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Abstract - The challenge of breast cancer recurrence remains a critical concern, prompting the need for effective predictive 

models that improve patient outcomes. This study introduces a novel prediction model, addressing common issues like complex 

model structures, high-dimensional data, and class imbalance. The model combines a Gated Recurrent Unit (GRU) with 

Analysis of Variance (ANOVA)-based feature selection to boost accuracy and reliability. Using the Wisconsin Breast Cancer 

(WBC) dataset, the study applies preprocessing techniques to enhance data quality. ANOVA is employed to select relevant 

features, which are input into the GRU model. The GRU’s multi-layer architecture successfully identifies complex patterns in 

the data. The model achieves impressive results, with a mean accuracy of 96.49%, precision of 97.04%, recall of 96.67%, and 
an F1-score of 96.67%. The confusion matrix and ROC curve analyses also validate the model’s performance in predicting 

recurrence. This GRU-ANOVA approach is promising to improve breast cancer recurrence predictions, offering critical insights 

for clinical decision-making and patient care. 

Keywords - Breast cancer recurrence prediction, Gated Recurrent Unit, Analysis of Variance (ANOVA), Feature optimization, 

Wisconsin Breast Cancer (WBC) dataset .

1. Introduction 
Breast cancer is a malignant tumor formed when cells in 

breast tissue proliferate uncontrolled, evading the standard 

regulatory processes governing cell division and apoptosis. 

While the exact cause of breast cancer remains unclear, 

several well-known risk factors have been identified that can 

help predict the likelihood of developing the disease. These 

include age, family history, and genetic predisposition, which 

are critical in assessing a woman’s risk of breast cancer [1]. 

Additionally, specific diagnostic markers are correlated 

with more severe variants of breast cancer and an increased 

likelihood of recurrence. Factors such as larger tumor size, 

reduced hormone receptor expression for estrogen and 

progesterone, lymph node involvement, and higher histologic 

grade are key indicators of a more hostile form of the disease. 

Identifying the most significant prognostic markers can 

provide oncologists with valuable insights into the potential 

for breast cancer recurrence, hence facilitating improved 

treatment options [2]. While recurrence can happen at any 

time, it is most common within the first five years after initial 

treatment, and the likelihood of recurrence is closely tied to 
these prognostic markers. 

For many patients, the terrifying possibility of a breast 

cancer recurrence is genuine; it signifies the cancer cells’ 

return after the first therapy. Cancer can recur in two main 

ways: locally, where it grows back in the same spot where the 

initial tumor was, or distantly, where it travels to other parts 
of the body. A significant management issue for breast cancer 

is the possibility of this recurrence occurring months or even 

years after the initial course of treatment. While distant 

recurrence, sometimes referred to as metastatic breast cancer, 

denotes the spread of cancer cells outside of the breast and 

adjacent lymph nodes, local recurrence implies that some 

cancer cells may have escaped early therapy [3]. Both types of 

recurrence can have serious consequences for patients, 

requiring additional care and perhaps affecting their life span 

and overall expectancy. 

After therapy, a local recurrence usually occurs in the 
vicinity of the initial tumor site and frequently requires 

surgery, particularly after lumpectomy. Breast cancer can 

return even after a mastectomy, especially if there is 

significant involvement of lymph nodes. Surgical 

intervention, radiation therapy, chemotherapy, and hormone 

therapy are possible treatments for local recurrence [4]. Even 

though it often spreads to organs, including the brain, liver, 

lungs, or bones, distant metastasis of breast cancer is still 

classified as breast cancer. Regular follow-up meetings with 

healthcare experts, imaging tests (MRIs, CT scans, or 

mammograms), and blood tests to look for any oddities or 

http://www.internationaljournalssrg.org/
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changes are usually part of the monitoring process for signs of 

recurrence [5]. In order to enhance outcomes and survival 

rates for patients with breast cancer, early diagnosis of 

recurrence is essential for immediate intervention and care. 

Predicting the recurrence of breast cancer is critical to early 

detection, individualized treatment programs, better patient 
outcomes, effective resource management, and patient 

empowerment. Better treatment outcomes and prompt action 

are made possible by early identification. Patient care is 

optimized through customized treatment programs based on 

risk assessments [6]. By assisting in proactive treatment, 

predictive models lessen the negative effects on a patient’s 

quality of life. Care for individuals at elevated risk is given 

priority in the efficient use of resources. Making informed 

decisions promotes patient empowerment. All things 

considered, recurrence prediction is critical to improving the 

role of patients in medical care, utilization of resources, and 

results [7]. To address this, the proposed research introduces 
an innovative model that combines ANOVA feature selection 

and GRU-based deep learning for accurate recurrence 

forecasting. This approach not only optimizes feature 

selection but also enhances prediction accuracy and reliability. 

The main aspects of the proposed research are outlined below: 

 Introduces a new model designed specifically for 

predicting breast cancer recurrence with better accuracy 

and reliability. 

 Presents a novel method for feature optimization that 

improves the precision of breast cancer recurrence 

detection. 

 Provides a comprehensive comparison of the proposed 

method against current methodologies. This comparative 

analysis highlights the strengths and advantages of the 

new model, demonstrating its superior performance and 

potential benefits over existing approaches in breast 

cancer recurrence prediction. 

The paper proceeds as follows: Section 2 reviews existing 

methods relevant to the current study. The proposed model is 

presented in Section 3. Section 4 showcases the experimental 

findings and subsequent discussion. Finally, Section 5 outlines 

the conclusions drawn from the study. 

2. Related Works 
Hussein et al. [8] examined BRCA1 oncoprotein 

expression in invasive ductal carcinoma of the breast, 

highlighting its relevance for prognosis and therapy. Given 

breast cancer’s complexity and hormone dependence, accurate 

assessment of BRCA1 along with Estrogen Receptor (ER), 

Progesterone Receptor (PR), and Human epidermal growth 
factor receptor 2 (Her2/neu) was crucial. The study analyzed 

83 paraffin-embedded samples from patients diagnosed 

between January 1, 2010, and March 13, 2012, using 

immunohistochemistry with the Ventana Benchmark system. 

Results showed BRCA1 expression in 20.5% of cases, with 

higher levels linked to advanced tumor grades and stages. 

Although negative BRCA1 expression generally correlated 

with negative ER, PR, and Her2/neu statuses, no significant 

associations were found with these markers or patient age. The 

findings underscored BRCA1’s potential as a prognostic 

marker for aggressive tumors. Liu et al. [9] utilized the 

Shapley Additive Explanations (SHAP) method to develop a 
clinical decision assistance tool addressing model opacity 

concerns. Their analysis of data from 1,629 patients identified 

key variables affecting recurrence, leading to a highly accurate 

prediction model with AUC scores of 0.96 for Random Forest 

and 0.97 for Extra Trees. This transparency in decision-

making enhanced trust in the model’s recommendations 

within clinical settings. González-Castro et al. [10] focused on 

enhancing 5-year recurrence estimates by integrating 

structured and unstructured data from 823 breast cancer 

patients. They created three feature sets—organized, 

unorganized, and mixed—and evaluated five ML methods, 

with XGBoost performing best (accuracy = 0.900, recall = 
0.907, F1-score = 0.897, AUROC = 0.807). Their findings 

revealed that structured data provided the most accurate 

results, with unstructured data performing slightly worse and 

blended data being less effective. 

Howard et al. [11] presented a deep learning model that 

combined computerized histology and clinical threat variables 

to predict recurrence risk. Their model outperformed a 

traditional clinical nomogram, achieving an AUROC of 0.83 

in a sample cohort compared to 0.76 in an external validation 

cohort (p = 0.0005), demonstrating its superior predictive 

power. Zeng et al. [12] used unstructured Electronic Health 
Record (EHR) data to build ML models predicting breast 

cancer recurrence post-surgery. Analyzing data from 1,841 

patients with histopathological reports and medical records, 

they applied LSTM, XGBoost, and SVM algorithms. The 

LSTM model performed highest in both training (accuracy, F1 

score) and testing cohorts, indicating its robust predictive 

capability.  

Othman et al. [13] introduced a hybrid DL model 

combining copy number alteration, gene expression, and 

clinical data from the METABRIC dataset. Their model, 

utilizing CNN for feature extraction and GRU and LSTM for 

classification, attained an impressive accuracy of 98.0% with 
decision fusion, outperforming other methods and setting a 

new standard for predictive accuracy. Lulu Wang (2023) [14] 

examined advances in microwave imaging for breast cancer 

screening, highlighting its non-ionizing, non-invasive, and 

economical characteristics. The study emphasized the 

shortcomings of traditional imaging techniques such as X-ray 

mammography and ultrasound, suggesting microwave 

imaging as a more advantageous option. Microwave imaging 

exhibited improved accuracy and efficiency in tumor 

identification by integrating machine learning techniques. 

Rajasekaran and Ram [15] proposed a hybrid LSTM-
XGBoost model combined with Linear Discriminant Analysis 
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(LDA) for feature extraction. This system, utilizing 

hyperparameter tuning and cross-validation, demonstrated 

higher accuracy and efficiency in breast cancer prediction than 

existing approaches. Su et al. [16] developed the Breast 

Cancer Recurrence Network (BCR-Net), which forecasts the 

risk of recurrence using histopathology slides. BCR-Net 
achieved 68.9% and 71.1% accuracy for low and high-risk 

predictions on H&E slides, with an overall AUC of 0.775 for 

H&E and 0.811 for Ki67 slides, demonstrating its 

effectiveness in risk stratification with less computational 

overhead. Yao et al. [17] created a multi-modal DL model 

integrating clinical data, gene expression, and H&E-stained 

histopathology images. Their model, which divided tumor 

areas into image blocks and encoded them into 1D feature 

vectors, combined visual attributes with clinical and gene 

expression data. This approach yielded an AUC of 0.75, 

outperforming models that used only H&E images or clinical 

data. 

Existing research on breast cancer recurrence prediction 

highlights several limitations that need addressing to enhance 

model performance. One significant challenge is the need for 

more robust and precise predictive models. Although 

numerous researchers have utilized Machine Learning (ML) 

and Deep Learning (DL) approaches using various data 

modalities—such as clinical information, histopathological 

images, and gene expression data—these models often fall 

short regarding prediction accuracy, efficiency and scalability. 

Current models frequently focus on specific types of data, 

which can limit their overall effectiveness. A more 
comprehensive approach integrating multiple data types could 

yield more reliable and applicable predictions for real-world 

scenarios. Moreover, many of these models have yet to be 

validated on larger, more diverse datasets, which is crucial for 

assessing their generalizability and efficacy in actual clinical 

settings. Addressing these limitations could lead to the 

development of more powerful tools for the early detection 

and management of breast cancer metastasis and recurrence. 

By bridging these research gaps, we can improve the precision 

and applicability of predictive models, ultimately enhancing 

patient outcomes. 

3. Materials and Methods  
Predicting breast cancer recurrence poses significant 

challenges owing to the difficulty of advanced models, the 

high dimensionality of datasets, correlated features, and class 

imbalance. To address these issues, we propose a novel 

approach integrating a Gated Recurrent Unit (GRU) model 

with feature optimization based on Analysis of Variance 

(ANOVA). This combination aims to improve the reliability 

and accuracy of recurrence predictions for breast cancer. The 

proposed model leverages the GRU’s ability to handle 

sequential data and capture temporal dependencies, which is 
crucial for analyzing patterns in patient data over time. By 

integrating ANOVA-based feature optimization, we address 

the problem of high dimensionality and correlated features, 

ensuring that the model focuses on the most relevant features 

for predicting recurrence. This approach improves model 

performance and mitigates the effects of class imbalance, 

leading to more reliable and accurate predictions. Figure 1 

provides the block diagram of the suggested system. 

3.1. Dataset 

The research utilized the publicly accessible Wisconsin 

Breast Cancer (WBC) dataset, which has been meticulously 
prepared for analysis. To ensure the dataset’s suitability, it 

underwent rigorous filtering and formatting using various 

methodologies [18]. The WBC dataset, sourced from the 

WBC repository, comprises 569 cases with 34 additional 

features and a class attribute labeled “outcome,” denoting “R” 

for recurrent cases and “N” for non-recurring ones. Among 

these cases, 47 were recurrent, while the remaining 522 were 

non-recurrent. The emphasis was on persons diagnosed with 

invasive breast cancer who had not manifested distant 

metastases. Features were derived from Fine Needle 

Aspiration (FNA) images of breast masses. 

 

 

 

 

 

 

 

 

Fig. 1 Block diagram of the proposed model 

3.2. Data Preprocessing Data preprocessing is crucial for ensuring high-quality 

input for analysis by addressing errors, missing values, and 
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inconsistencies in raw data. It involves several steps, including 

format standardization, discrepancy resolution, and dataset 

integration. Normalization is applied to ensure that the data is 

on a comparable scale, which adjusts parameters to fall within 

the range of 0 to 1. This ensures that each feature has a 

maximum value of 1 and a minimum value of 0, thereby 
standardizing the data. In addition, text-labeled data is 

converted to numerical formats using the Label Encoder 

technique, which assigns numerical values to categorical 

labels. For instance, in this study, “Recurrence” is encoded as 

1 and “No-recurrence” as 0. This transformation, explained by 

Equation (1), is integral to preparing the dataset for analysis 

by ensuring consistency and comparability. 

                   |𝑥𝑗| =
𝑥𝑗

√𝑥𝑗
2+𝑦𝑗

2+𝑧𝑖
2
                                    (1) 

Where |𝑥𝑗| is the normalized value of the variable 

𝑥𝑗  along the x-axis for the jth data point  

After preprocessing, we analyzed a set of thirty unique 

attributes, each revealing specific relationships. Figure 2 

presents a histogram showing the distribution of selected 

geometric features such as shape, area, and perimeter. These 

geometric properties are instrumental in defining the 

dimensions and structure of cancer-affected tissues. These 

characteristics are used in image analysis to quantify and 

characterize object attributes within an image. Extracting 
these geometric properties for mammogram analysis is crucial 

since they yield significant insights into the geometric 

structures of cells. These features are vital for training the 

proposed GRU-ANOVA model, as they serve as key 

indicators of tissue shape and help enhance the model’s 

accuracy in detecting and analyzing tissue abnormalities. 

 
Fig. 2 Distribution of certain geometric features 
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Structural characteristics in image analysis delineate the 

spatial configurations of pixels within an object, providing 

details about its texture, patterns, and shape. As illustrated in 

Figure 3, these features depict how these characteristics are 

distributed across the dataset. By encoding these attributes 

mathematically, we can examine the relationships between 
different parts of the object, allowing for a detailed analysis of 

its overall structure and composition. This approach enhances 

our understanding of the object’s visual elements and 

facilitates a deeper exploration of its internal connections and 

patterns. 

Gabor filters are instrumental in detecting additional 

structural properties, such as texture pattern direction and 

frequency, by analyzing fluctuations in pixel brightness within 

the image. The filters capture detailed texture information by 

examining the binary patterns present in each pixel’s 

neighborhood. In parallel, shape context descriptors provide a 

way to characterize object shapes by comparing contour points 

against a reference shape. This method helps in defining the 
spatial distribution and geometric properties of objects. 

Texture-based features, which record changes in pixel 

intensities across the spatial domain, are crucial for encoding 

objects’ texture and surface attributes within an image. Figure 

4 shows how these features are distributed and how well they 

capture important texture information. Various techniques, 

such as frequency analysis and transformation-based methods, 

are employed to compute these features, each offering unique 

insights into the image’s structural and textural properties.

 
Fig. 3 Distribution of certain structural features 
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Fig. 4 Distribution of certain texture features 

 
Fig. 5 Feature correlation 
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The correlation study demonstrates that the dataset, 

comprising records from 569 patients, is valuable for 

predicting breast cancer recurrence. Removing features with 

perfect correlation coefficients reduces redundancy and 

potential overfitting in our model. Feature correlation, which 

assesses the degree of association between features, is critical 
for feature selection and the effectiveness of DL algorithms. 

High correlations can negatively impact model accuracy and 

performance by introducing redundancy. Thus, identifying 

and evaluating feature correlations helps pinpoint the most 

pertinent and independent features for the task at hand. 

According to the correlation analysis illustrated in Figure 5, 

“diagnosis” exhibits the highest correlation, while 

“smoothness_se” shows the lowest, reflecting the varied 

significance of these features in the predictive model. 

A heat map is an effective visualization tool that 

represents data in a matrix format, where colors signify the 

intensity of values. A gradient scale is typically used, with 

deeper hues indicating higher values and lighter shades 

representing lower ones. This visual format is particularly 

useful for identifying patterns, connections, clusters, or 
outliers within a dataset, which might be challenging to detect 

through other visualization methods.  

For instance, as illustrated in Figure 6, a heat map can 

vividly display the correlations between features in a dataset, 

allowing for quick and intuitive insights into the relationships 

and strengths of those correlations. 

 
Fig. 6 Heat map of the dataset 

 

3.3. Feature Selection 

The Analysis of Variance (ANOVA) model plays a crucial 

role in identifying the variance among individual participant 

features and uncovering related features, as illustrated in 

Figure 7. By employing ANOVA for feature selection, the 

dataset is systematically ranked based on the F-statistic values 

assigned to each feature set. This ranking process simplifies 

the task of determining the most relevant subset of 

characteristics. Consequently, ANOVA facilitates a more 

effective evaluation of which features are most significant, 

thus streamlining the selection process and enhancing the 

overall quality of the dataset used for further analysis. 
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Fig. 7 ANOVA Operation 

ANOVA is a statistical method that is highly effective for 

simultaneously analyzing the relationships between numerical 
and categorical variables. It employs the F-test to evaluate 

these associations. The equations used to compute the sum of 

squares that measure variability within the data are key to this 

analysis. For instance, the sum of squares within groups (SSW) 

is crucial for understanding how individual group variances 

contribute to the overall variability. Specifically, Equation (2) 

calculates SSW by assessing the deviations of data points 

within each group from their respective group means, 

providing insight into the extent of variability attributable to 

differences within groups rather than between them. 

 

              𝑆𝑆𝑊 = ∑ ∑ (𝑋𝑖𝑗 − 𝑋𝑖̅)
2𝑛𝑖

𝑗=1
𝑘
𝑖=1                             (2) 

 

Where 𝑋𝑖𝑗  refers to the 𝑗𝑡ℎ observation within the 

𝑖𝑡ℎgroup, while 𝑋𝑖̅ denotes the mean of the 𝑖𝑡ℎgroup. The total 

number of groups is represented by k, and 𝑛𝑖 stands for the 

number of observations within the 𝑖𝑡ℎgroup. 

Degrees of Freedom (DF) are essential in determining test 

statistics and assessing the variability of a dataset. Specifically, 
the Degrees of Freedom Within the Group (DFW) are essential 

for understanding the distribution of data points and the 

precision of statistical estimates. The DFW is computed using 

Equation (3), which considers the quantity of observations and 

the number of parameters assessed within each group. 

 

                           𝐷𝐹𝑊 = 𝑁 − 𝑘                                    (3) 

 

The mean square value within the group (MSW) is 

represented by Equation (4). 

 

                           𝑀𝑆𝑊 =
𝑆𝑆𝑊

𝐷𝐹𝑊
                                      (4) 

 

The sum of squares between groups (SSB) is illustrated by 

Equation (5). 

 

               𝑆𝑆𝐵 = ∑ 𝑛𝑖(𝑋𝑖̅ − 𝑋̅)2𝑘
𝑖=1                                     (5) 
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Where 𝑋𝑖̅ is the mean of the 𝑖𝑡ℎgroup, 𝑋̅ is the overall 
mean. 

 

The degree of freedom between the group (DFB) is given 

by Equation (6). 

                          𝐷𝐹𝐵 = 𝑘 − 1                                        (6) 

 
The mean square value between the group (MSB)is 

represented by Equation (7). 

                      𝑀𝑆𝐵 =
𝑆𝑆𝐵

𝐷𝐹𝐵
                                        (7) 

 
The F-statistic is a fundamental component of ANOVA 

analysis, playing a crucial role in determining whether there are 

significant differences between the means of various groups or 

treatments. By thoroughly testing the null hypothesis, which 

posits that all group means are equal, the F-statistic assesses 

the statistical significance of any observed differences between 

these groups. It allows researchers to quantify whether 

variations in group means are due to random chance or if they 

represent meaningful, systematic differences. The F-statistic is 

essential for identifying the significance of these variations and 

is mathematically represented by Equation (8).           

    𝐹 =
𝑀𝑆𝐵

𝑀𝑆𝑊
                                           (8) 

 

3.4. Proposed GRU- ANOVA Model 

A Gated Recurrent Unit (GRU) is a unique variant of 

Recurrent Neural Network (RNN) optimized for sequential 

data processing, particularly engineered to mitigate the 

vanishing gradient issue commonly encountered by 

conventional RNNs. By utilizing gating mechanisms, GRUs 

effectively manage the flow of information within the 

network, enabling them to capture long-range dependencies 

more efficiently.  

Unlike other RNN variants, GRUs do not use a distinct 

cell state; instead, they rely solely on a hidden state to store 
and transmit information across time steps. At each timestamp 

(tᵢ), a new hidden state is generated by combining the input 

(xₜᵢ) with the previous hidden state (hₜᵢ₋₁), which is then passed 

forward to the next time step. The two main components of 

GRUs are the reset and update gates, which play crucial roles 

in determining what information should be forgotten or 

retained. Figure 8 illustrates the structure of the GRU cell. 

 
Fig. 8 GRU cell structure 

The equations governing the operations of a GRU are as 

follows: 

Reset Gate (𝑟𝑡𝑖), 

                     𝑟𝑡𝑖 = 𝜎(𝑊𝑟 . [ℎ𝑡𝑖−1,𝑥𝑡𝑖] + 𝑏𝑟)                         (9) 

Update Gate (𝑧𝑡𝑖), 

                  𝑧𝑡𝑖 = 𝜎(𝑊𝑧 . [ℎ𝑡𝑖−1,𝑥𝑡𝑖] + 𝑏𝑧)                          (10) 

Candidate Activation (ℎ𝑡𝑖), 

              ℎ𝑡𝑖 = (1 − 𝑧𝑡𝑖) ∗ ℎ𝑡𝑖−1 + 𝑧𝑡𝑖 ∗ ℎ𝑡𝑖
̅̅̅̅                      (11) 

The update gate ( 𝑧𝑡𝑖) controls how much of the previous 

state is retained, while the reset gate ( 𝑟𝑡𝑖),  determines how 

much of the past state is forgotten. Additionally, the candidate 

activation ( ℎ𝑡𝑖),  captures new data and integrates it into the 
hidden state. The proposed Modified GRU model consists of 

two parts: a generalization model based on GRU and a feature 

optimization model using ANOVA, as described in Algorithm 
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1. The GRU classifier is trained only on features exhibiting 

correlations, while irrelevant features are discarded, 

incorporating a convolutional neural network for enhanced 

performance. The ANOVA model plays a crucial role in 

identifying variations among individual participant features 

and revealing correlated attributes. The GRU-based 
generalization model then learns these shared traits. This 

integrated approach aims to reduce classification bias and 

improve task accuracy. 

Algorithm 1:  GRU- ANOVA Classification 

Input: WBC dataset 

Output: Prediction of Breast Cancer Recurrence 

1. Calculate the mean for within and between the groups 

in the dataset 

2. Calculate the sum of squares for the dataset 
3. Calculate the Degree of Freedom 

4. Calculate mean of squares  

5. Compute the F-Statistic 

6. Optimization of the features in the dataset utilizing 

ANOVA 

7. Feature extraction using GRU 

8. Categorization of the feature using sigmoid function 

9. Obtain the predicted output 

 

In this novel approach, the features optimized through the 

use of the ANOVA model are subsequently fed into the GRU 

classifier for enhanced performance. Several network 

parameters across different layers are critical in determining 

the final classification outcome. Table 1 outlines all the layers 
that constitute the proposed GRU classification model, 

highlighting the importance of each layer in refining the 

model’s predictive accuracy. By optimizing these parameters, 

the approach ensures more precise categorization, 

demonstrating the effectiveness of the integrated ANOVA and 

GRU architecture. 
 

Table 1. Model summary 

Layers Type Output Shape Parameters 

GRU 30 × 50 7950 

Dropout 30 × 50 0 

GRU 30 × 50 15300 

Dropout 30 × 50 0 

GRU 30 × 50 15300 

Dropout 30 × 50 0 

GRU 30 × 50 15300 

Dropout 30 × 50 0 

Fully Connected 

Layer 

 151 

Total 53901 

Trainable 53901 

Non – Trainable 0 

 

The GRU model, initialized with 30 features for the WBC 

dataset, classifies the final output into two categories: 

Recurrence (1) and No-Recurrence (0), after processing 
through the convolutional and hidden layers. The model 

demonstrates optimal performance with 512 neurons and 200 

epochs for both training and validation. The decision to use 

200 epochs was made because, at this point, the GRU model 

reaches convergence, where both accuracy and loss metrics 

stabilize, yielding the best results. This ensures the model 

achieves high reliability and effectiveness in its predictions. 

Figure 9 shows the model architecture of the proposed GRU 

model.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 Model architecture of proposed GRU model 
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3.5. Hardware and Software Setup 

The research utilized a powerful computing setup, 

including an NVIDIA GeForce GTX 1080Ti GPU, an Intel 

Core i7 processor, 32GB of RAM, and the Keras library [20], 

integrated with TensorFlow and executed in Python. The user-

friendly Keras interface, along with Google Colab’s extensive 
computational capabilities, facilitated the design of models 

and ensured efficient training and implementation of complex 

neural network structures. Hyperparameters, essential settings 

that control the operation and behavior of a deep learning 

framework during the training process, are predetermined by 

the user, unlike model parameters, which are learned from the 

data itself, as shown in Table 2. 

Table 2. Hyperparameter specifications 

Hyperparameters Values 

Optimizer Adam 

Loss function Binary Cross entropy 

No. of epochs 200 

Batch size 24 

Activation Function ReLU 

 

4. Results and Discussion 
The optimization process focuses on minimizing training 

loss, which measures how well the model fits the training data 
after each epoch. A lower loss value signifies better model 

performance. On the other hand, accuracy is typically inversely 

related to loss and indicates the percentage of correct 

predictions out of the total predictions made on the training 

data. Similar to training metrics, validation metrics assess the 

model’s performance but use validation data that remains 

unseen during training. This helps ensure an unbiased 

evaluation of the model’s capacity to generalize to novel data. 

 

                    𝐿𝑜𝑔 𝐿𝑜𝑠𝑠 =
1

𝑁
∑ −(𝑦𝑖 ∗ 𝑙𝑜𝑔(𝑝𝑖) + (1 −𝑁

𝑖=1

𝑦𝑖) ∗ 𝑙𝑜𝑔(1 − 𝑝𝑖)                                                         (12) 

 

 
Identifying pertinent markers that accurately classify the 

case type is essential for predicting breast cancer recurrence. 

The probability of belonging to class 0 is represented by (1 −
𝑝𝑖), while 𝑝𝑖  signifies the probability of belonging to class 1. 

In this classification framework, the first part of the formula 

becomes more significant when the observation is classified as 

class 1, while the second part becomes negligible. Conversely, 

when the true class is 0, the first part diminishes, and the second 

component gains importance. Identifying the right features for 

this prediction involves selecting attributes that strongly 
correlate with the target variable and effectively distinguishing 

between the different groups. 

 

Feature selection plays a vital role in improving the 

accuracy and efficiency of machine learning models across 

various applications. In breast cancer recurrence prediction, 

overfitting can be a significant challenge. It occurs when the 

model achieves excellent performance metrics during training 

but fails to generalize to new, unseen data, as indicated by poor 

validation results. Monitoring training and validation losses 

and accuracy plots over multiple epochs is essential for 

evaluating the model’s generalization ability. These graphical 
representations allow researchers to track the model’s 

performance over time, helping to identify trends in accuracy 

improvement and assess the impact of feature optimization 

strategies in mitigating overfitting. For instance, analyzing 

accuracy trends, as shown in Figure 10, provides insight into 

the model’s learning progress and effectiveness in predicting 

breast cancer recurrence. 

 

 
Fig. 10 Accuracy and loss plot of the proposed model 
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Fig. 11 Confusion matrix 

When analyzing model performance, it’s notable that 
metrics such as precision, recall, accuracy, and F1 score 

generally improve as the proportion of data allocated for 

training increases. This suggests that a larger training set 

enables the model to learn better and generalize more 

effectively. Conversely, these metrics tend to decline as the 

percentage of data designated for validation increases. The 

optimal results were observed when 30% of the data was used 

for training and 70% for validation. This finding was derived 

from employing a 10-fold cross-validation method, which 

helps ensure robust and reliable performance evaluation. 

 

A confusion matrix is a performance assessment tool 
employed in classification tasks to gauge the accuracy of a 

classification model. It offers a comprehensive analysis of the 

model’s predictions in relation to the actual results. Figure 11 

displays the confusion matrix, which illustrates the 

performance of the GRU-ANOVA classification algorithm in 

distinguishing between patients with and without recurrence in 

the validation dataset comprising 114 patients.  

 

The matrix reveals that the algorithm accurately identified 
70 patients as not having a recurrence, with only one instance 

of misclassification. For patients with recurrence, 40 were 

correctly categorized, though three were incorrectly classified. 

These results underscore the effectiveness of the proposed 

strategy in distinctly differentiating the two categories. 

 

 

Performance indicators obtained from the confusion 

matrix provide a comprehensive assessment of the proposed 

model’s effectiveness. The system’s performance is primarily 

assessed based on four parameters: accuracy, precision, recall, 

and F1-score. The measurements derived from the notions of 
False Positive (FP), False Negative (FN), True Negative (TN), 

and True Positive (TP), as delineated in Equation (13), 

Equation (14), Equation (15), and Equation (16), are crucial for 

evaluating the model’s efficacy. Figure 12 shows the 

performance evaluation metrics obtained in the proposed 

research. 

 

                         𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                    (13) 

 

                       𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                 (14) 

 

                            𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                  (15) 

 

       𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗ (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
)                      (16)

 

 
Fig. 12 Performance evaluation of the proposed model 
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Fig. 13 ROC curve 

The ROC curve is a crucial tool for evaluating a model’s 
performance by illustrating how sensitivity and specificity are 

balanced as the decision threshold varies. Figure 13 displays 

the ROC curve and AUC for the proposed GRU-ANOVA 

Classifier, highlighting its effectiveness in distinguishing 

between classes. The GRU-ANOVA model achieved 

impressive metrics, including a mean accuracy of 96.49%, 

precision of 97.04%, recall of 96.67%, and F1-score of 

96.67%. These results underscore the significant impact of 

integrating recurrence and additional layers into the model’s 

architecture, contributing to its exceptional classification 

performance. 
 

The proposed GRU-ANOVA Classifier outperforms 

existing methods across various performance metrics, as 

depicted in Table 3 and Figure 14. When compared to Support 

Vector Machines (SVM), which achieved an accuracy of 

95.70% and an F1-score of 95.83%, the GRU-ANOVA model 

demonstrates superior accuracy (96.49%) and F1-score 

(96.67%). Although the Random Forest model exhibits a 

higher accuracy of 96.71%, the GRU-ANOVA Classifier 

excels in precision (97.04%) and recall (96.67%), surpassing 

the Random Forest’s precision of 96.77% and recall of 95.14%. 

Notably, General CNN, with an accuracy of 85.83%, and 
Naïve Bayes, with an accuracy of 92.94%, lagging behind the 

GRU-ANOVA model, highlighting its robust performance 

compared to these methods. Furthermore, the GRU-ANOVA 

Classifier outperforms other models, such as KNN, Decision 

Tree, and Logistic Regression, which have lower accuracy and 

F1 scores. This superior performance underscores the 

effectiveness of incorporating recurrence and additional layers 

into the model’s architecture.
 

Table 3. Performance comparison with existing methods 

Methodology Accuracy (%) Precision (%) Recall (%) F1-score (%) 

Naïve Bayes [18] 92.94 93.85 90.89 92.63 

Random Forest [19] 96.71 96.77 95.14 94.36 

KNN [20] 95.03 95.24 94.18 95.52 

SVM [21] 95.70 96.28 93.48 95.83 

Decision Tree [22] 90.46 91.34 90.18 90.89 

Logistic Regression [23] 95.74 96.83 95.32 95.10 

General CNN [24] 85.83 87.34 83.13 86.38 

GRU-ANOVA 96.49 97.04 96.67 96.67 
 

Fig. 14 Performance comparison of the proposed model with existing methods 
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5. Conclusion 
Breast cancer recurrence is a significant challenge in 

patient care, as it signifies the return of cancer cells following 

initial treatment and can manifest either locally or distantly. 

This recurrence complicates patient management and affects 

prognosis. This study introduces an innovative approach to 

predicting breast cancer recurrence by utilizing a modified 

Gated Recurrent Unit (GRU) model combined with ANOVA-

based feature optimization. The proposed model demonstrates 

impressive performance metrics, achieving a mean accuracy 

of 96.49%, precision of 97.04%, recall of 96.67%, and an F1-

score of 96.67%. These results are supported by a thorough 

confusion matrix and ROC curve analysis, highlighting the 

model’s capability to effectively distinguish between 

recurrence and non-recurrence cases. The model’s robustness 

in managing complex datasets and addressing issues such as 

class imbalance underscores its potential as a valuable tool for 

early detection and personalized treatment planning in breast 

cancer management. However, further validation studies 
within clinical settings are recommended to fully assess its 

real-world applicability and impact on patient care. 
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