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Abstract - The exponential increase in urban population necessitates the emergence of transportation systems that are both 

effective and sustainable, using the potential modern technology. The issue of dynamic traffic flow significantly impedes the 

movement of vehicles. Traffic congestion is a critical issue affecting urban mobility and efficiency in cities worldwide, with 

Bangalore no exception. This study addresses the challenge of leveraging advanced predictive analytics and intelligent transport 

systems to manage traffic congestion. The proposed research aims to address the limitations of traditional traffic management 

strategies by integrating the Temporal Fusion Transformer (TFT) model into an Intelligent Transport System (ITS) framework. 

The research employs rigorous data preprocessing techniques to leverage extensive data from multiple online map service 

providers and traffic monitoring platforms, spanning from January 1, 2019, to December 31, 2023. The TFT model forecasts 

traffic congestion with notable precision, achieving a Mean Absolute Error (MAE) of 0.39, Mean Squared Error (MSE) of 0.30, 

Root Mean Squared Error (RMSE) of 0.55, Mean Absolute Percentage Error (MAPE) of 7.2%, and an R-squared (R²) value of 

0.87. The outcomes obtained clearly illustrate the model’s superior accuracy and efficacy. Integrating TFT predictions into the 

ITS framework enhances real-time traffic control by improving the timings of traffic signals, recommending alternative routes, 

and improving incident management. This proactive approach significantly reduces traffic congestion and enhances travel 

efficiency, substantially advancing urban traffic management solutions.   

Keywords - Temporal Fusion Transformer, Intelligent Transport System, Traffic congestion, Traffic volume, Smart city. 

 

1. Introduction 
In order to create “smarter” cities and improve people’s 

quality of life, the emergence of smart cities is combined with 

a significant transformation in urban design and the adoption 

of innovative technologies. The European Commission 

introduced pioneering and noticeable innovation in the field of 

smart cities, focusing on four crucial aspects: buildings, 

electricity, cooling and heating facilities, and transportation 

[1]. An intelligent transportation technology can improve 

traffic flow in smart cities by analyzing traffic patterns and 

regulating traffic signal timing.  
 

The aim is to identify and promote sustainable 

transportation methods to improve Intelligent Transportation 

Systems that utilize up-to-date information. This system 

includes Traffic Management Systems (TMSs) to prevent 
traffic congestion and ensure safety, as well as green 

applications that strive to reduce gas, fuel, and electricity 

usage [2]. ITS utilizes innovative and developing methods to 

enhance the comfort and affordability of transportation in an 

intelligent urban environment, as depicted in Figure 1. 

Recently, a key issue in transportation systems has been 

the problem of traffic congestion. This matter must be 

resolved to reduce fuel consumption, prevent accidents, 

alleviate traffic jams, and decrease driver dissatisfaction [3]. 

The substantial volume of automobiles is the primary source 
of traffic congestion in urban areas. The implementation of 

traffic regulations has become essential in urban areas owing 

to the limited availability of land assets and the overcrowded 

infrastructure for transportation. Due to the excessive number 

of people, urban areas are experiencing various traffic-related 

issues that hinder the movement of individuals between 

different locations [4].  

Sustaining economic expansion and enhancing the 

convenience of road users are two essential requirements for 

the progress of the nation, which cannot be achieved without 

the smooth movement of traffic. With the advancement of the 
transportation industry, authorities are increasingly 

prioritizing monitoring traffic volume on traffic information 

systems. Traffic forecasts provide authorities with the 

opportunity to strategically allocate resources in order to 

maximize the efficiency of travel. Congestion imposes 

http://www.internationaljournalssrg.org/
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limitations on the utility of street transport systems. These 

reductions entail indirect as well as direct expenses for the 

community. The impact of congestion on the economic system 

and social structure has been extensively studied. 

 
Fig. 1 Intelligent transportation system 

 

Late working hours are an obvious result of traffic 

congestion. Subsequent calculations revealed that the United 

States experienced an annual loss of 8.8 billion labor hours 

attributable to traffic and congestion. The task of traffic 

prediction involves estimating parameters associated with 

traffic levels, ranging from 15 minutes to several hours, via 

the utilization of several artificial intelligence techniques on 

the gathered traffic data. Five factors are commonly assessed 

in congestion monitoring and prediction: occupancy, traffic 

volume, trip time and congestion rate. The overload parameter 
evaluation depends on the gathered data type and the 

particular AI methods employed. 

Innovative developments in Artificial Intelligence (AI) 

and Deep Learning (DL) have enabled smart environmental 

monitoring devices in smart cities. These systems allow for 

exact monitoring of various aspects that influence the 

environment, such as pollution levels and traffic congestion. 

This advanced monitoring enables optimal control and 

mitigation of environmental adverse impacts. Excessive 

traffic congestion adversely affects the quality of life for 

individuals by reducing transportation efficiency and 

worsening substantial environmental pollution. Therefore, 
traffic congestion significantly impacts the nation’s 

productivity, economic progress, and human endeavors. The 

primary concern in urban planning is to find a suitable 

approach to successfully tackle traffic congestion [5]. 

Managing traffic congestion is a prominent research subject, 

with numerous ideas arising from academic efforts undertaken 

in this field in recent decades [6]. Over time, the collection of 

traffic data and the development of ITS have advanced in 

order to address these concerns [7]. 

The primary aspects of the proposed research are outlined 

below: 

 Employs the TFT model to forecast traffic congestion, 

leveraging its ability to handle time-series data and 

generate accurate predictions. 

 Integrates TFT predictions into the ITS framework, 

enabling real-time updates, alternate route 

recommendations, and enhanced incident management. 

 Enhances urban traffic management by embedding 

predictive insights into the ITS, allowing for proactive 

traffic flow management, congestion minimization, and 

improved travel efficiency. 

 Assesses the effectiveness of the proposed model using 
relevant evaluation metrics to ensure robust and reliable 

results. 

The ensuing portions of this paper are organized as 

follows: Section 2 provides an extensive literature assessment 

of existing methodologies, highlighting their limitations and 

identifying gaps that the current research aims to address. 

Section 3 elaborates on the proposed methodology in detail, 

outlining the data preparation, model implementation, and 

integration into the ITS. Section 4 discusses the outcomes 

obtained from the research, signifying the efficacy of the 

proposed approach in forecasting traffic congestion and 

optimizing urban traffic management. Section 5 wraps up the 
work by summarizing the main findings and contributions 

while proposing prospective avenues for future research. 

2. Related Works 
J. Prakash et al. (2024) [8] examined the integration of 

smart cities with the Internet of Things (IoT) to enhance traffic 
management. The study specifically addressed the challenges 
posed by inadequate infrastructure and connection in 
developing nations. The researchers developed an ITS for 
vehicle networks based on the Internet of Vehicles (IoV), 
utilizing various Machine Learning (ML) algorithms. Their 
strategy utilized ensemble learning and feature selection 
techniques to enhance detection accuracy, resulting in greater 
classification accuracy utilizing the stacking method.  

 
Nevertheless, despite its impressive precision, the system 

encountered challenges such as an uneven distribution of 
classes, incomplete data, and computational intricacy. The 
findings indicated that tree-based algorithms with feature 
selection achieved superior performance compared to 
conventional ML methods. However, the model’s 
effectiveness depended on the CIC-IDS2017 dataset and its 
emphasis on certain types of attacks, which could have 
restricted its applicability to more diverse real-world situations. 
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An Unmanned Aerial Vehicle (UAV)-guided Emergency 
Management System (EMS) has been proposed by Abdullahi 
Chowdhury et al. (2023) [9] to enhance the effectiveness of 
Emergency Vehicle (EV) routing in densely populated 
metropolitan regions. The concept included adaptive travel 
route selection based on real-time traffic data, where drones 
directed EVs to minimize speed loss at crossings and optimize 
the timing of traffic signals. The technology was designed to 
reduce both the instantaneous response time of electric vehicles 
and the interference caused by non-emergency vehicles. 
Analysis of simulation data revealed a decrease of 8% in EV 
response time and an enhancement of 12% in clearance time at 
crossings. Nevertheless, the research acknowledged several 
constraints, such as the increased density in neighbouring cells 
when several signals were activated, potentially resulting in 
extended clearing durations in situations of severe congestion.  

  
Sura Mahmood Abdullah et al. (2023) [10] employed 

Gated Recurrent Units (GRUs) to develop a Bidirectional 
Recurrent Neural Network (BRNN) for predicting traffic 
congestion in smart cities. The research employed real-time 
data obtained from sensors and connected devices to categorize 
traffic into congested and non-congested conditions. The 
proposed methodology enhanced congestion prediction by 
integrating supplementary inputs such as road and 
meteorological conditions. The results demonstrated that the 
BRNN model surpassed current benchmark approaches 
regarding precision, MAE, MAPE, and RMSE. However, 
constraints encompassed a decline in the effectiveness of 
predictions over extended forecasting durations and difficulties 
in considering temporal and spatial correlations. 

 
Muhammad Saleem et al. (2022) [11] developed a Fusion-

based Intelligent Traffic Congestion Management System for 
Vehicular Networks (FITCCS-VN) by employing machine 
learning methods. This technology was designed to tackle the 
issue of transportation congestion in smart cities. The 
methodology comprised data collection using IoV-enabled 
devices, followed by preprocessing and subsequent application 
of Artificial Neural Networks (ANN) and SVM to predict and 
manage traffic congestion. The system demonstrated a 95% 
accuracy and a 5% error rate, surpassing previous methods. 
Nevertheless, the research encountered constraints, such as the 
possibility of imprecise predictions of traffic congestion caused 
by noisy data and the difficulty of extrapolating findings to 
various metropolitan settings. 

 
Majumdar et al. (2021) [12] investigated the influence of 

traffic congestion on the sustainability of metropolitan areas, 
underscoring its role in intensifying air pollution. In order to 
forecast the propagation of congestion on road networks, the 
researchers employed Long Short-Term Memory (LSTM) 
networks and utilized vehicle speed data acquired from IoT 
traffic sensors. This study carried out a comparison of 
univariate and multivariate models. The univariate model 
exclusively considered vehicle speed as the input, whereas the 
multivariate model additionally incorporated vehicle flow and 
headway. Each model attained an accuracy ranging from 84% 
to 95%, contingent upon the route configuration. Significantly, 

the univariate model performed similarly to the multivariate 
model, indicating that vehicle speed alone was adequate for 
rendering precise predictions.  

 
G. Kothai et al. (2021) [13] investigated a hybrid DL 

model that integrates Convolutional Neural Networks (CNN) 
and Bayesian Linear Stochastic Mean Ensembles (BLSTME) 
to tackle the task of predicting traffic congestion in Vehicular 
Ad-hoc Networks (VANETs). The study’s objective was to 
enhance road safety through improving traffic management. 
The CNN model utilized spatial characteristics derived from 
traffic images, while the BLSTME model was employed to 
train and strengthen weak classifiers to predict traffic 
behaviour. Model construction and testing were conducted 
using real-time data obtained from Seoul’s artery network. The 
simulations were performed using Simulation of Urban 
Mobility (SUMO) and OMNeT++. The suggested BLSTME-
CNN method exhibited remarkable results in comparison to 
existing models, achieving a 10% enhancement above other 
DL models. 

 
A. Ata et al. (2020) [14] investigated the application of 

Radio Frequency Identification (RFID) technology for traffic 
congestion management. They proposed a method that 
dynamically modifies traffic signal timings in response to the 
current vehicle density, as measured in real-time. The study 
utilized RFID readers and tags as sensors to track the car count 
between two locations on the road. The provided data was 
inputted into a fuzzy logic system in order to forecast traffic 
congestion and subsequently modify signal timings 
accordingly. The simulation results, utilizing MATLAB 
R2012b, demonstrated that the suggested system efficiently 
mitigated congestion by adjusting signal durations in 
accordance with traffic flow. The model showcased its 
capacity during periods of high demand, providing a 
substantial enhancement compared to stationary signal 
systems. Nevertheless, the study’s focus was restricted due to 
its reliance on RFID tags for each vehicle, which could not 
have been practical in all areas. The system’s efficacy also 
relied on precise sensor positioning and meticulous data 
processing, which could present issues in practical scenarios. 

 
A. Ata et al. (2019) [15] designed a traffic congestion 

management system utilizing ANN, specifically the MSR2C-
Artificial Back Propagation Neural Networks (ABPNN) 
model. The neural network was trained using a 
backpropagation technique to predict areas of traffic 
congestion. This information was then utilized to dynamically 
control the flow of traffic. The study utilized a dataset from M1 
junction 37 in England, combining meteorological data and 
traffic speed to forecast congestion. The results showed that the 
MSR2C-ABPNN system performed better than existing 
models in terms of MSE and accuracy in training and 
validation. It achieved regression values higher than 0.90. 
Nevertheless, the system’s efficiency was subject to data 
latency and interference, potentially compromising its efficacy 
in real-time situations. 
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S. Muthuramalingam et al. (2019) [16] utilized IoT and big 
data analytics to create an ITS specifically designed for smart 
cities in India. The methodology entailed constructing an 
ecosystem consisting of sensor systems, monitoring systems, 
and display facilities. The system employed IoT technology to 
track vehicles, enable smart parking, and monitor traffic. It 
developed several analytical methods, including multiple 
regression analysis, cluster analysis, and logistic regression. 
Empirical evidence showed that the suggested s-ITS system 
surpassed current systems regarding data transfer rate, packet 
delivery efficiency, and network latency. The system 
effectively optimized vehicle routing to minimize traffic 
congestion and facilitated intelligent parking by providing real-
time updates on the availability status. 

 
Sen Zhang et al. (2019) [17] devised a systematic 

approach to gather and analyze extensive traffic congestion 
data by means of image analysis. The researchers generated the 
Seattle Area Traffic Congestion Status (SATCS) dataset by 
compiling and modifying snapshots of traffic congestion maps 
obtained from the Washington State Department of 
Transportation. The authors introduced the Deep Congestion 
Prediction Network (DCPN), a network based on deep 
autoencoders designed to forecast traffic congestion. The 
results demonstrated that DCPN effectively obtained temporal 
correlations within the transportation network compared to 
current benchmark models, resulting in superior prediction 
accuracy and computing efficiency. Nevertheless, the research 
was constrained by the information loss introduced during data 
preprocessing, particularly in the grid-based depiction of 
congestion levels, and the computing efficiency resulting from 
incorporating non-road regions in the analysis. 

 
The growing interest in road traffic prediction emphasizes 

the critical demand for efficient congestion management 
techniques driven by the escalating issues caused by 
infrastructural developments worldwide. Traditional methods 
for forecasting traffic congestion often rely on static data from 
limited sources, such as single sensor networks or historical 
traffic records. These approaches face significant limitations in 
capturing the dynamic nature of traffic flow, especially when 
incorporating diverse influencing factors like weather 
conditions, social media updates, and special events.  

 
The complexity of probabilistic models further escalates 

when these variables are considered, resulting in models that 
struggle to provide accurate predictions in real time. Existing 
research predominantly utilizes static datasets that do not 
adequately represent the dynamic changes in traffic patterns. 
The challenge is exacerbated by the limited time frame for data 
collection, often spanning only a few days, which is 
insufficient to accurately capture and model the evolving 
traffic conditions at congestion points. Moreover, integrating 
multiple data sources introduces additional complexity in 
evaluating and analyzing traffic flow patterns, complicating the 
effectiveness of existing models. Addressing these gaps 
requires the development of novel models that leverage 
comprehensive, real-time data sources and consider long-term 
traffic patterns. Incorporating a broader range of variables and 

extending the data collection period will enable more accurate 
forecasting and better road traffic congestion management. 
This approach will enhance predictive accuracy and improve 
the effectiveness of intelligent transportation systems in 
mitigating congestion. 

 

3. Materials and Methods  
The proposed approach leverages data from multiple 

online map service providers and traffic monitoring platforms, 

encompassing the timeframe spanning from January 1, 2019, 

to December 31, 2023, in the city of Bangalore. To ensure 

accurate and reliable traffic congestion predictions, the data 

undergoes a comprehensive preparation process, including 

time synchronization, spatial alignment, missing data 

management, and data cleaning, followed by feature 

extraction and normalization. The dataset is subsequently 

divided into training and testing sets in an 80:20 ratio.  

The ITS architecture incorporates the predictions of the 
TFT technique, which is used to forecast traffic congestion. 

This integration involves using TFT forecasts to update real-

time traffic data, improve traffic signal timings, recommend 

alternate pathways to drivers, and enhance incident 

management. By embedding these predictive insights into the 

ITS, the framework can proactively manage the flow of 

vehicles, minimize congestion, and improve travel 

effectiveness, ultimately leading to a more adaptive and 

efficient urban traffic management solution. The efficacy of 

the suggested model is evaluated via pertinent evaluation 

metrics. The workflow of the proposed research is depicted in 

Figure 2. 

3.1. Dataset 

Data from several online map service providers and 

traffic monitoring platforms, such as Google Maps, 

MapmyIndia, HERE Technologies, Waze Live Map, Live 

Traffic Cams, and the Ministry of Road Transport and 

Highways (MORTH), is employed in the proposed research. 

These platforms give up-to-date information about traffic 

congestion in Bangalore, including various route types, such 

as highways, arterial roads, junctions, and other essential 

elements of the transportation network. An illustration of the 

traffic congestion scenario in Bangalore City is depicted in 
Figure 3. 

To achieve the goal, data on traffic congestion is gathered 

in the timeframe spanning from 1 January 2019 to 31 

December 2023. The collection comprises recordings of 

traffic conditions taken at regular intervals, usually every 10 

minutes, throughout the peak rush hour. The raw data 

comprises congestion levels obtained from multiple sources, 

such as real-time mobility data collected from mobile map 

applications used by travelers, together with traffic flow data 

extracted from cameras and sensors placed across the city. The 

image samples from the dataset are shown in Figure 4. 
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Fig. 2 Framework of the proposed model 

 
Fig. 3 Google map live traffic update illustrating traffic congestion scenario in Bangalore city 

 
Fig. 4 Sample images from the dataset 

Considering several elements contributing to congestion 

in Bangalore’s dynamic urban environment, this extensive and 

varied dataset allows the model to detect patterns and 

anomalies in traffic flow. By utilizing this comprehensive 

dataset, the research endeavors to construct a resilient and 

dependable traffic congestion forecasting model capable of 

predicting current traffic conditions. This model will assist in 

efficiently routing emergency services and generally 

mitigating traffic congestion in Bangalore city. 
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3.2. Data Preprocessing and Exploratory Data Analysis 

(EDA) 

Effective data preprocessing is essential to ensure that the 

data utilized for traffic congestion forecasts is free from errors, 

consistent and prepared for model training. The preprocessing 

procedures consist of multiple crucial phases, each focusing 
on distinct aspects of the gathered information. Due to the 

heterogeneous representation of data providers, it is 

imperative to synchronize the data across different sources. 

Implementing data synchronization ensures that every time 

interval from several sources aligns with the same period, 

therefore facilitating precise comparisons and analysis. After 

achieving time synchronization, the subsequent task is to 

ensure the spatial alignment of the traffic data. This task 

entails comparing the geographic coordinates specified by 

several map service providers in Bangalore. Considering the 

variable degrees of specificity and precision in data obtained 

from various sources, spatial alignment ensures that the 
recorded congestion levels remain consistent among providers 

for a given place. Achieving this alignment is crucial to 

establish a cohesive perspective of traffic congestion 

throughout the city. Traffic data collecting is inherently 

imperfect, and it is typical to encounter missing data points or 

intervals. The initial stage in managing missing data is the 

identification of these discrepancies. There exist multiple 

approaches to address this issue efficiently. An effective 

method is to employ imputation methods, which involve 

estimating missing values using available data. One possible 

approach is to leave the missing data intact, therefore enabling 
the model to acquire knowledge from the partial dataset and 

maybe reveal patterns associated with the missing intervals. 

The process of data cleaning entails the elimination of noise 

and the preservation of the dataset’s integrity. Traffic data 

noise can arise from sensor faults, causing abrupt increases or 

decreases in congestion levels that do not accurately represent 

real traffic conditions. To avoid affecting the learning process 

of the model, such outliers are detected and eliminated. 

Furthermore, the process of identifying and removing 

duplicate data entries ensures that every time interval contains 

a distinct collection of data points.   

Feature extraction is the mathematical procedure of 

extracting significant variables from the unprocessed data 

utilized by the model to generate predictions. Timing-related 
patterns in traffic congestion are captured by extracting 

temporal variables like the hour of the day, day of the week, 

and month. The extraction of spatial data includes identifying 

road categories (such as highways and arterial roads) and 

assessing the distance between the roads and significant 

intersections, which might impact the congestion levels. 

Furthermore, previous congestion patterns are taken into 

account, together with external variables like weather 

conditions, which can have a substantial influence on traffic. 

To ensure an equal contribution of all features to the model, 

normalization and scaling techniques are used. Continuous 

variables such as traffic congestion levels are standardized to 
a set scale, usually ranging from 0 to 1. This procedure 

mitigates the dominance of characteristics with greater 

numerical ranges in the learning process of the model. One-

hot encoding is a statistical method employed to transform 

categorical information, such as road kinds and weather 

conditions, into a numerical format suitable for processing by 

the model. The plots obtained after performing EDA are 

depicted in Figure 5 (a-h). The analysis emphasizes key 

congestion considerations, such as the hourly traffic 

distribution, where the highest congestion level is shown 

during peak hours. Monthly variations also exhibit seasonal 
patterns, characterized by periods of increased congestion, 

possibly associated with weather conditions or local activities. 

The data visualization of vehicle traffic over several years 

shows a consistent upward trend, suggesting a growing 

congestion problem over time. 

 

 
(a) Average traffic congestion by hour of the day 
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(b) Average traffic congestion by month 

 
(c) Average vehicle flow year-wise 

 
(d) Top 10 congested routes 
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(e) Congestion levels 

 
(f) Traffic incident categories and their counts 

 

 
(g) Magnitude of delay 
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(h) Rate of congestion day-wise 

Fig. 5 Data set visualization 

By identifying the top 10 most crowded paths, the study 

precisely identifies areas of high congestion requiring 
immediate infrastructure and policy involvement. Analyzing 

congestion levels throughout the day gains a more 

comprehensive view of how traffic varies throughout various 

periods, providing valuable information for improving traffic 

management efficiency. In addition, the study categorizes 

traffic events, therefore offering a more well-defined 

understanding of the factors contributing to delays. Moreover, 

the analysis of the distribution of delay magnitude in 

Bangalore highlights the seriousness and frequency of these 

disturbances. Overall, the EDA provides a strong basis for 

creating data-driven solutions to detect traffic congestion in 

Bangalore. 

3.3. Proposed Temporal Fusion Transformer Framework 

Attention mechanisms are vital in enabling models to 

selectively concentrate on specific segments of the input 

sequence [18]. This focus is necessary for capturing intricate 

temporal patterns and interdependencies across distinct time 

steps when predicting tasks. Traditionally, Recurrent Neural 

Networks (RNNs), specifically LSTM networks [19], have 

been employed to analyze sequential data and detect 

underlying patterns in sequences. In these cases, the order of 

each element in the sequence is crucial for the prediction 

process. However, Transformers, a deep learning architecture 

focused on attention processes, provides benefits over RNNs 
and LSTMs by substantially decreasing training durations and 

effectively handling lengthy sequences via parallelization. 

Transformers demonstrate exceptional proficiency in 

capturing patterns throughout large sequences, therefore 

establishing themselves as a highly effective framework for 

time series modelling.  

The proposed research selects the TFT due to its 

exceptional capabilities in managing time-series forecasting 

tasks, which are crucial for accurately predicting traffic 

congestion. The TFT model is adept at handling sequential 

data, allowing it to capture complex temporal patterns and 

historical trends essential for traffic prediction. The system’s 
capacity to include many data sources, such as real-time traffic 

updates and static features like road conditions, enhances the 

accuracy of congestion forecasts. Moreover, the attention 

mechanisms within TFT enable the model to focus on 

significant features and time steps, identifying critical traffic 

patterns and sudden changes. Additionally, TFT’s 

interpretability offers valuable insights into how various 

factors contribute to congestion predictions, facilitating better 

traffic management and decision-making. 



Sreelekha M & Midhunchakkaravarthy Janarthanan / IJECE, 11(11), 196-212, 2024 

 

205 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6 Architecture of TFT 

The TFT architecture, as shown in Figure 6, integrates 

sophisticated methods for extracting features and ensuring 

interpretability. Prior inputs, such as historical traffic data, 

undergo processing using a sequence of LSTM encoders, 

which excel at capturing temporal relationships in time-series 

data. These LSTM encoders collect fundamental 

characteristics from the input sequences, vital for precise 

congestion prediction. Concurrently, LSTM decoders are used 

to process known future inputs, such as scheduled events or 

traffic forecasts, allowing for extracting features that 

determine future traffic patterns. 
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Efficient model performance is achieved by including 

both static and dynamic data through the use of temporal 

variable selection. Static covariate encoders facilitate this 

procedure by extracting context vectors from static metadata, 

which are subsequently included in different sections of the 

TFT network. The integration of static data in temporal 
representation learning enables the conditioning of temporal 

patterns by enriching them with pertinent static information. 

The variable selection network is structured with separate 

sets of blocks for each input type: static covariates, historical 

inputs (both unknown and known over time), and anticipated 

future inputs. In order to effectively manage reweighted sums 

of modified inputs at each time step, each block of the 

Sequence-to-Sequence layer acquires the ability to assess the 

significance of its related features. This method incorporates 

acquired linear transformations of continuous data and 

structured representations of categorical attributes. An 

external context vector derived from the output of the static 
covariate encoder block is specifically excluded from the 

static covariate block. This selective exclusion ensures that the 

model concentrates on the most pertinent characteristics, 

therefore enhancing the integration of time-based and fixed 

data for more precise prediction.  

The temporal self-attention mechanism [20], an essential 

element of the TFT, critically contributes to enhancing the 

comprehensibility of the model. Through the assessment of 

the significance of each input vector, this process facilitates 

the identification of the most pertinent features and time steps 

for formulating predictions. Prior to the attention calculation, 
the Gate and Add & Norm layers are used to improve the 

hidden states generated by the LSTMs. The Gate layer, which 

implements Gated Linear Units (GLUs) [21], provides 

adaptability by enabling the model to eliminate superfluous 

elements, therefore customizing the architecture to suit the 

particular dataset being used. Equation (1) provides a 

mathematical expression for the GLUs. 

𝐺𝐿𝑈(𝑋) = 𝜎(𝑊1𝑋 + 𝑏1)⨀(𝑊2𝑋 + 𝑏2)               (1) 

Where 𝑋 denotes the input of the Gated Linear model, 

where 𝑊1  and 𝑊2  are parameters of the learnable weight 

matrix and 𝑏1 and 𝑏2 are the related bias parameters, 𝜎 is the 

sigmoid activation function and ⨀ denotes the element-wise 

Hadamard product, ensuring that only the most relevant 

features are retained for accurate and interpretable traffic 

congestion predictions. 

An essential element is the Add and Norm layer, which 

integrates residual connections with layer normalization [22]. 

This combination has demonstrated significant efficacy in 

extracting features from different transformer architectures, 
therefore ensuring the framework’s very efficient capture of 

pertinent patterns in the data. Furthermore, the Gated Residual 

Network (GRN) is integrated into the model to offer versatility 

when implementing non-linear processing. Figure 7 shows the 

basic architecture of GRN. 

Equations (2) – (4) construct the GRN, in which the Layer 

Norm (.) function carries out conventional layer 

normalization. The inputs indicated as 𝑎 and 𝑐, correspond to 
the main input and an external context vector, respectively. 

The Exponential Linear Unit (ELU) [23] function incorporates 

non-linearity, enabling the model to acquire knowledge of 

intricate relationships. Intermediary layers, denoted as 𝜂1 and 

𝜂2, together with weight matrices 𝑊3 , 𝑊4 , 𝑊5, and related bias 

parameters 𝑏3, 𝑏4, enhance the model’s information 

processing capabilities by selectively applying non-linear 

transformations as needed. 

 

 

 

 

 

 

 

 

 

 

Fig. 7 GRN architecture 

  𝐺𝑅𝑁(𝑎, 𝑐) = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑎 + 𝐺𝐿𝑈(𝜂1))                (2) 

                      𝜂1 = 𝑊3𝜂2 + 𝑏3                                      (3) 

            𝜂2 = 𝐸𝐿𝑈(𝑊4𝑎 + 𝑊5𝑐 + 𝑏4)                           (4) 

GRN enables effective transmission of information 

through skip connections and gating layers, therefore ensuring 

strong feature extraction and data representation. 

Furthermore, the model has Masked Interpretable Multi-Head 

Attention (MIMHA) layers to enhance interpretability and 

focus on crucial temporal patterns [24]. This rectified multi-

head attention method enables the model to detect and 

highlight important characteristics in the data, hence 
enhancing the transparency and comprehensibility of the 

attention process. Moreover, using the quantile loss function 

allows the model to produce precise predictions across several 

quantiles.  
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Implementing the (MIMHA) method greatly improves 

the model’s capacity to selectively highlight various segments 

of the input sequence. This enhancement enables a more 

profound comprehension and analysis of the patterns 

exhibited by the model. By incorporating a masking technique 

into the attention mechanism, MIMHA ensures that the 
attention coefficients are both efficient and easily 

understandable. The typical multi-head attention formulation, 

which forms the basis for MIMHA, is given in Equation (5).  

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉           (5) 

Wherein 𝑄, 𝐾, and 𝑉 are the matrices for query, key, and 

value, correspondingly, and 𝑑𝑘 is the key dimension. 

Within the attention mechanism, a masking matrix 𝑀, is 

incorporated to improve the interpretability of the model’s 

focus during prediction. The masking matrix generates 

significant negative values at positions where attention should 

be inhibited, appropriately directing the model to disregard 

irrelevant or insignificant data points.  

The model is directed toward the most pertinent, 

unmasked locations by forcing the softmax function to 

provide nearly-zero values at these masked areas. Equation (6) 

defines the masked attention mechanism. 

𝑀𝑎𝑠𝑘𝑒𝑑 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉, 𝑀) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇+𝑀

√𝑑𝑘
) 𝑉 (6) 

Within the MIMHA mechanism, the model incorporates 

a rectification technique to enhance interpretability by 

ensuring that the attention score remains non-negative. This 

alteration streamlines the analysis of the attention distribution, 

thereby facilitating the identification of the specific features 

and time steps that influence the model's predictions. The 

improvements made to the attention mechanism allow the 

TFT model to accurately and transparently concentrate on 
important parts of the data, thereby enhancing the precision of 

traffic congestion forecasts. Equation (7) depicts the 

formulation of Rectified Attention. 

𝑅𝑒𝑐𝑡𝑖𝑓𝑖𝑒𝑑 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉, 𝑀) =
𝑅𝑒𝐿𝑈(𝑀𝑎𝑠𝑘𝑒𝑑 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉, 𝑀))           (7) 

Wherein ReLU denotes the Rectified Linear Unit 

Function. 

The TFT model in the proposed research has exceptional 

proficiency in incorporating a wide range of data, 

encompassing both static inputs (such as road conditions) and 
dynamic inputs (such as real-time traffic data from several 

sources). This functionality enables a thorough 

comprehension of traffic patterns by utilizing both past data 

and present circumstances.  

The TFT algorithm improves its capacity to discover 

important patterns and abnormalities in traffic data by 

successfully identifying and focusing on the most relevant 

features and time steps through the use of attention 

mechanisms. This is especially advantageous in the field of 

urban traffic management, for which sudden changes and 

congestion during peak hours occur regularly. Table 1 shows 

the TFT parameters employed in the study. The algorithm for 
the proposed framework is depicted below. 

 

Table 1. Transformer network parameters 

Parameter Description Value 

𝑑𝑚𝑜𝑑𝑒𝑙 Size of embedding output and dimensions of Q, K, and V vectors 512 

encoder Total transformer encoder stacks 6 

num_heads Number of heads in the attention mechanism 12 

ffn_units Units in the feed-forward neural network layer 2048 

conv_filters Number of convolution filters in the feed-forward part 5 

dropout_rate Dropout rate applied during training 0.1 

mlp_dropout Dropout rate for the feed-forward part 0.3 

Algorithm 1: Traffic Congestion Prediction using TFT 
Input: Dataset [Traffic Volume, Traffic Congestion Level, Time, Date,] 

Output: Prediction Result [Traffic Congestion Level] 

1. Start: 
2. Load the dataset from sources. 

3. Preprocess the dataset. 

4. Split the dataset into data (train) data (test) in an 80:20 ratio. 

5. Define window size (WS) and prediction horizon (H). 

6. Model ← build_model(TFT): Construct the TFT model architecture. 

7. Model ← train_model (data (train)): Train the TFT model using the training dataset. 
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8. Model ← optimize_hyperparameters(data(test)): Fine-tune hyper parameters using the test dataset. 

9. Model ← evaluate (model, data (test)): Assess model performance using metrics (MAE, MSE, RMSE, MAPE, R²). 

10. Model ← save_best_model(): Save the best-performing model. 

11. MAE, MSE, RMSE, MAPE, R² ← (Model, data (test)): Calculate and record performance metrics. 

12. Prediction ← (Model (WS, H), data (test)): Predict traffic congestion levels for the given window size and horizon. 

13. Return Prediction. 

End 
 

The ITS seamlessly integrates the predictions from the 

TFT into its conceptual framework to deliver real-time traffic 

updates, enhance signal timings, recommend alternative paths 

to drivers, and enhance incident management. The ITS could 

actively control traffic flow, enhance route efficiency, and 

decrease overall congestion by incorporating these 

sophisticated forecasts. 

3.4. Performance Metrics 

A number of appropriate metrics are employed to 

evaluate the efficacy of the suggested forecasting model. 
These statistical measures aid in evaluating the forecasts’ 

accuracy, reliability, and efficiency. 

MAE is a metric that quantifies the average size of 

discrepancies among predicted and actual values, disregarding 

the direction. MSE quantifies the mean of the squared 

discrepancies between predicted and observed values. The 

RMSE is the square root of the MSE. It quantifies the 

magnitude of the error in the same units as the data and is 

particularly responsive to significant errors.  

The MAPE is a statistical metric that expresses the error 

as a percentage of the actual values. This metric is valuable for 

assessing the error in relation to the magnitude of the real 
values. The R-squared (R²) statistic quantifies the amount of 

variability in the dependent variable that can be explained by 

the independent variables. It quantifies the degree of 

fittingness of the model. Equation (8-12) depicts the 

performance evaluation metrics. 

                    𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦̂𝑖 − 𝑦𝑖|

𝑛
𝑖=1                           (8) 

                 𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦̂𝑖 − 𝑦𝑖)

2𝑛
𝑖=1                            (9) 

            𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦̂𝑖 − 𝑦𝑖)

2𝑛
𝑖=1                           (10) 

          𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦̂𝑖−𝑦𝑖

𝑦𝑖
| × 100%𝑛

𝑖=1                        (11) 

              𝑅2 = 1 −
∑ (𝑦̂𝑖−𝑦𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

                                   (12) 

Where, 𝑦̂𝑖 and 𝑦𝑖 is the predicted and actual value for the 

𝑖𝑡ℎ observation, 𝑛 is the total number of observations, 𝑦̅ is the 
mean of the actual values. 

3.5. Hardware and Software Setup 

This research employed a high-performance computing 

configuration consisting of an Intel Core i7 processor, 32GB 

of RAM, and the robust NVIDIA GeForce GTX 1080Ti GPU. 

The model was developed using the Keras package, which 

functions as a prototype built on the TensorFlow framework 

and implemented in Python. Renowned for its intuitive 

interface and powerful functionalities, Keras was instrumental 

in developing intricate neural network structures. The present 

methodology ensures optimal resource allocation across CPU, 
GPU, and TPU system configurations. The deployment was 

executed using Google Colab, a cloud-based Python notebook 

platform, to utilize significant computer resources and 

enhance model training. Hyperparameters are crucial in 

defining the behavior of a learning framework during the 

training phase. Unlike model parameters, which are derived 

from the data, hyperparameters are established by the user 

prior to the training process. Table 2 shows the 

hyperparameter specifications employed in the research. 

Table 2. Hyperparameter specifications 

Hyperparameters Values 

Learning rate 0.001 

Optimizer Adam 

Loss function Sparse categorical cross-entropy 

Batch size 32 

Epochs 50 

Number of folds 5 

 

4. Results and Discussion 
The efficiency of the proposed model is evaluated using 

a range of performance metrics to ensure its accuracy and 

reliability in traffic congestion prediction, as depicted in Table 

3 and Figure 8. The model’s accuracy in predicting congestion 

levels is inferred from the low MAE, MSE, and RMSE values, 

which indicate minimum error margins. Furthermore, the 
MAPE of 7.2% indicates that the model retains a 

comparatively small percentage error, which is essential for 

real-time traffic control applications where accuracy is of 

utmost importance. The R² value of 0.87 provides additional 

evidence for the model’s efficacy, indicating that the model 

can account for 87% of the variability in traffic congestion. 

Overall, these findings emphasize the superiority of the 

suggested methodology in providing dependable and precise 

traffic forecasts, hence establishing it as an essential tool for 

improving urban traffic management systems. 
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Fig. 8 Performance evaluation plot 

Table 3. Performance evaluation 

Evaluation Metrics Results obtained 

MAE 0.39 

MSE 0.30 

RMSE 0.55 

MAPE 7.2% 

𝑅2 0.87 

 

Figure 9 illustrates the predicted traffic congestion levels, 

highlighting areas of low, medium, and high congestion based 

on the forecasted data. This stratified depiction helps 

understand the varying degrees of traffic congestion, 

facilitating better route planning and traffic management 

decision-making. 

     
                                                                     (a) High congestion                                                (b) Medium congestion 

 
(c) Low congestion 

Fig. 9 Prediction outputs 
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Figure 10 provides a comprehensive visualization of 

traffic routes in Bangalore, highlighting both the congested 

and alternative routes. The red line depicts the congested 

route, which represents the most direct path between the start 

and end points but is currently experiencing heavy traffic. In 

contrast, the blue line illustrates the alternative route, which 
strategically bypasses the congested area by diverting around 

it, thereby reducing potential delays and improving travel 

efficiency. A heatmap layer is included, showing congestion 

levels across various points in the city, further aiding in 

identifying traffic hotspots. This visual representation 

effectively demonstrates how the proposed method can 

recommend more efficient travel options by avoiding high-

traffic zones, thereby enhancing overall route management 

and congestion mitigation. 

The predicted traffic flows for Bangalore City between 

2024 and 2032, depicted in Figure 11, indicate a notable 

change in urban mobility trends for the next decade. Extending 

beyond 2028, the graph shows a resumption of the declining 

pattern, as traffic flow consistently diminishes to around 106 

units by 2032. The continuous decrease observed indicates the 
possible long-term effectiveness of strategies implemented to 

alleviate traffic congestion. The persistent decline indicates 

that the city may have implemented more resilient and 

enduring measures to control its traffic, such as incorporating 

intelligent traffic management systems, increasing investment 

in alternate transportation modes, or expanding the public 

transit network.  

 
Fig. 10 Traffic congestion visualization and route optimization 

 

 
Fig. 11 Predicted traffic flow trends 
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Overall, the estimated traffic flow highlights a future in 

which implementing planned measures could result in a steady 

but significant decrease in traffic congestion. The overall 

declining trend in the graph emphasizes the need for ongoing 

urban planning endeavors, with a specific emphasis on 

sustainable transportation solutions and smart city projects. 
These measures are crucial to prevent traffic congestion from 

hindering the city’s development and quality of life in the 

coming years. 

5. Conclusion 
Traffic congestion poses significant challenges to urban 

mobility, leading to delays, increased emissions, and reduced 

quality of life. The proposed research addresses the critical 
issue of traffic congestion in urban environments by 

integrating advanced forecasting techniques with ITS. The 

study employs a robust methodology by utilizing the 

Temporal Fusion Transformer (TFT) model to predict traffic 

congestion, leveraging a diverse dataset from various online 

map services and traffic monitoring platforms. The 

comprehensive data preparation process, including 

synchronization, alignment, and normalization, ensures the 

accuracy and reliability of the forecasts. The outcomes 

validate the superiority of the proposed approach, with 

performance metrics such as MAE of 0.39, MSE of 0.30, 

RMSE of 0.55, MAPE of 7.2%, and 𝑅2 of 0.87, indicating 

high prediction accuracy. Integrating TFT predictions into the 

ITS framework enhances real-time traffic management by 

optimizing signal timings, suggesting alternate routes, and 

improving incident management. This research highlights the 

potential of combining predictive analytics with intelligent 

systems to create a more adaptive and efficient traffic 
management solution, ultimately reducing congestion and 

improving urban mobility. 

As cities continue to grow and traffic patterns become 

increasingly complex, there is significant potential for 

expanding TFTs to incorporate additional data sources such as 

real-time traffic incident reports, weather conditions, and 

socio-economic factors. Future research could explore the 

integration of TFT predictions with advanced vehicular 

communication systems and autonomous vehicle technology, 

creating a more adaptive and proactive traffic management 

ecosystem. Exploring the integration of predictive analytics 

with public transportation systems to improve route planning 
and efficiency also presents a valuable opportunity. 
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