 

between normal and anomalous instances, determined using 

an Attribute Selection Measure (ASM). The internal nodes 

that result from these splits are known as decision nodes, 

which make decisions based on an attribute and can have 

multiple branches after pruning. Each branch represents a 

different decision rule that connects a parent node to its child 
nodes. At the terminal end of the tree are the leaf nodes, which 

represent the outcome and do not split further, as shown in 

Figure 13. Splitting refers to dividing a node into sub-nodes 

based on attribute values. At the same time, pruning removes 

unnecessary branches to simplify the tree and prevent 

overfitting, making it more generalizable [25]. Thus, the 

decision nodes facilitate the decision-making process with 

multiple branches, while the leaf nodes signify the final 

outcomes without further subdivisions. 
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To determine which feature to use for splitting, Decision 

Trees use different criteria to measure the purity or 

homogeneity of the nodes. Two popular methods are 

information gain and the Gini index. Information gain 

measures the reduction in entropy (a measure of impurity) 

after splitting the data based on a feature as given in Equation 
23. The feature that maximizes information gain is selected for 

splitting. 

𝐺(𝐷, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷) − ∑
|𝐷𝑣|

|𝐷|
𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷𝑣)𝑣∈𝑉𝑎𝑙𝑢𝑒𝑠(𝐴)                                            

(23) 

Where D is the dataset, A is the feature, and entropy 

measures the randomness or impurity in the dataset, as in 

Equation 24. 

                     𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷) = −∑ 𝑝𝑖𝑙𝑜𝑔2(𝑝𝑖)
𝐶
𝑖=1                (24) 

Where 𝑝𝑖 is the probability of class i. Equation 25 

represents the Gini impurity index. 

                                   𝐺𝑖𝑛𝑖(𝑆) = 1 −∑ 𝑃𝑗
2𝑘

𝑗=1                       (25) 

Where k denotes the classes’ number. The attribute with 

the smallest Gini index is chosen for the split. Thus, by 

selecting the 21 most relevant features using HHO, the DT 

classifier focuses on the most important variables, improving 

model interpretability. 

 

The proposed anomaly detection model demonstrates 
significant potential for real-world applications across various 

sectors, including smart homes, industrial IoT, and healthcare 

systems.  

In smart homes, the model could be deployed to monitor 
device interactions, identifying unauthorized access or 

unusual behaviors, thereby confirming the privacy, veracity, 

and accessibility of sensitive data. For example, it could detect 

abnormal patterns in home security systems or connected 

appliances, alerting users to potential security breaches. 

 

The model could prevent downtime in industrial IoT 
settings by detecting network intrusions or device 

malfunctions before they escalate into major issues. Real-time 

detection of anomalous behavior could help reduce 

operational disruptions and improve the overall efficiency of 

critical infrastructure. Similarly, in healthcare systems, the 

model could safeguard medical devices and networks from 

cyber threats, ensuring patient safety and the protection of 

sensitive health data. Applying this model in these practical 

scenarios can make IoT systems more resilient, improving 

safety, operational efficiency, and reliability. 

3.5. Hardware and Software Setup 

A comprehensive setup is used for this study to ensure a 

well-equipped environment to handle the demand of neural 

network training and deployment. It consists of an Intel Core 

i7 processor, NVIDIA GeForce GTX 1080Ti GPU, 32GB of 
RAM, and the Python-based Keras library integrated with the 

TensorFlow framework. Google Colab’s extensive computing 

resources and Keras’s user-friendly interface simplified the 

procedure of building models and ensured the successful 

training and execution of complex structures.  

The dataset was partitioned as 70% for training, 20% for 

validation and 10% for testing. Hyperparameters are critical 

parameters that specify the operation and functions of a DL 

framework throughout the training. Table 4 demonstrates 

hyperparameters, which are user-specified prior to training, in 

contrast to the model’s parameters, which are determined by 

the data.
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Table 4. Hyperparameter specifications 

Hyperparameters Values 

Optimizer Adam 

Activation function ReLU 

Epochs 500 

Loss function Categorical cross-entropy 

Batch size 5000 

 

4. Results and Discussion 
4.1. Evaluation of Performance 

Performance evaluation of the suggested model was 

conducted to ensure an inclusive understanding of its 

effectiveness using a variety of metrics. As shown in Table 5, 

the primary metrics highlight different aspects of the model’s 

performance. The classification report for the suggested DL 

and ML models is illustrated in Table 6, and Figure 14 

provides a visual representation of the results. 

Table 5. Evaluation metrics 

Performance 

Metrics 
Equations 

Accuracy 
(𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃

+ 𝐹𝑁) 

Precision 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) 

Recall 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) 

F1 Score 
2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

+ 𝑟𝑒𝑐𝑎𝑙𝑙) 

Where, 𝑇𝑃-True Positives, 𝐹𝑃-False pOsitives, 𝑇𝑁-True 

Negatives and 𝐹𝑁-False Negatives 

Table 6. Classification report of suggested models 

Evaluation parameters 
Proposed Machine Learning 

Model 
Proposed Deep Learning Model 

Accuracy 92.65% 95.67% 

Precision 91.37% 94.8% 

Recall 92.42% 95.4% 

F1 score 91.89% 95.09% 

 
Fig. 14 Graphical representation of classification report 

Table 6 highlights the efficiency of the DL and ML 

models in recognizing anomalies within IoT security. With an 

accuracy of 95.67%, the DL model exhibits significantly 

higher accuracy than the ML model. This suggests that the DL 

model demonstrates greater effectiveness in accurately 
classifying instances within the dataset. High accuracy is 

crucial, especially in IoT applications where correct 

predictions are paramount. A higher precision of 94.8% 

specifies that it is more likely to be correct when the DL model 

forecasts a positive class. The DL model demonstrates 

superior performance by capturing true positives with a recall 

value of 95.4%. This is critical in contexts of anomaly 

detection, where failing to identify positive cases (false 

negatives) poses a risk. With a higher F1 score of 95.09%, the 

DL model demonstrates a better balance between recall and 

precision, making it more reliable for practical applications. 

The study’s accuracy and loss plots were crucial for assessing 

the model’s performance throughout training. The accuracy 

plot demonstrated the model’s learning progress, which 

showed strong generalization as training accuracy increased 
gradually and validation accuracy followed suit. The 

consistent decay in the loss plot indicates that the model has 

fewer errors and is more efficient in learning. No divergence 

between the training and validation metrics indicates no 

overfitting. The model’s accuracy and loss plot are shown in 

Figure 15. The confusion matrix shown in Figure 16 illustrates 

the model performance, where predicted labels are compared 

to actual labels, with accurate predictions shown along the 

diagonal and incorrect classifications shown by off-diagonal 

parts.  
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Fig. 15 Accuracy and loss plot of the suggested DL model 

 
Fig. 16 Confusion matrix of the suggested DL model 

Figure 17 represents the convergence plot, illustrating the 

fitness value progression of the HHO algorithm over several 

iterations. The plot shows a downward trend in fitness values, 

which confirms that the HHO algorithm is successfully 

optimizing the feature selection process. The lower the fitness 

value, the better the selected features are for the DT classifier. 

The algorithm consistently improves over the iterations, 

leading to more effective feature selection. 

4.2. Performance Comparison 

Table 7 and Figure 18 show the efficiency of the 

suggested model when compared to traditional models. The 

comparative analysis of various models on different datasets 

reveals that the suggested DL model achieves the highest 

accuracy of 95.67% on the New IoTID20 dataset, surpassing 
other methodologies. Notably, the CNN-BiLSTM model 

achieved 88%, and the GBM recorded 89.34%, indicating 

substantial improvements. The DNN on the UNSW-NB15 

dataset achieved 91%, while the CNN-XGBoost model on the 

CICDDoS 2019 dataset attained 93.21%. The proposed ML 

model demonstrates commendable performance with 93.65% 

accuracy on the same dataset. This indicates that the proposed 

DL model not only outperforms existing models but also 

underscores the efficiency of DL techniques in addressing 

complex challenges in anomaly classification in the IoT 

environment. 

 

The study’s dependence on a single dataset, IoTID20, 

represents a limitation in terms of the model’s generalizability. 
While IoTID20 is designed explicitly for anomaly detection, 

it does not fully capture the vast diversity and complexity of 

real-world IoT environments, particularly in terms of device 

types, communication protocols, and attack vectors. This 

limitation could affect the model’s performance when applied 

to IoT networks with different characteristics or evolving 

threats. Furthermore, the computational complexity of the 

deep learning model, particularly the Convolutional Neural 

Network (CNN), may pose challenges in large-scale IoT 
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deployments where resources such as processing power, 

memory, and energy are limited. Real-time processing of vast 

amounts of IoT data could lead to high latency or excessive 

computational overhead, which may hinder the model’s 

practical application in time-sensitive environments. 

Acknowledging these challenges is essential for providing a 

balanced perspective on the study’s findings. Future work 

could explore strategies to address these challenges, such as 

employing lightweight models or edge computing solutions, 

to make the system more scalable and suitable for deployment 

in diverse IoT settings. 

 

Table 7. Comparison with the existing models 

Methodology Dataset Accuracy (%) 

CNN-BiLSTM [6] New IoTID20 88 

GBM [11] Network Traffic Dataset 89.34 

DNN [12] UNSW-NB15 91 

CNN-XGB [13] CICDDoS 2019 93.21 

Proposed DL model New IoTID20 95.67 

Proposed ML model New IoTID20 93.65 
 

Fig. 17 Convergence plot of HHO algorithm 

 
Fig. 18 Performance comparison of the suggested model with the existing methods
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5. Conclusion 
IoT systems are vulnerable to numerous security threats 

that can hinder legitimate users from accessing their services. 

Consequently, it is crucial to implement strong techniques and 

mechanisms to safeguard systems, devices, and data against 

attacks targeting IoT networks. By utilizing the IoTID20 

dataset, the study proposed a DL model optimized by a 

normalized Bayesian optimization algorithm, and a CNN 

architecture was employed for classification, benefiting from 

the spatial pattern recognition capabilities of CNNs. The study 

also employed an ML approach that utilizes DT and feature 

selection through the HHO algorithm. The proposed DL 

methodology bids a scalable and robust solution for real-time 
IoT anomaly detection, outperforming conventional models in 

classification accuracy, having a value of 95.67% and feature 

selection efficiency. Future work should evaluate the proposed 

model across diverse IoT datasets to assess its adaptability and 

generalizability. It should also integrate transfer learning and 

advanced optimization methods to enhance efficiency and 

performance. Additionally, addressing challenges like 

computational overhead and latency will be crucial for 

optimizing the model for real-time deployment in resource-
constrained IoT environments, enabling broader adoption in 

large-scale applications. 
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