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Abstract - Cervical cancer, a malignant tumour that forms in the cervix, significantly contributes to cancer-related mortality 

among women globally, making early diagnosis crucial for effective treatment. Pap smear images, which are microscopic 

images of cervical cells, are commonly used for the detection of abnormal cells that may lead to cervical cancer. This study 

introduces a novel classification approach, the Variable Kernel Feature Fusion-CNN (VKFF-CNN), which improves 

classification performance by fusing multi-scale features using convolutional layers with 3x3, 4x4, and 5x5 kernels. This 

architecture captures a diverse set of features, enhancing the ability of the model to accurately classify cervical cells. With an 

average accuracy of 98.03%, precision of 97.83%, recall of 97.11%, and an F1 score of 98.23%, the VKFF-CNN exhibited 
outstanding outcomes on the Herlev Pap Smear dataset. These results demonstrate that VKFF-CNN significantly outperforms 

traditional machine learning models. The model’s confusion matrix indicated fewer misclassifications, underscoring its 

robustness and effectiveness. Including batch normalization and the softmax activation function further enhanced the model’s 

stability and accurate classification. Overall, VKFF-CNN presents a promising advancement for automated cervical cancer 

screening, providing highly accurate and reliable detection. 

Keywords - Cervical Cancer, Herlev Pap Smear Dataset, Variable Kernel Feature Fusion-CNN, Multi-Scale Feature Extraction, 

Softmax activation.  

1. Introduction 
Cervical cancer arises from the tissue of the cervical 

region, located at the bottom level of the uterus. Infected 

uterine cells undergo proliferation and development with 

aberrant cell cycles. Cervical abnormalities can be detected by 

testing precancerous lesions with several screening 

techniques. Prolonged manifestation of Human 
Papillomavirus (HPV) infection results in the development of 

cervical cancer through the formation of malignant lesions. As 

early-stage cervical cancer is a slow-growing malignancy, 

women do not experience any symptoms until it progresses to 

invasive cancer and metastasizes to other organs in the body. 

  

Due to the extended premalignant phase of the disease, 

early onset diagnosis is entirely controllable and curable [1]. 

Figure 1 displays the various stages of cervical cancer. 

According to the World Health Organisation (WHO), cervical 

cancer is the fourth most common cancer among women 

globally, with an estimated 660,000 instances being registered 
in 2022 [2]. In that particular year, almost 94% of the 350,000 

deaths caused by cervical cancer took place in countries 

characterized by low- and middle-income levels. The regions 

with the greatest rates of cervical cancer incidence and 

mortality include Central America, Sub-Saharan Africa 

(SSA), and South-East Asia. This results from inadequate 
awareness of this condition and limited access to healthcare 

services. Conversely, developed countries have established 

techniques that enable precise and effective screening tools, 

enabling early detection and treatment of precancerous lesions 

[3]. Early detection and treatment of premalignant tumours are 

broadly acknowledged to effectively prevent the spread of 

cancer in around 90% of cervical cancer patients. Therefore, 

the early identification of cervical cancer is crucial. 

Cellular testing, particularly the Pap smear test, is a 

widely recognized and easily accessible screening method for 

identifying cervical cancer. Advances in medical technology 
facilitate the identification of diseases by analyzing 

abnormalities in the structure of cervical cells, such as the 

shape and color of the nucleus and the cytoplasm shown in the 

image [4]. The images obtained from a Pap smear can reveal 

details regarding the presence of cervical cancer [5]. The 

manual classification of Pap smear cell films presents 

significant challenges due to the subtle visual differences 

between cell groupings, particularly in the cell nucleus size, 

which can appear indistinguishable across categories. This 

makes the task of identifying tumours through manual 

analysis prone to errors, potentially leading to misdiagnosis 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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and delayed treatment [6]. Additionally, manual screening is 

time-consuming, lacks the comprehensive accuracy required, 

and is vulnerable to human bias and subjective errors [7]. The 

variability in interpretation among cytologists can further 

exacerbate inconsistencies in detecting abnormalities. These 

limitations highlight the critical need for developing a more 
precise and cost-effective screening approach to ensure early 

and precise identification of cervical cancer, eventually 

enhancing patient results.  

Artificial Intelligence (AI) has demonstrated promising 

application value in the diagnosis of a variety of diseases over 

the past years, such as skin malignancies [8], retinal disorders 

[9], and the imaging detection of tumours [10]. AI systems can 

autonomously process images, extract features, and analyze 

data using advanced algorithms, which is especially beneficial 

for the timely identification and diagnostics of cervical cancer. 

Modern Computer-Aided Diagnosis (CAD) systems leverage 

Deep Learning (DL) techniques to effectively extract relevant 
features from medical images, offering superior performance 

compared to traditional methods [11]. Convolutional Neural 

Networks (CNNs), a prominent DL architecture, have 

demonstrated impressive results in numerous medical 

domains because of their capacity to learn and generalize 

complex patterns from large datasets [12]. 

However, CNN models require extensive labeled data to 

avoid overfitting and ensure robust generalization. Transfer 

Learning (TL) is employed to address this challenge, where a 

pre-trained CNN framework, originally trained on a large 

dataset like ImageNet, is adapted for cervical cell image 

classification [13]. This approach helps transfer learned 
features to the target domain, improving classification 

performance while mitigating the need for large volumes of 

labeled data. The main goal of this research is to implement 

TL using a pre-trained CNN model and develop a novel 

feature fusion CNN architecture that integrates features from 

multiple convolutional kernels, improving the accuracy and 

efficiency of cervical cancer diagnosis. The proposed research 

offers the following main contributions: 

 To introduce a Variable Kernel Feature Fusion-CNN 

(VKFF-CNN) that integrates features from multiple 

convolutional kernels to enhance feature extraction and 

classification accuracy. 

 To utilize transfer learning by adapting a pre-trained CNN 

model to improve feature extraction and classification, 

addressing the challenge of limited labeled data. 

 To demonstrate the VKFF-CNN’s potential as a 

promising tool for automated cervical cancer screening, 

offering significant advancements in accuracy and 

efficiency over existing classification methods. 

 
Fig. 1 Different stages of cervical cancer 
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The structure of the paper is organized as follows: Section 

2 examines the existing research relevant to the proposed 

research, highlighting current methodologies and their 

limitations. Section 3 details the proposed methodology, 

comprising the design and implementation of the VKFF-CNN 

model and the application of transfer learning. Section 4 
highlights and investigates the experiments’ findings, 

analyzing the proposed approach’s performance and 

effectiveness. Section 5 of the study provides a concise 

summary of the findings, analyzes their implications, and 

proposes possible avenues for future research. 

2. Related Works 
Using uterine cervix images and transfer learning 

methods, Hanife Göker (2024) [14] proposed an image 

processing-based method for identifying cervical cancer. The 

research employed a publicly accessible dataset including 917 

images, utilizing Gaussian filtering and histogram 

equalization to improve and denoise the images. This study 

employed 10-fold cross-validation to compare several TL 

architectures. VGG19 has been identified as the most 

efficiently performing model. The study emphasized that 

integrating preprocessing techniques with the optimal 

performance of VGG19 yielded a precise and effective 

detection method.  

Emmanuel Ahishakiye et al. (2024) [15] introduced two 

kernel-based methods, namely a Deep Gaussian Process 

(DGP) and an optimized Support Vector Machine (SVM) 

model for the automated classification of cervical cancer. 

They utilized a dataset of liquid-based cytology Pap smear 

images obtained from a total of 460 participants. This dataset 

encompassed images representing four different categories of 

cervical abnormalities. During preprocessing, the dataset was 

subjected to debris removal, image enhancement, 

segmentation, and data augmentation algorithms. A 

comparative analysis revealed that the SVM model had 

superior performance overall but was prone to overfitting, 
whereas the DGP model demonstrated greater robustness. One 

of the study’s primary limitations was the inadequate 

availability of computing resources, which hindered model 

training progress.  

Using deep learning models, Sher Lyn Tan et al. (2024) 

[16] achieved automatic detection of cervical cancer without 

needing segmentation or distinctive features. The researchers 

employed transfer learning with pre-trained CNN models to 

classify Pap smear images directly into seven distinct 

categories. They assessed 13 models using the Herlev dataset. 

The DenseNet-201 model exhibited superior effectiveness 
with regard to both accuracy and efficiency. The investigation 

revealed that whereas pre-trained CNN models had strong 

performance for specific categories, the overall classification 

performance displayed variability. DenseNet models, namely 

DenseNet-201, performed exceptionally well in handling 

multi-class classification problems, highlighting the efficacy 

of TL with pre-trained models in handling sparse data and 

resolving class imbalance constraints. 

The CerviFormer model, developed by Bhaswati Singha 

Deo et al. (2024) [17], uses Transformers to handle large-scale 

Pap smear images effectively while minimizing architectural 

limitations. The proposed model utilized cross-attention and 
self-attention methods to combine input data into a condensed 

latent space, resulting in excellent performance on two 

datasets. Three-state classification on the Sipakmed dataset 

yielded a classification accuracy of 93.70%, while two-state 

classification on the Herlev dataset achieved a classification 

accuracy of 94.57%.  

The challenge of cervical cancer diagnosis was addressed 

by Lenis Wong et al. (2023) [18] by developing an artificial 

intelligence system designed to analyze liquid-based Pap 

smears according to the Bethesda classification. To overcome 

the limitation of the Papanicolaou technique, which frequently 

fails to detect lesions because of sampling problems, the study 
employed a dataset of Pap smear images that was augmented 

to incorporate 2,676 images. They utilized ResNet50V2 and 

ResNet101V2 models within the deep learning and transfer 

learning methodologies framework. Integrated with an 

automated detection system, the ResNet50V2 model exhibited 

superior performance.  

Omneya Attallah (2023) [19] examined the categorization 

of cervical cancer by implementing a CAD system named 

CerCan.Net on Pap smear images. The proposed model 

employed three lightweight CNNs to decrease the intricacy of 

classification while improving accuracy. CerCan·Net 
incorporated deep features collected from the final three layers 

of each CNN instead of depending on features from a single 

layer. The study illustrated the advantages of combining data 

from several CNNs and showed how feature selection could 

improve classification performance. Validation of CerCan· 

Net’s performance was conducted using benchmark datasets, 

demonstrating its capacity to assist cytopathologists in 

addressing common challenges encountered in regular Pap 

smear diagnosis. 

Sai Chandana et al. (2023) [20] emphasized the necessity 

of efficient cervical cancer screening, pointing out that timely 

removal of diseased tissues could greatly decrease death rates. 
Utilizing a transfer learning-based SE-ResNet152 model 

modified by the Deer Hunting Optimization (DHO) algorithm, 

the work presented a DL method for multi-class cervical 

cancer classification using Pap smear images. A cost-sensitive 

loss function was employed in the method to resolve the 

imbalance in the dataset, which consisted of 8,838 images 

divided into 11 classes. Although the study attained excellent 

classification performance, it also revealed constraints such as 

the high dimensionality of concatenated data and the complex 

nature of transfer learning models. The hybrid approach 

introduced by Madhura Kalbhor et al. (2023) [21] integrates 
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DL architectures with Machine Learning (ML) algorithms and 

a fuzzy min-max neural network to extract features and 

classify Pap smear images. They employed pre-trained DL 

models while analyzing the Herlev and Sipakmed datasets. 

Within the Sipakmed dataset, the fine-tuned ResNet-50 model 

demonstrated the highest classification accuracy of 95.33%, 

surpassing the performance of AlexNet. The hybrid technique 

suggested in this study aims to improve the accuracy and 

efficiency of classifying cervical cytology images.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Framework of proposed cervical cancer classifier 
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Using the SIPaKMeD dataset, which consists of 4045 

isolated Pap smear cells, Aya Haraz et al. (2023) [22] 

developed an ML-based model to categorize cervical cancer 

cells from Pap smears into five major cell categories. The 

study utilized a rigorous preprocessing pipeline and a robust 

feature extractor, resulting in exceptional classification 
outcomes. Out of the applied classifiers, the SVM achieved 

the highest accuracy of 0.968, surpassing the accuracy of 

0.958 for the Neural Network (NN) and 0.941 for the K-

Nearest Neighbor (KNN). Habtemariam et al. (2022) [23] 

designed a resilient system for the automated categorization of 

cervix types and cervical cancer using deep learning 

methodologies. They gathered 915 histopathology and 4,005 

colposcopy images from public sources and nearby medical 

facilities.  

A MobileNetv2-YOLOv3 model was employed to extract 

the Region of Interest (ROI) from images of the cervix. These 

extracted ROIs were further categorized using the 
EfficientNetB0 model. The method attained a mean Average 

Precision (mAP) of 99.89% for detecting ROIs and 

classification accuracies of 96.84% for cervix type and 94.5% 

for cervical cancer. Litjens et al. [24] provided a detailed study 

of applications, highlighting the effectiveness of feature 

fusion techniques across different medical imaging domains. 

These studies underscore the potential of these advanced 

techniques to enhance automated diagnostic systems in 

healthcare. 

According to the literature, although classical approaches 

for classifying cervical cancer laid an adequate foundation, 
deep learning methods, particularly CNNs, have significantly 

evolved the field. TL has shown efficacy in addressing the 

difficulties related to a scarcity of labeled data and computing 

limitations, whereas feature fusion has shown considerable 

promise in improving model performance by combining 

several features. The significance and effectiveness of these 

techniques are underscored by their extensive application in 

several medical imaging applications. This work aims to 

enhance the accuracy and effectiveness of cervical cancer 

detection by implementing and evaluating a TL and feature 
fusion CNN method designed in particular for classifying the 

Herlev dataset. 

3. Materials and Methods  
The proposed methodology introduces a novel method for 

classifying cervical cancer by leveraging TL and a VKFF-

CNN. TL is employed to tackle the issue of insufficient 

annotated data and high computational demands by utilizing 
pre-trained models to enhance feature extraction capabilities. 

VKFF-CNN further refines this process by integrating 

features extracted from multiple convolutional kernels, 

allowing the model to capture both low-level and high-level 

patterns within cervical cell images.  

This multi-faceted feature extraction enables a more 

nuanced understanding of the images, which is crucial for 

accurate classification.The methodology involves 

preprocessing and augmenting images from the Herlev dataset 

before feeding them into the VKFF-CNN classifier. In this 

study, we allocated 80% of the images for training and used 
the remaining 20% to test the model’s performance. The 

classifier’s efficiency is then determined using metrics such as 

accuracy, precision, recall, and F1 score. This approach is 

chosen for effectively combining diverse features and 

leveraging existing knowledge from pre-trained models, 

significantly improving classification accuracy and robustness 

in detecting cervical cancer. The process flow of the VKFF-

CNN classification scheme is shown in Figure 2. 

 

 
Fig. 3 Sample images from the dataset 
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3.1. Dataset 

The Herlev Pap smear database utilized in this study was 

developed by Herlev University Hospital, which is publicly 

accessible online [25]. The database comprises 917 cell 

images organized into six major groups. The superficial and 

intermediate squamous epithelia are normal cells, while the 
other groups are malignant. The cellular types vary from 

normal to abnormal, with carcinoma in situ representing the 

most advanced pathological condition. Figure 3 depicts 

images from the dataset highlighting the three dysplastic cell 

stages. Unlike severe dysplasia, moderate dysplastic cells tend 

to regress without progressing to malignancy. Dysplastic cells 

frequently feature larger, darker nuclei that cluster together, 

whereas severe dysplasia is defined by enlarged, granular, and 

irregularly shaped nuclei [26]. 

These traits form the basis for dividing cervical cells into 

six categories for analysis. Figure 4 displays the distribution 
of different image categories. Figure 5 shows the distribution 

of normal and malignant cells present in the dataset. 

 

 
Fig. 4 Count distribution of images

 

Fig. 5 Distribution of normal vs malignant cells 

3.2. Preprocessing and Augmentation 

Preprocessing refers to a series of techniques strategically 

designed to enhance the quality of images and assure 

consistency across the dataset. First, in order to maintain 

consistency and increase computational performance, images 

are resized and normalized. A data augmentation technique 

was employed utilizing the ImageDataGenerator class in 

Keras due to the dataset’s limited image size and imbalanced 
distribution of images across classes [27]. The augmentation 

process involves using a series of modifications to artificially 

expand the dataset and improve the generalization capabilities 

of the model. The aforementioned transformations include 

geometric operations such as rotation, scaling, and flipping, 

which allow the model to preserve its structural integrity 

against spatial distortions. For instance, rotating images by 

random angles helps the model become invariant to cell 

orientation while scaling and zooming mimic different cell 

sizes and magnifications.  

Flipping, both horizontally and vertically, introduces 
additional variations in cell appearance, and brightness and 

contrast adjustments help the model adapt to different staining 

and lighting conditions. Adding noise and applying elastic 

transformations make the model more robust to image 

acquisition imperfections and biological tissues’ elastic 

nature. By employing preprocessing and augmentation 

techniques, the model is trained on data of exceptional quality 

and diversity, improving its accuracy and reliability in 

classifying cervical cancer from Pap smear images. 
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Fig. 6 Basic architecture of CNN 

 

3.3. Model Development 

3.3.1. Convolutional Neural Network 

CNNs are a specific category of DL models suitable for 

analyzing imaging data [28]. The architecture of a CNN 

typically consists of several key layers, as shown in Figure 6. 

CNNs employ convolutional layers to automatically and 

effectively acquire spatial information hierarchies from input 
images. 

The fundamental component of a CNN is the 

convolutional layer, which employs a set of learnable filters to 

the input image. Mathematically, the convolution operation 

for a single output channel is expressed as in Equation (1). 

    𝑦𝑖,𝑗 = ∑ ∑ 𝑤𝑚,𝑛
𝑁
𝑛=1

𝑀
𝑚=1 . 𝑥𝑖+𝑚,𝑗+𝑛 + 𝑏                (1) 

Where 𝑦𝑖,𝑗 is the output value at position (𝑖, 𝑗), 𝑤𝑚,𝑛 

represents the filter weights, 𝑥𝑖+𝑚,𝑗+𝑛 denotes the input image 

values, 𝑏 is the bias term, and 𝑀 and 𝑁 represents the filter 

dimensions. 

Following the convolutional layers, CNNs often 

incorporate pooling layers, which down-sample the spatial 
dimensions of the feature maps to lessen computational 

complexity and extract dominant features. For instance, max 

pooling is expressed as in Equation (2). 

              𝑦𝑖,𝑗 = 𝑚𝑎𝑥𝑚,𝑛(𝑥𝑖+𝑚,𝑗+𝑛)                            (2) 

Where the maximum value is taken from a local region of 

size 𝑚 × 𝑛 in the input feature map. 

The last stages of a CNN often involve fully connected 

(dense) layers, which aggregate the features learned by the 

convolutional and pooling layers to generate class scores. If 𝑓 

is the output from the previous layer, the output of a fully 

connected layer is calculated according to Equation (3). 

                  𝑦𝑘 = ∑ 𝑤𝑖,𝑘 . 𝑓𝑖
𝑁
𝑖=1 + 𝑏𝑘                            (3) 

3.3.2. Transfer Learning and MobileNet V2 
Transfer learning is a potent method in DL that utilizes 

the knowledge acquired from a previously trained model on a 

similar task to enhance performance on an entirely novel but 

interconnected task. In general, the process consists of two 

primary phases [29].  

 

Initially, a base model, commonly known as the pre-

trained model, is trained on an extensive dataset for a specific 

goal. This model learns to extract a rich set of features broadly 

applicable across several applications. In the second stage, the 

pre-trained model’s learned features are assigned to an 
alternate target network and then fine-tuned on a more limited, 

task-specific dataset. This fine-tuning process involves 

modifying the base network’s architecture, typically by 

adding task-specific layers or replacing some of its 

components, to modify it to the current task being performed.  

 

For instance, the proposed study’s base network is 

MobileNetV2, a lightweight deep-learning architecture 

designed for embedded and mobile devices [30]. Initial 

training of MobileNetV2 is conducted on a vast dataset, such 

as ImageNet, to acquire hierarchical features that effectively 

capture a diverse array of visual patterns. MobileNetV2 
employs depthwise separable convolutions. In this module, a 

compressed representation with low dimensions is initially 

expanded to a higher dimension and then processed by a 

lightweight depth-wise convolution, as shown in Figure 7.  

This step filters the data using one filter per input channel, 

enabling efficient feature extraction. The high-dimensional 

features are then remapped back to a low-dimensional space 

through a linear convolution, ensuring that the complexity of 

the network is kept manageable while still capturing important 

information. 
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Fig. 7 MobileNetV2 with inverted residuals 

 

One of the standout features of MobileNetV2 is the 

introduction of inverted residuals with linear bottlenecks. 

These inverted residuals consist of a lightweight depth-wise 

separable convolution followed by a linear layer. Using the 

linear bottleneck at the end of the residual block ensures that 

feature information is preserved without introducing 
additional non-linearities, further improving the network’s 

overall efficiency. 

In traditional convolutional layers, the computation of 

output is defined as in Eq. (4). 

                     𝑦𝑖 = (𝑊 ∗ 𝑋) + 𝑏                                 (4) 

where 𝑊 represents the weights, 𝑋 is the input feature 

map. MobileNetV2 replaces this traditional structure with 

depth-wise and pointwise convolution. Depth-wise 

convolution (𝑌𝑑) assigns one filter to each input channel 
(depth), as shown in Figure 8, whereas the pointwise 

convolution (𝑌𝑝) utilizes a 1x1 convolution to merge these 

channels, as shown in Equations (5) and (6).  

 

 
Fig. 8 Depth-wise separable convolution 
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Fig. 9 MobileNet V2 Architecture

                        𝑌𝑑 = 𝑊𝑑 ∗ 𝑋                                     (5) 

                    𝑌𝑝 = 𝑊𝑝 ∗ 𝑌𝑑                                    (6) 

This reduces the computational cost from 𝑂(𝐷𝑘
2. 𝑀. 𝑁) to 

𝑂(𝐷𝑘
2. 𝑀 + 𝑀. 𝑁). Kernel dimension 𝐷𝑘, input channel counts 

𝑀 and 𝑁 are user-defined. MobileNetV2 utilizes two distinct 

types of bottleneck blocks: one stridden at 1 and the other 

stridden at 2, as shown in Figure 9. In the network, the block 

with stride 1 preserves the spatial dimensions of the input. In 

contrast, the block with stride 2 decreases the spatial 

dimensions by downsampling, controlling the resolution of 

feature maps as they progress. 

The transfer learning process is most effective when the 

features learned from the base task are relevant and applicable 
to the target task, thus allowing the model to leverage 

previously acquired knowledge. In the context of cervical 

cancer classification, fine-tuning MobileNetV2 involves 

adjusting its pre-trained weights on the Herlev dataset and 

adapting it to the specific features of cervical cell images. This 

approach benefits from the rich feature representations learned 

from the vast and diverse ImageNet dataset, which includes 

numerous classes and image types. The fine-tuning process is 

mathematically represented by updating the weights 𝑊 using 

backpropagation as shown in Eq. (7), where 𝜂 is the learning 

rate, and 𝐿 is the loss function. 

               𝑊𝑛𝑒𝑤 = 𝑊𝑜𝑙𝑑 − 𝜂
𝜕𝐿

𝜕𝑊
                                   (7) 

MobileNetV2’s small model size facilitates its use in 

scenarios where computational resources and storage are 

limited. Applying TL with MobileNetV2 can significantly 

improve classification accuracy, especially when combined 

with data augmentation techniques. The pre-trained model 

provides a strong starting point, enabling the model to 

converge quickly even with a relatively small number of 

training images from the Herlev dataset. Leveraging TL with 
MobileNetV2 in cervical cancer classification can enhance 

early detection and diagnosis, potentially improving patient 

outcomes and contributing to more effective screening 

programs. 
 

3.3.3. Proposed Variable Kernel Feature Fusion-CNN 

Introducing a novel VKFF-CNN for cervical cancer 
classification offers significant improvements in capturing 

diverse and detailed features from the Herlev Pap Smear 

dataset. This innovative approach involves performing 

convolution operations using multiple kernel sizes, 

specifically 3x3, 4x4, and 5x5, in parallel. The VKFF-CNN 

architecture leverages the strength of these variable kernel 

sizes to learn and fuse features across different resolutions. 

The 3x3 kernel is adept at capturing fine details and local 

textures, while the larger 4x4 and 5x5 kernels can capture 

broader spatial patterns and structures. By combining these 

features, the model gains the ability to recognize patterns at 
multiple scales, improving its ability to differentiate between 

normal and abnormal cervical cells. This parallel 

convolutional strategy, described in Eq. (8), enhances the 

network’s ability to generalize across a wide range of cervical 

cell image variations. 
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Fig. 10 Proposed VKFF-CNN Model 
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𝑋3,3 = 𝐶𝑜𝑛𝑣3,3(𝑋) 

                           𝑋4,4 = 𝐶𝑜𝑛𝑣4,4(𝑋) 

                      𝑋5,5 = 𝐶𝑜𝑛𝑣5,5(𝑋)                              (8) 

The convolution operation for each kernel size is denoted 

as 𝐶𝑜𝑛𝑣𝑘,𝑘, where 𝑘 represents the dimensions of the 

convolutional filter. An integrated feature map is obtained by 

concatenating the outputs of parallel convolutional layers 

along the channel dimension, therefore incorporating 

information from different kernel sizes. This fusion 

mechanism, as represented in Equation (9), enhances the 

network’s ability to capture both intricate details and extensive 
contextual information. 

     𝑋𝑓𝑢𝑠𝑒𝑑 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑋3,3, 𝑋4,4, 𝑋5,5)                        (9) 

Where the concatenation operation, denoted as 𝐶𝑜𝑛𝑐𝑎𝑡, 

combines the feature maps from the 33 × 3, 4 × 4 and 5 × 5 

convolutions into a single comprehensive feature map. Given 

that each convolutional layer outputs 𝐶′ channels, the 

concatenated feature map will have 3 × 𝐶′ channels in total. 

This results in a fused feature map 𝑋𝑓𝑢𝑠𝑒𝑑 with dimensions 

𝐻 × 𝑊 × (3𝐶′), where 𝐻 and 𝑊 denote the height and width 

of the feature map, accordingly. 

After the feature maps are concatenated, the next steps 

involve flattening, batch normalization, and the application of 

a softmax activation function. The flattening layer converts 

the multi-dimensional feature maps into a 1-D vector, making 

the data compatible with fully connected layers, which are 

essential for classification tasks. Once the data is flattened, 
batch normalization is applied to standardize the input to the 

next layer by normalizing activations within mini-batches. 

This process reduces internal covariate shift by subtracting the 

mean and dividing by the standard deviation of activations 

within each mini-batch, ensuring that the inputs to subsequent 

layers are on a consistent scale throughout training. This step 

also improves the stability and convergence speed of the 

neural network. 

Two trainable parameters, scale (𝛾) and shift (𝛽), are 

introduced by batch normalization for each feature map. These 

parameters allow the network to adjust the normalized values 
adaptively, enabling more flexible learning of the optimal data 

representation. By scaling and shifting the activations, the 

network gains more control over how features are represented 

and adjusted during training. Finally, the softmax activation 

function is employed to the output logits, transforming them 

into class probabilities. This final step allows the VKFF-CNN 

to output the likelihood of each class, facilitating accurate 

classification and decision-making. The VKFF-CNN model 

depicted in Figure 10 effectively combines multi-scale feature 

learning with robust and stable classification capabilities. 

3.4. Hardware and Software Setup 

The study utilized a powerful computing system, 

including an Intel Core i7 processor, NVIDIA GeForce GTX 

1080Ti GPU, and 32GB of RAM, to implement the VKFF-

CNN model for cervical cancer classification. Model 

development was carried out using the Keras library and 
executed in Python. Additionally, Google Colab was utilized 

for model experimentation and testing. Hyperparameters were 

carefully selected to optimize the model’s performance. The 

specifics of these hyperparameter settings are detailed in Table 

1, highlighting their importance in configuring the model for 

effective training and accurate classification. 

Table 1. Hyperparameter specifications 

Hyperparameters Specifications 

Optimizer Adam 

Epochs 100 

Learning Rate 0.00001 

Loss Function Categorical Cross-Entropy 

Activation Function ReLU, Softmax 

 

4. Results and Discussion 
   Accuracy plots illustrate the proportion of correctly 

classified instances among the total instances in each training 

epoch. An increasing trend in the accuracy plot typically 

indicates that the model improves its ability to make correct 

predictions. Initially, the training accuracy rapidly increases, 

reaching around 90% within the first 10 epochs, as shown in 

Figure 11, indicating the model’s ability to quickly learn 
features from the training data.  

 
Fig. 11 Accuracy plot 

Although there are minor variations in the training 

accuracy during the training process, it eventually converges 

near 98%, showcasing the model’s high effectiveness on the 

training data. Validation accuracy increases steadily at the 

beginning but experiences several sharp drops around epoch 
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65, indicating potential overfitting or fluctuations in how the 

model generalizes to unseen data. Nonetheless, the validation 

accuracy stabilizes above 95%, suggesting the overall 

effectiveness of the feature fusion approach and transfer 

learning model in classifying cervical cancer images. 

However, the drop in validation accuracy could indicate 
sensitivity to certain subsets of validation data, potentially 

linked to noise or hard-to-classify samples. Loss plots depict 

the error or cost associated with the model’s predictions. A 

declining trend in the loss plot implies that the model is 

learning effectively, as the error between predictions and true 

values is reducing. The training loss starts high, around 1.5, 

but quickly decreases to near zero by epoch 20, suggesting that 

the model is learning effectively and minimizing errors in the 

training data. A minor increase in training loss after epoch 50 

indicates a slight disturbance in the optimization process but 

stabilizes soon after. 

 
Fig. 12 Loss plot 

In contrast, the validation loss begins much higher, 

exceeding 8 at epoch 4, as shown in Figure 12. This significant 

discrepancy between training and validation loss suggests 

initial difficulty generalizing to unseen data. As training 

progresses, the validation loss decreases but remains higher 

than the training loss, which may indicate overfitting. Notably, 
there is a spike in validation loss at epoch 65, corresponding 

to the dip in validation accuracy. Despite this, the validation 

loss eventually decreases, stabilizing at a low level by epoch 

80. These plots suggest that the VKFF-CNN learned 

efficiently and avoided overfitting, maintaining a balance 

between training accuracy and generalization. The four main 

metrics are used to comprehensively assess the effectiveness 

of the proposed framework. These metrics, derived from the 

notions of False Negative (FN), False Positive (FP), True 

Positive (TP), and True Negative (TN), are crucial for 

evaluating the performance of the model. The mathematical 

expressions for these performance parameters are provided in 
Eq. (10), (11), (12), and (13). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                         (10) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                         (11) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                         (12) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                          (13) 

The VKFF-CNN demonstrated outstanding performance 

over multiple training epochs, with 98.03% average accuracy, 

indicating a high level of precision in differentiating between 

normal and abnormal cervical cells. The VKFF-CNN model 
attained mean precision of 97.83%, recall of 97.11%, and F1 

score of 98.23%, as shown in Figure 13. High values across 

all these metrics demonstrate the model’s resilience and 

efficacy in accurately categorizing cervical cell images.

 
Fig. 13 Performance analysis of the proposed framework
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Fig. 14 Confusion matrix

The confusion matrix illustrated in Figure 14 further 
elucidates that the VKFF-CNN has a high true positive rate 

across all classes, with very few misclassifications. Low 

counts of FP and FN emphasize recall and precision, 

confirming that it rarely confuses one class for another. 

Achieving this level of accuracy is essential in medical 

diagnostics, where the consequences of misclassification can 

have serious implications for patient outcomes. 

The analysis of predicted images showcases the model’s 
ability to correctly classify cervical cell images. Visual 

inspection of these images reveals that the VKFF-CNN 

effectively distinguishes between normal and abnormal cells, 

accurately identifying various classes of cervical cells, as 

illustrated in Figure 15. The correct classification of these 

images underlines the model’s potential utility in practical 

medical environments. 

 
Fig. 15 Predictions of proposed VKFF-CNN classifier 
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Fig. 16 Performance comparison 

The performance of VKFF-CNN significantly 
outperforms SVM [31] and KNN [32], as well as conventional 

CNN and the pre-trained MobileNetV2 model, as depicted in 

Figure 16. The VKFF-CNN attained an average accuracy of 

98.03%, surpassing the SVM and KNN, which typically 

exhibit lower accuracy due to their limited capacity to identify 

complex trends in high-dimensional data. Precision (97.83%) 

and recall (97.11%) also exceed those of the SVM and KNN, 

which often struggle with imbalanced datasets and intricate 

feature spaces. Compared to a standard CNN, the VKFF-

CNN’s innovative use of multiple kernel sizes enhances 

feature extraction, leading to a higher F1 score of 98.23% 

versus the conventional CNN’s typically lower performance 
metrics. When benchmarked against MobileNetV2, the 

VKFF-CNN shows a slight edge in accuracy and precision 

because of specialized architecture that captures multi-scale 

features more effectively. MobileNetV2, while efficient and 

powerful, does not incorporate the same level of feature 

fusion, resulting in a marginally lower classification 

performance. The VKFF-CNN’s superior performance across 

multiple metrics highlights its robustness and effectiveness in 

cervical cancer classification. 

By integrating advanced CNN architecture with TL 

techniques, the VKFF-CNN leverages pre-trained models’ 
capabilities, further enhancing its performance on the Herlev 

Pap Smear dataset. VKFF-CNN demonstrates significant 

promise for enhancing cervical cancer classification. Its high 

accuracy and robust performance metrics underscore its 

potential to support clinical decision-making and improve 

early detection of cervical cancer.  

5. Conclusion 
A malignancy originating from the cells lining the cervix, 

cervical cancer, represents a substantial health risk due to its 

ability for early detection and treatment through screening 

methods. This study introduced the VKFF-CNN architecture 

for cervical cancer categorization using the Herlev Pap Smear 

dataset. This model employs multi-scale feature extraction by 

incorporating convolutional layers with 3x3, 4x4, and 5x5 
kernels, enabling it to capture diverse features and enhance 

classification performance. The VKFF-CNN demonstrated 

outstanding performance measures, achieving an average 

accuracy of 98.03%, precision of 97.83%, recall of 97.11%, 

and an F1 score of 98.23%. These outcomes significantly 

surpass those of SVM, KNN, traditional CNNs, and the pre-

trained MobileNetV2 model. The robustness and accuracy of 

the VKFF-CNN were further validated through confusion 

matrix analysis and visual inspection of predicted images. 

Incorporating batch normalization and softmax activation 

functions contributed to the model’s stability and the precision 

of its probabilistic classifications. These results indicate that 
VKFF-CNN is a robust automated cervical cancer screening 

tool, showing considerable advancements over existing 

methodologies. Future research may explore further 

optimizations of the VKFF-CNN model, the application of 

additional data augmentation techniques, and the validation of 

its efficacy on larger datasets to ensure its effectiveness in 

real-world clinical settings. 
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