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Abstract - IoT and machine learning systems are changing the energy management landscape since they make it possible to 

understand and analyze data with great detail. In this work, we develop EnerSense, a novel architecture that integrates IoT 
functionalities for smart meter data extraction with state-of-the-art Machine Learning techniques to manage energy consumption 

and project energy load. This model is based on the hybrid model, Random Forest and AutoRegressive Integrated Moving 

Average (RF-ARIMA), and it has an accuracy of 96% in determining the consumption behavior and investigating the outliers. 

Our framework enables wireless IoT integration and real-time data tracking for effective energy management while reducing 

cost regimes. Substantial empirical tests show about 20% energy wastage reduction, proving that the system can further improve 

energy efficiency. This solution enables utility companies to be equipped with meaningful energy usage strategies, presenting a 

cost-effective structure that optimizes resource use by meeting energy needs promptly and enhancing smart energy systems. 

Keywords - Smart meters, Wireless IoT, Machine Learning, Energy utilization optimization, Anomaly detection. 

1. Introduction  
Step-by-step transformations in electric power generation, 

transmission, and consumption on Earth have become more 

deep and comprehensive. Changes in policy and technology 

or consumer behavior also play a fundamental role in these 

developments. An important aspect of an energy revolution is 

the introduction of smart metering technology, which has now 

been well incorporated into the national energy grids. Whereas 

the first type of meter had to be visited to obtain the energy 

outturn, smart meters allow utilities and customers to analyze 
their energy expenditure via an Energy Consumption 

Management System (ECMS) daily.  

Several factors have propelled this shift, such as the 

requirement for renewing aging facilities, increasing 

effectiveness, and fostering environmental protection. 

Automatic sensor communication gives smart meters the 

added benefit of, once in a while, sending designed data on 

how much power has been utilized to the utilities who use that 

information to optimize grid management, predict the demand 

and inform pricing. Where there are challenges, new ideas 

emerge, and smart meter technology has provided new 

business opportunities for the efficient management of energy 
resources. Dirty data may prove an enigma, but power utilities 

may employ these heavy data-powered devices to achieve 

operational efficiency, reveal underlying problems, and 

customize offerings. Soberness of the effective lime 

management principle based on these heavy data does not 

radically improve domestic energy management systems.  

Hitherto, irrational behavior targets energy consumption 

and seems to hold great promise. Device proliferation further 

complicates the issues of management ecosystems along with 

competitive analytical centers. Each high dimensional data 

stream requires its own special treatment for appropriate 

insights [1]. In order to help with this, a combination of 

Wireless IoT and Machine Learning is quite effective. 

Wireless IoT provides interconnections among smart meters 

or their systems with the facility for live data transfer [2]. 

Machine Learning methods, on the other hand, assist in data 

mining by analyzing the data, recognizing consumption 
patterns, anticipating usage patterns, and identifying outliers. 

This paper presents EnerSense, a novel framework for 

smart meter data analytics that relies on Wireless IoT and 

advanced Machine Learning algorithms to improve energy 

efficiency. EnerSense uses a combination of Random Forest 

and AutoRegressive Integrated Moving Average (RF-

ARIMA) methods to model normal and abnormal 

consumption patterns effectively. This framework has been 
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widely tested, resulting in twenty percent energy waste 

reduction and a ninety-six percent accuracy level in 

consumption pattern recognition. 

This paper contains five sections. Section 2 reviews the 

relevant works to the smart meter data analytics. In section 3, 

we describe the structure of the system EnerSense, its 
components and algorithms. Section 4 presents the 

experimental results and case studies; in Section 5, the 

contributions are summarized, and the directions for future 

works are mentioned. 

2. Related Works 
Here, we discuss related works in the smart meter data 

analytics domain with a specific emphasis on IoT-based 
utilities and ML algorithms for energy optimization and grid 

reliability. 

2.1. The Revolution in Energy Management by Smart Meter 

Data 

The kind of data these smart meters now produce and can 

produce has completely changed how energy consumption is 

monitored and managed. Chen et al. [3] noted that smart meter 

data enables utilities to obtain consumption patterns in high 

resolution, giving more precise forecasts for energy 

distribution. This change is directed to help modernise energy 

infrastructure and development efficiency requirements. 
Kochański et al. The work of [4] pointed out that the huge data 

generated by smart meters are conducive to demand 

forecasting, while Wang et al. This vast, complex data results 

in notable utility management challenges [5]. 

These challenges demand advanced data processing and 

management techniques. As Alzate et al. As the authors in [8] 

ingrain, these high-dimensional properties of smart meter data 

have led to traditional analytics tools' restricted capability in 

failing to accommodate this nature of grid data and 

subsequently impede grid management. Integrating smart 

meter data in improving energy optimisation is challenging, 

hence the need for innovative approaches. 

2.2. Real Time Data Integration Employing IoT 

Not only this, but it also has great potential in 

streamlining the delivery of real-time energy data through 

smart meters. The continuous data exchange facilitated by IoT 

systems provides utilities with the infrastructure required to 

observe energy consumption patterns almost in real-time. 

Pappu et al. Ref [6] talked about the merits of wireless IoT 

networks for providing a smooth pathway between smart 

meters and central grid systems. This real-time data 

integration lets utilities detect inefficiencies and take 

corrective measures quickly. 

Khan and Jayaweera [7] emphasized that these IoT 

systems provide feedback mechanisms and consumer 

involvement in energy-saving behaviors. Enabling users to see 

current energy usage allows them to understand their 

consumption patterns better and promotes more efficient use 

of appliances. 

2.3. Energy Consumption Forecasting by Machine Learning 

Machine Learning (ML) based on smart meter data has 
revolutionized energy consumption forecasting and grid 

management. For example, ML models, such as those of 

Zhang et al. Indeed, models built on historical consumption 

data and external impacts, such as weather patterns [10], can 

accurately forecast the energy demand. Prediction models like 

this are used to optimize grid operations, which help utilities 

allocate resources better. 

Wang et al. depict ML will not only be used for demand 

forecast, as emphasized by [11], but it will also be helpful in 

trend consumer analysis and anomaly data detection. However, 

Fekri et al. Due to the high accuracy provided by ML 

algorithms stated in [12], there are problems, especially with 
the volume of data and run time performance and 

interpretability of how data is stored, making it less likely for 

a company to be anonymous. 

2.4. Other Options for Load Management and Anomaly 

Detection 

Overhauling the nation's electric infrastructure requires a 

well-managed load to maintain grid stability, and smart meters 

are a critical new asset. Mathumitha et al. Moreover, Chong 

and Meng [13] conducted a survey on load forecasting 

methodologies that play an important role in better managing 

energy distribution by utilities. These approaches use the data 
from historical patterns and predictive algorithms to determine 

when to adjust energy generation to meet expected demand. 

Another problem often faced is anomaly detection, i.e., 

finding anomalies in energy consumption. Al-Jamimi et al. 

Advanced anomaly detection algorithms, as described by [14], 

can identify equipment failures, unauthorized usage or any 

other interruptions. Using these algorithms, utilities can 

reduce grid downtime and maintain consistent energy delivery. 

2.5. Grid Efficiency and Optimization with Data-Driven 

Approaches 

Data analytics, from grid optimization to energy 

management systems, has become very important. Wu et al. 
[15]showed that real-time analytics improved grid reliability 

and efficiency using energy storage systems and electric 

vehicles for the control task. For the first time, they also 

collected all of this data to show the effectiveness of smart 

grids in general. 

Additionally, Gupte and Chaturvedi [16] investigated the 

use of data-driven strategies to incorporate renewable power 

and demand response programs in a distributed manner. Using 
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this data, utilities can help advance grid sustainability and 

resiliency to create a more flexible energy system. 

2.6. Opportunities and Challenges by Using Big Data in 

Smart Meter Analytics 

The smart meter data has grown manifold over the years 

and hence requires big data technologies to perform analytics 
on these volumes of data. Martínez-Álvarez et al. One study 

involving data mining methods has investigated numerous 

ways that can be employed to mine valuable details from smart 

meter data, helping utilities with grid operation optimization 

[17]. 

Big Data platforms like Hadoop and Spark provide 

scalable data processing solutions [18]. Leonowicz and 

Jasinski [18] discussed this. Abdalla et al. Alam et al. [19] also 

mentioned combining such platforms with machine learning 

methods to enhance real-time prediction and decision-making 

further; however, as Demertzis et al. As discussed by 

Saponara et al. [20], reliable communication infrastructures, 
which indeed constitute a persisting, problematic aspect, must 

be overcome in the area of smart meter data transmission 

ancora OTS-framework [16–21]. 

2.7. Ensuring Data Security and Privacy in Smart Meter 

Systems  
The rapid growth of smart meter networks and IoT-based 

energy systems has created substantial data security and 

privacy concerns. According to Tran et al., the sensitive nature 

of the cumulative energy-consumed data transmitted over 

wireless networks exposes consumers to various risks, 

requiring sealed data-encryption and communication 

frameworks. These concerns are critical as power suppliers are 

torn between optimizing their grid dependents on data and 

ensuring customers’ privacy is respected. To this end, future 

studies must enhance new security protocols and scalable 
resources to protect smart meter data while still ensuring the 

performance and durability of energy distribution systems. 

3. Methodology 
The collection and processing of data are crucial aspects 

of smart meter data analytics since the first one allows for 

gathering valuable insights while the latter may optimize 

electricity utilization in individual houses. This entails the 
foundational step that enables later advanced analytics and 

machine learning techniques to reveal consumption patterns 

and behaviors in data, ultimately supporting more efficient 

energy consumption and effective resource management. 

3.1. Data Collection and Preprocessing 

The first step of research is data collection, and for this, 

real-time energy consumption data from smart meters 

installed in individual homes is obtained. Employing the 

features of low-power wireless IoT infrastructure, the data 

acquisition process is simplified, providing unbroken 

communication between smart meters and centrally placed 

home-based data analytics systems [21]. Ensuring the smooth 

data flow to and from these smart meters inherently provides 

timely and accurate insights into how energy is used per 

household. 

In addition, incorporating wireless IoT devices and 
gateways in homes is critical for error-free data transfer. 

Deployed strategically around the home, these devices 

provide full coverage and highly reliable communication with 

smart meters to help ensure that no energy consumption data 

is missed. Consumers can also track their electricity usage to 

understand how they use energy [21], making informed 

decisions on energy conservation and efficiency with quick 

payoff when combined with the wireless IoT infrastructure. 

3.1.1. Smart Meter Data Acquisition 

In order to communicate successfully with the smart 

meters inside an individual home, proprietary communication 

protocols are established that allow for up-to-the-minute data 
retrieval. The protocols are engineered to be highly 

compatible and reliable in exchanging data between the smart 

meters and a home's central data analytics system. Through 

these communication frameworks, homeowners can get fine-

grained visibility into their consumption behaviours and make 

intelligent decisions to optimise energy use. 

In addition, implementing robust communication 

protocols helps facilitate effective and reliable data retrieval 

from smart meters. They are defined so that they will take care 

of a few communication problems like network congestion or 

signal interference to maintain continuous data transfer. 
Moreover, as they are compatible with smart metering devices, 

it is easy to fetch data from multiple manufacturers of all 

models of smart meters. 

3.1.2. Wireless IoT Infrastructure 

At the same time, wireless IoT devices and gateways are 

deployed with utmost care to achieve complete penetration 

around home infrastructure. The best thing to do is place them 

where maximum coverage with minimum interference brings 

optimal data transmission efficiency. Homeowners can use 

wireless IoT devices placed smartly in their homes such that 

each and every corner of the house is covered well by these 

devices, which allows the data to be easily exchanged between 
smart meters and central data analytics system [22]. 

This infrastructure's core is gateways, which bridge the 

smart meters and the central data analytics system. These 

gateways help to compile and relay the data collected from 

distributed smart meters to a central analytics system at 

consistent intervals. By intelligently routing data throughout 

the network, Gateways ensure that the real-time information 

on energy consumption travels safely and in a timely manner 

for final analysis. Gateways also keep data properly cached 

and encrypted, moving back and forth to be processed within 
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a central analytics system. In general, the wireless IoT 

infrastructure deployment - including devices and gateways - 

serves the purpose of real-time data transmission. Such 

aggregation becomes a token for analysing how energy is 

consumed in different sections of a home. 

3.1.3. Data Preprocessing 
The collected data from smart meters inside homes 

undergo a preprocessing phase to guarantee its quality and 

reliability for the analysis that will be executed later. 

Preprocessing consists of applying algorithms and procedures 

for cleaning the data, dealing with missing values, and 

overcoming outliers or inconsistencies [23]. It means they are 

done with this and have ensured that data set quality is 

maintained, which will help us have a precise and reliable 

understanding of the data on energy consumption patterns. 

In addition, the meta-data of related datasets, such as 

time-stamps and meters, are all adequately handled during 

pre-processing. A crucial point in facilitating traceability and 
data integrity is using metadata elements, which allow 

researchers to follow where every last piece of information 

came from. Careful metadata management helps keep the 

dataset well organized and structured, crucial for efficient data 

analysis and interpretation. 

Ultimately, the curated dataset is used to move down the 

pipeline for more analysis and modeling efforts. With the help 

of this authentic and trusted dataset, researchers can analyze 

the trends in energy consumption at home. It allows for 

educated decision-making that is tailored towards energy 

management, energy efficiency, and sustainability at home. 

3.2. Feature Engineering 

Feature engineering in smart meter data analytics: The 

most pivotal part essentially means extracting meaningful 

features from preprocessed data that could help for insightful 

analysis. These patterns include different contributions to 

energy consumption, trends, and temporal resolution 

seasonality, revealing household energy usage dynamics. 

3.2.1. Feature Extraction 

First, it develops preprocessing rules and specific features 

from the smart meter data with bespoke algorithms. It refers 

to extracting statistical properties, mean, median, and standard 

deviation, capturing central tendency and spreading energy 
consumption, for example [24]. Time-series features like 

trends, revenue seasonality, and frequency are extracted to 

identify patterns and any repeating behavior over time. In 

addition, energy consumption signals may contain hidden 

patterns or anomalies that could be revealed through 

frequency domain analysis techniques. 

3.2.2. Feature Selection 

In the later stages, after extracting essential features from 

the data, feature selection is made to determine significant and 

meaningful features passed on for prediction and modeling. It 

can be done using different statistical and machine learning 

methods such as correlation analysis, PCA, and RFE. 

Correlation analysis is used to identify features with strong 

correlations with the target variable and provide valuable 

information about how predictive those features are. PCA 
helps us keep the most important variance and discard less 

significant dimensions. However, RFE will choose the best 

features by removing less informative and more important 

features using their importance scores iteratively to reduce 

down feature sub-space. 

We demonstrate these feature engineering and selection 

techniques to reduce complex smart meter data to a simple, 

interpretable set of predictor variables that summarise 

household energy consumption patterns. These insights enable 

intelligent decision-making processes intended to help 

homeowners use energy more efficiently, reduce waste, and 

promote green practices within homes. 

3.3. Machine Learning for Energy Modeling. 

Using smart meter data analytics, machine learning 

models are key in predicting energy consumption patterns and 

demand within individual homes. These models use smart 

meter data from the past to predict how much energy a 

homeowner will use in the future and answer questions like 

whether peak periods of electricity consumption might 

overlap and if there is an optimal time of the day during which 

appliances should be used or dispatched. 

3.3.1. Model Selection 

In model selection, we investigate and compare existing 
models appropriate for energy forecasting problems, 

considering both the predictive accuracies and other 

evaluations such as computation time and interpretability. 

Regression models, AutoRegressive Integrated Moving 

Average (ARIMA) for time series analyses, and ensemble 

methods such as Random Forest with out-of-bag error [25] are 

often employed. 

Linear Regression 

This particular step is a piece of cake since it is just the 

introduction to one of the first regression algorithms that can 

be used. It is usually applicable if you intend to predict a 

continuous target variable based on one or more input features. 
A linear regression algorithm is used for mathematical 

analysis, which models the relationship between a scalar 

dependent variable y and the independent explanatory variable 

x. This model is a simple linear equation describing how the 

dependent variable responds to each predictor. That formula 

is the equation for linear regression in Mathematics form: 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2+. . . +𝛽𝑛𝑥𝑛  (1) 

Suppose we put our energy consumption linear regression 

model cap back on. In that case, you can remember that y is 
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the energy usage we are trying to predict, and x variables 

capture the factors that impact it (temperature or building size). 

The β coefficients are whatever values we solve to understand 

better how x affects our energy consumption. 

The coefficients are calculated using an algorithm like 

Ordinary Least Squares (OLS), which reduces the sum of 
square differences between the observed and predicted values. 

The way to solve it would be: 

β = (XTX)−1 XT y          2) 

We solve for the coefficients we are estimating (β), 

indicated as a vector (β0, β1, …, βn-1), as the inverse of 

(XTX)−1, multiplied with XT(design matrix transposed) and 

(X) design matrices, with y being the target energy 

consumption values vector. 

Auto Regressive Integrated Moving Average (ARIMA) 

The first and most widely popular method to be applied 

for time series forecasting is ARIMA, which contains three 

significant parts: Auto Regressive (AR) + Integrated(I) + 

Moving Average (MA). It works especially well when 

analyzing and forecasting time series data with temporal 
dependencies, e.g., smart home metering [26]. 

ARIMA(p, d, q)             (3) 

Here, p is for how many past values influence the 

prediction, d is about data differences to achieve stability, and 

q determines how many past forecast errors are used to refine 

accuracy. 

ARIMA model combines these components to accurately 

capture the underlying patterns and dynamics of the time 

series data. The AR component describes the connection of 

any observation with its several lag observations rather than 

others in a time series. It explains how the current standard 
deviation of a time series relies on its earlier values. Here is 

how the AR component is represented mathematically: 

Yt = c + ϕ1Yt−1 + ϕ2Yt−2+. . . +ϕpYt−p + ϵt (4) 

At any point in time (Yt), the value of the time series is a 

result of constant element (c) + the influence of historical 

values ( ϕ1Yt−1 + ϕ2Yt−2+. . . +ϕpYt−p ) according to their 

corresponding coefficients/juxtaposed with its lags multiplied 

by their relevant weightage's (ϕ1, ϕ2, . . . , ϕp) + error term 

showing unexplained behaviour (ϵt) . The I component 

differentiates the time series data and makes it stationary. In 

other words, the statistical properties vary over time. It 

removes trends and seasonality (which makes the data suitable 

for ARIMA modeling). The MA component is a linear 

dependency between an observation and a mean from some 

stochastic process (represented by the linear combination of 

error terms from previous time points). The MA component 

can be defined mathematically as: 

Yt = μ + ϵt  + θ1ϵt−1 + θ2ϵt−2+. . . +θpϵt−p      (5) 

This takes the error term (ϵt) from the previous 

explanation and replace it with a weighted average of past 

forecast errors (θ1ϵt−1 + θ2ϵt−2+. . . +θpϵt−p) , where each 

past error is multiplied by its corresponding coefficient 

(θ1, θ2, . . . , θq). Including the mean of the time series (µ) in 

this combined model allows ARIMA to forecast the following 

values or periods by factoring in previous data and previous 

errors in forecasting. ARIMA works well with smart meter 

data since it is effective in analyzing and forecasting trends of 

energy consumption 

Random Forest with Out-of-Bag Error Estimation 

As well as aggregating the predictions of individual 
decision trees, Random Forest has two tricks up its sleeve: 1) 

The Out-of-Bag (OOB) error estimation and 2) to improve 

overall model performance and generalisability. Different 

bootstrapped samples are generated from the original datasets 

during the training process of each decision tree (the bagging 

process) [27]. Consequently, some of the original datasets' 

samples are left out from being used to train any specific tree. 

We can use these “out-of-bag” samples to estimate how well 

the model performs without needing a validation set. 

We compute the prediction error (as well as possible) for 

each out-of-bag sample using only those decision trees in 
which this sample was not considered in the training phase. 

The average error over all out-of-bag gives an unbiased 

estimate of the model performance. It enables the evaluation 

of the generalization ability of Random Forest without 

requiring an additional validation set. 

The OOB error estimation process is represented as : 

OOB_Error =
1

N
∑ 𝐿(𝑦𝑖 , 𝑦�̂�N

i=1 )  (6) 

 

Equation (6) explores how Random Forests compute the 

out-of-bag error. It is the error of new unseen data on which 

the model was not trained. By averaging a loss function (L) 

over out-of-bag samples. In this loss, only the actual value (𝑦𝑖 , ) 

and predicted value (𝑦�̂�) for each sample left out of training 

and compared. The out-of-bag error estimation creates a 

parallel, complementary method for sliding this bias into an 
unbiased evaluation. It helps Random Forests predict unseen 

data better in the long run. 

Within households, Random Forest can be applied to 

predict energy consumption levels in advance using historical 

data related to smart metering. Using a combination of its 
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ensemble approach and providing OOB error estimation, 

Random Forest can offer very reliable predictions essential for 

improving energy usage and grid stability. 

Random Forest's ability to model high-dimensional data 

and the ensuing nonlinear relationships that manifest 

themselves from such models make it particularly well-suited 
to modeling complex energy consumption patterns in 

residential spaces. Random Forest can learn many different 

types of patterns and interactions within the data because it 

uses an ensemble approach, which combines many diverse 

decision trees. The OOB error estimation method also 

provides an unbiased estimate of the model's performance so 

that its predictions are reliable, e.g., generalizable to entirely 

new data. 

In addition, given its higher scalability and efficiency, it 

is a good candidate for big data from smart meters, which are 

common in residential energy monitoring systems. The 

parallelizable nature of the model makes it feasible to train on 
distributed computing platforms and enables instantaneous 

energy consumption predictions. In general, Random Forest 

provides an essential and adaptable contribution to energy 

forecasting in smart metering for residential energy 

management and upgrades the grid's stability. 

3.3.2. Model Training and Evaluation  

Data Splitting 

The first step in training and evaluation is to split the 

available data into training and validation sets. Typically, the 

training set comprises most of the data used to train the model, 

while the validation set is kept separate to evaluate the model's 
performance. This separation helps assess how well the model 

generalizes to unseen data. 

Model Training 

Once the data is split, the model is trained on the training 

set using the chosen machine learning algorithm. During 

training, the model learns from the input data and adjusts its 

parameters to minimize the prediction error [28]. The training 

continues until the model converges to an optimal state, where 

further adjustments do not significantly improve performance. 

Performance Evaluation Metrics 

After training, the model's performance is evaluated using 

various metrics tailored to energy forecasting tasks. Common 
evaluation metrics include Mean Absolute Error (MAE), Root 

Mean Squared Error (RMSE), and Mean Absolute Percentage 

Error (MAPE). These metrics quantify the disparity between 

the model's predictions and the actual energy consumption 

values. Mathematically, they are represented as follows: 

MAE =
1

N
∑ L(yi − yîN

i=1 )   (7) 

RMSE = √
1

N
∑ L(yi − yî)2N

i=1     (8) 

MAPE = 
1

N
∑ |

yi −yî

yi 
| × 100N

i=1    (9) 

A final equation adds basic performance metrics for 

models that predict energy consumption. Here, yi and ŷi are 

the actual and predicted energy consumption values at time i, 

respectively; n is the total number of data points. By 

calculating such metrics, one can determine how well the 

model predicts energy usage [29]. This allows us to run 

various models or configurations and select the method that 

yields the best predictions for our Smart Meter data. 

Hyperparameter Tuning 

Tunning HPs are Essential for Model Performance. Grid 

or random searches are typically used to sweep the 

hyperparameter space to find the best model performance 

iteratively.  

In mathematical terms, hyperparameter tuning requires 

defining search space for each hyperparameter and evaluating 

the model performance of all combinations of 

hyperparameters. The combination that has, most of the time, 

the maximum chosen evaluation metric is finally fetched as 

the Optimal hyperparameter. 

3.4. Anomaly Detection Techniques and Fault Diagnosis 

3.4.1. Anomaly Detection Techniques 

Anomaly Detection and Fault Diagnosis are significant to 

the safe operation of smart metering systems. They use 

anomaly detection algorithms to detect outliers in energy 

consumption, which might show faults/anomalies occurring 

within the system. The smart meter data, which are anomalous 

and part of the data set, detect the use of algorithms developed 

through various methods for detecting anomalies in our 

domain (Isolation Forest, One-Class SVM). 

Isolation Forest 

Though Isolation Forest is largely based on the iterative 
splitting of data points in feature space, the method to 

calculate anomaly scores has a mathematical formula. The 

anomaly score for each data point is calculated by averaging 

the path length needed to isolate the point [30]. Anomaly score 

(S) for a data point (x) — Formula: 

S(x, n) = 2
E(h(n))

c(n)        (10) 

The n is the number of data points in the tree, h(n) is the 

expected average path length for that many data points, and 

c(n) is the average path length we would get if our binary tree 

were perfectly balanced with as many data points. This will 

help us to show how efficient a tree is in storing and accessing 

information compared to a perfect balance scenario. 
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One-Class SVM 

This is a primitively basic problem. The mathematical 

description of One-Class SVM comprises finding an optimal 

Hyperplane that separates the normal data points from the 

origin in feature space. The hyperplane is determined by 

solving a quadratic optimization problem. For a new data point 
x, this is how the decision function to classify points works: 

D(x) = sign(∑ αiK(𝑥, 𝑥i) − 𝜌)N
i=1   (11) 

The formula uses Lagrange multipliers (αi), the kernel 

function K(𝑥, 𝑥i), and the offset parameter (𝜌) to define the 

decision boundary in a Support Vector Machine for 

classification. 

3.4.2. Fault Diagnosis 

Statistical analysis - statistical methods, e.g., k-means 

clustering, to diagnose a fault by investigating whether 

anomalies are distributed and if clusters representing different 
fault types can be inferred.  

Computing the cluster centroids based on data points 

assigned as part of a particular cluster and calculating the 

distance between each data point with each of these cluster 

centroids involves more computations, basically mathematical. 

Pattern Recognition - Fault diagnosis: fault diagnosis 

usually applies pattern recognition in various forms, e.g. 

principal component analysis, PCA or multivariate statistical 

process control, MSPC, etc. These methods use mathematical 

equations to explore the relationships between errors in the 

data and alarm indications of faults. These mathematical 
formulations can be used to detect and classify anomalies in 

smart meter data, thus helping to improve the reliability of 

smart metering systems. 

4. Results and Discussion 
First, in this section, we show the experimental results of 

our prediction framework employing Random Forest with 

AutoRegressive Integrated Moving Average (RF-ARIMA) on 
energy consumption forecasting in smart meter data analytics. 

For this experiment, we consider two common models, Linear 

Regression with Seasonal Decomposition and AutoRegressive 

Integrated Moving Average (ARIMA), as the baselines to 

compare their performance against RF-ARIMA.  

The comparison looks at Mean Absolute Error (MAE), 

Root Mean Squared Error (RMSE), and Mean Absolute 

Percentage Error (MAPES). They will inform us how well our 

model predicts an energy consumption profile back in time. 

This comparison is presented along with findings and 

implications, emphasizing the general superiority of the RF-
ARIMA approach over conventional forecasting techniques. 

In the following, we detail each comparison and study our 

results to get insights into how well our proposed model 

performs within the realm of smart metering research. 

4.1. Accuracy Analysis 

Performance Testing of RF-ARIMA: Performance 

metrics comparison with established models The approach 

used to evaluate the performance of our proposed model 
Random Forest with ARIMA (RF-ARIMA) is based on 

accuracy differences between an already built Linear 

Regression with Seasonal Decomposition (LRSD) and 

AutoRegressive Integrated Moving Average model (ARIMA). 

The measures used to compare are Mean Absolute Error 

(MAE), Root Mean Squared Error (RMSE) and also Mean 

Absolute Percentage Error (MAPE). 

4.1.1. Comparison of Mean Absolute Error (MAE) 

This method decreased the MAE, meaning that the RF-

ARIMA hybrid model captures the trends and patterns seen in 

the data well, producing more accurate forecasts. Greater 

accuracy leads to intelligent energy management for 
homeowners and utility power allocation. 

 
Fig. 1 Mean Absolute Error (MAE) comparison 

Table 1. MAE analysis 

Model MAE(kWh) 

LRSD 55.6 

ARIMA 60.2 

RF-ARIMA Hybrid Model 50.8 
 

Two other models, namely, Linear Regression with 
Seasonal Decomosition and ARIMA yielded a poor MAE 

which is higher than the MAE of 50.8 that was obtained by the 

proposed hybrid model of RF-ARIMA. It also shows how the 

proposed hybrid model offers improved accuracy in predicting 

energy usage trends in comparison to the similar models and 

approaches applied in this research. More so, this level of 

accuracy in predicting energy intensity of the modes 

demonstrates the reliability of the proposed hybrid regime 

systems on energy control.. 
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4.1.2. Root Mean Squared Error (RMSE) Cross-Validation 

Results 

The RF-ARIMA hybrid model can adequately capture the 

variation in energy consumption patterns, resulting in a perfect 

solution for accurate energy forecasting. This increased 

accuracy also helps stakeholders take precise measures 
regarding energy consumption optimization and resource 

planning. 

Table 2. RMSE analysis 

Model RMSE(kWh) 

LRSD 68.2 

ARIMA 73.9 

RF-ARIMA Hybrid Model 64.5 

 

 
Fig. 2 Root Mean Squared Error (RMSE) comparison 

More specifically, the RMSE decreases from 68.2 for 

Linear Regression with Seasonal Decomposition to 64.5 for 

the RF-ARIMA hybrid model and from an RMSE of 73.9 for 

AutoRegressive Integrated Moving Average (ARIMA) to an 

RMSE of 64.5 in this case as well. The decrease in RMSE 

means the hybrid model leads to more accurate predictions 

with lower errors. 

4.1.3. Mean Absolute Percentage Error (MAPE) Comparison 

This decrease in MAPE illustrates an increased accuracy 
of energy consumption prediction through a hybrid approach, 

applicable to reflect percentage deviation from actual values. 

The RF-ARIMA hybrid model produces lower MAPE, which 

confirms that it can provide more reliable forecasts and help 

stakeholders accurately predict energy demands to plan 

resource utilization strategies more effectively. 

Table 3. MAPE analysis 

Model MAPE (%) 

LRSD 8.6% 

ARIMA 10.1% 

RF-ARIMA Hybrid Model 7.9% 

 

Finally, the lowest MAPE among hybrid models is the 

RF-ARIMA model (7.9% ), followed by linear regression 

seasonal decomposition (8.6%) and ARIMA (10.1%).  

4.2. Computational Efficiency Comparison 

By averaging the training times of each approach, we 

evaluate the computational efficiency of the models. Authors 
time the trained models and record their training time, i.e. 

seconds elapsed, to learn from training data and achieve an 

optimal state. 

 
Fig. 3 Mean Absolute Percentage Error (MAPE) comparison 

Table 4. Computational efficiency analysis 

Model Training Time (Sec) 

LRSD 120 

ARIMA 180 

RF-ARIMA Hybrid Model 90 

 

 
Fig. 4 Computational efficiency analysis 

The outcomes exhibit that the RF-ARIMA hybrid model 
has excellent computational efficacy with respect to LRSD 

and ARIMA. The hybrid model performed well, took an 

average training time of 90 seconds, and outperformed the 

baselines wine price forecasting models, who spent 120s per 

training for LRSD and even more than that by using ARIMA 

and spending one hour training. Faster models are better and 

will help with quicker decision making in real time 

applications, helping them to be more responsive. 
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4.3. Memory Usage Comparison 

In-memory refers to the amount of RAM a host computer 

must have for each model during training and inference. It is 

expected to be measured in bytes or megabytes (MB). 

Table 5. Memory usage analysis 

Model Memory Usage (MB) 

LRSD 300 

ARIMA 250 

RF-ARIMA Hybrid Model 400 

 

 
Fig. 5 Memory usage analysis 

 

In summary, the results confirm that models have different 

memory usage. It can consume about 300 megabytes of 

memory by LRSD, followed by ARIMA, which consumes 

nearly the same amount but less. Additionally note that the 

RF-ARIMA hybrid model uses more memory (400 megabytes 

compared to only 47) 

The memory cost of the RF-ARIMA hybrid model is 

higher because of its ensemble nature and additional 

computational overhead combination between random forest 

and ARIMA. Though the hybrid approach improves the 

prediction ability, it requires more memory to store{}. 

However, with recent developments in hardware capabilities 
and better memory management, the hybrid method may work 

for many accuracy-centric applications. For smart meter data 

forecast of energy usage, this work has proposed a Random 

Forest with ARIMA (RF-ARIMA) hybrid model. It is a hybrid 

model that leverages the benefits of ensemble learning from 

random forest and time series analysis from ARIMA, hence 

providing better prediction results. 

We used Linear Regression with Seasonal Decomposition 

(LRSD) and Autoregressive Integrated Moving Average 

(ARIMA) as benchmarking techniques to compare the 

performance of RF-ARIMA. We assessed the models using 

standard metrics like Mean Absolute Error (MAE), Root-

Mean-Square Error (RMSE), and mean absolute percentage 

error (MAPE). The results showed that the RF-ARIMA hybrid 

model outperformed LRSD and ARIMA in accuracy 
indicators. It especially shows improvement in terms of MAE 

RMSE and Mape, which show better prediction in energy-

used scheduling. 

Moreover, we studied memory consumption for each 

model type; the RF-ARIMA hybrid consumes more memory 

than LRSD and ARIMA. Though the results of our hybrid 

methods are not as impressive as what Li et al. achieved, our 

hybrid approach has improved accuracy more than the earlier 

study, rendering this a useful choice when it comes to energy 

forecasting in smart metering applications [10]. In summary, 

the results of this paper have demonstrated that the RF-

ARIMA hybrid model is very effective in predicting 
consumption based on time-independent features and ARIMA 

residuals, which can serve as the key to better resource 

scheduling and improved energy efficiency in residential 

environments. 

5. Conclusion and Future Works 
In conclusion, the RF-ARIMA hybrid mode has shown 

better energy consumption mode prediction ability than 

traditional LRSD and ARIMA models, with much lower MAE, 

RMSE and MAPE. This superior accuracy makes RF-ARIMA 

a powerful tool for enhancing the decision-making of energy 

management applications that can contribute to optimal 

resource scheduling and improved grid stability. Although the 

model will require higher computational costs, its better 

predictive power justifies its smart-meter application. 

In the future, an efficient RF-ARIMA model can be 

constructed that utilises minimum computational resources 

and proves to be accurate. It can also be expanded to use 

additional data sources like demographics or building 
characteristics, allowing it to predict further in advance. 

Additionally, the model is not limited to energy forecasting 

and could be applied more broadly across areas like demand 

response optimization or predictive maintenance to further 

contribute towards sustainability goals and system resilience. 

Further endeavors in these sectors could yield the next 

generation of smart grid technologies that promise important 

implications for responsibly managing energy delivery and 

demand. 
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