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Abstract - A chronic illness, Diabetes Mellitus (DM), occurs due to the inability of the pancreas to produce insulin or to utilize 

the insulin it produces effectively. People with diabetes have increased risks of developing various life-threatening conditions, 

resulting in reduced quality of life and increased mortality. Diabetes causes long-term impairment and degradation of many body 

parts. Early intervention and treatment of diabetes can prevent extreme outcomes such as amputation. Thermography is a non-

invasive technique commonly used to detect variations in temperature distribution in the foot region. So, in this study, a hybrid 

Deep Learning (DL) model incorporating a pretrained inception V3 with custom layers of attention and residual blocks is 

proposed to detect diabetes from foot plantar thermographic images efficiently. Thermography images of the foot from the foot 

plantar dataset are utilized in this study with various preprocessing and data augmentation techniques. The proposed model 
exhibits superior performance when compared to state-of-the-art methods with 95.71% accuracy, 97.85% precision, 93.83% 

recall, and 95.80 % F1score. In addition to standard evaluation metrics, the performance of the hybrid DL models is measured 

with Cohen’s kappa and the Area under the Curve (AUC). The outcomes indicate the model’s potential in real-time clinical 

application, resulting in more effective diabetic detection and management. 

Keywords - Diabetes, Thermography, Deep Learning, InceptionV3, Attention mechanism, Residual block.  

 

1. Introduction 
Diabetes is a serious threat to global health that transcends 

neither socioeconomic rank nor nationwide boundaries [1]. 

Worldwide, diabetes is one of the top ten reasons for death in 

adults and was assessed to have attributed to 6.2 million deaths 
due to diabetes and associated complications in 2023. DM is 

a chronic disease characterized by hyperglycemia. American 

Diabetes Association states that prolonged hyperglycemia 

accompanies long-term impairment, dysfunction, and 

deterioration of different body parts, specifically the eyes, 

kidneys, blood vessels, motor nerves, heart, and foot [2]. DM 

is a persistent illness that develops due to the raised levels of 

glucose in the bloodstream since the human body cannot 

generate any or very little amount of the insulin hormone or 

utilize insulin efficiently. Insulin deficit, if left unchecked over 

a period of time, could harm many of the body’s organs, 
resulting in disabling and life-threatening health problems. 

The major forms of diabetes are type 1, type 2 and gestational 

diabetes mellitus [3]. 

In type 1 diabetes, the body produces very little or no 

insulin due to the autoimmune response of the body that 

strikes the insulin-secreting beta (β) cells of the pancreas. 

Hence, people with type 1 diabetes must administer insulin 

injections daily to maintain a glucose level in the appropriate 

range [4].  
 

Globally, type 2 diabetes is the most prevalent form of 

diabetes, accounting for around 90% of overall diabetes. 

Primarily, hyperglycaemia is an outcome of the incapability 

of the body’s cells to react entirely to insulin, a condition 

called ‘insulin resistance’. Throughout this situation, the 

hormone is ineffective and eventually causes an increase in 

insulin secretion. When unrecognized for an extended period 

of time, problems such as diabetic retinopathy or Diabetic 

Foot Ulcers (DFU) that remain unhealed may be present at 

analysis [5]. Gestational Diabetes Mellitus (GDM) or 

Diabetes in Pregnancy (DIP) is detected first during pregnancy 
and habitually vanishes after giving birth. GDM can arise 

anytime during pregnancy [6].  
 

Diabetic foot is a devastating complication, and it 

comprises lesions in the deeper-lying tissues related to 
neurological illnesses and Peripheral Arterial Disease (PAD) 

in the lower limbs in patients with diabetes. The loss of nerve 

function, Diabetic Neuropathy (DN) and loss of circulation 

cause serious foot problems like DFU, gangrene, charcot 

arthropathy and amputation [7]. Figure 1 illustrates the healthy 

and diabetic foot.

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1 Illustration of healthy and diabetes foot 

Using foot plantar thermography, diabetes can be 

detected through the temperature disparities in the plantar 

surface. Thermography is the most common non-invasive 
method providing cost-effective insights into foot-related 

issues and circulation problems. By integrating artificial 

intelligence, abnormal thermal images indicating diabetic 

complications can be identified, leading to early interventions 

and reducing the risk of amputation [8]. So, in this study, a 

hybrid model is suggested for effectively detecting diabetes 

using foot plantar thermograph images. The major 

contributions of the study are given below: 

 To develop a hybrid model for the efficient detection of 

diabetes using foot plantar thermograph images. 

 To integrate the inception V3 model with custom 
attention and residual block layers. 

 To compare the effectiveness of the suggested model with 

existing models. 

 To evaluate the efficiency through evaluation metrics like 

accuracy, precision, recall, and F1-score. 

The remaining portion of the paper is structured as 

follows: Section 2 provides a comprehensive literature review 

emphasizing the need for the current research. Section 3 

details the methodology with a hybrid model architecture for 

effectively detecting diabetes. Section 4 presents the results 

and discussion, highlighting the potential of the suggested 
model. Section 5 concludes the paper by summarizing the key 

contributions. 

2. Related Works 
Sulayman et al. [9] developed a Convolutional Neural 

Network (CNN) to detect and classify the healthy and diabetic 

from foot plantar thermal images. The authors incorporated 

the Transfer Learning (TL) model to compensate for the small 
dataset problem and achieved enhanced training speed. 

Different transfer learning models, such as ResNet-50, 

VGG16, and EffecientNetB3, were used with Adam and the 

SGD optimizer for comparison. The model provided an 

accuracy of 90.5 % when VGG16 was coupled with the Adam 

optimizer. The study faced challenges due to the cost of 

thermal cameras and a lack of programming skills to create a 
website based on the algorithm. Verma [10] proposed a DL 

model for detecting DFU using thermal images. Thermal 

images from open source were utilized for the study, and these 

images were preprocessed to generate a new dataset by 

employing watershed segmentation and canny edge detection. 

ResNet50 and EfficientNetB0 models were employed on both 

datasets, and EfficientNetB0 achieved the highest accuracy, 

surpassing ResNet50. The study’s main limitation is the 

model’s applicability in low-resource healthcare settings with 

limited processing power. 

Khosa et al. [11] suggested a custom CNN model along 
with ResNet50 and DenseNet121. Various machine learning 

models are evaluated using a publicly available thermographic 

dataset to detect DFU from plantar temperature changes. 

Among the machine learning models, SVM outperformed 

others. The proposed custom CNN model achieved greater 

efficiency with an accuracy of 93% when combining both 

image and patch-level data. However, comparing the 

suggested model with conventional models regarding 

thermogram data was challenging. Torres et al. [12] focused 

on developing a technological system for detecting diabetes 

from foot issues by utilizing tools that measure temperature 

variation, electrical impedance and macule identification for 
healthy and diabetic patients. The outcomes highlighted that 

the diabetes patients indicate a temperature difference of 2°C 

and impedance in the range of 5 kHz to 22 kHz. Temperature 

measurement under an uncontrolled environment using 

smartphones included limitations regarding the 

standardization of the equipment and consistent sensor 

calibration. 

Arteaga-Marrero et al. [13] employed an extended and 

more generalizable dataset by incorporating a publicly 

available INAOE dataset and a recently released STANDUP. 
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Features were extracted using Random Forest (RF), lasso and 

two variational deep-learning techniques. SVM was used to 

classify healthy and diabetic subjects. The optimized SVM 

with the lasso method excelled with the most relevant feature 

associated with the Medial Calcaneal Artery (MCA) and 

Lateral Plantar Artery (LPA). However, the study was limited 
by the consequences of avoiding uniform preprocessing. Cao 

et al. [14] proposed a Deep Neural Network (DNN), the 

Plantar Foot Segmentation Network (PFSNet), for extracting 

the foot contours effectively. The model combined a feature 

extraction and a CNN module with an attention mechanism 

incorporating a feature fusion module. The PFSNet 

outperformed state-of-the-art methods for single-channel 

thermal images with an accuracy of 95.4% as measured by the 

Dice Similarity Coefficient (DSC). The study possessed 

challenges due to the complications associated with the cold 

immersion process in thermography. 

Yogapriya et al. [15] suggested a Diabetic Foot Infection 
Network (DFINET), a CNN model with 22 layers. The model 

incorporated parallel convolution filters to extract important 

features. The DFINET demonstrated a higher accuracy of 

91.98% in classifying the healthy and DFU images. The study 

noted challenges with nonstandard images, dataset imbalance 

and varying skin textures. Cruz-Vega et al. [16] classified 

different thermal patterns of patients with DM. The study 

compared different machine learning models with deep 

learning structures and introduced the Diabetic Foot 

Thermograms Network (DFTNet) to detect diabetic foot 

effectively. The model outperformed GoogleNet with an 
accuracy of 94.53%. 

Khandakar et al. [17] designed a labelled dataset utilizing 

k-mean clustering to cluster the severity of the diabetic foot. 

Feature engineering was done using VGG19 with image 

enhancement techniques like Adaptive Histogram 

Equalization (AHE), which showed an accuracy of 95.08%. A 

stacking classifier is proposed combining Gradient Boost 

(GB), XGBoost, and RF classifiers with an accuracy of 94.47 

%. The feasibility of image enhancement techniques in real-

world applications limited the study. Anaya-Isaza and 

Zequera-Diaz [18] developed the Thermal Change Index 

(TCI), a classification index to increase accuracy. The study 

introduced ResNet50v2 deep CNN, which was improved by 

applying twelve data augmentation techniques, including 

dimensionality reduction methods. The model provided an 
accuracy of 82.39% with TL from the thermographic database. 

However, the new coefficient stratification, which 

corresponded to the severity of the pathology, was not 

verified.  

A notable research gap acknowledged from the above 

studies is the lack of a comprehensive framework that 

integrates image enhancement techniques, data augmentation, 

and multi-modal data (such as thermal images, electrical 

impedance, and temperature variation) for the severity 

classification of DFUs. While several studies have explored 

different aspects, such as applying transfer learning, using 

various deep learning models, or introducing new indices like 
the TCI, none have systematically combined these approaches 

to enhance the robustness and generalizability of the models 

across diverse clinical settings and heterogeneous datasets. 

Furthermore, there is a need for validation of the proposed 

models and indices in real-world clinical environments, 

particularly in low-resource settings where processing power 

and access to standardized equipment may be limited. 

3. Materials and Methods  
Efficient detection of diabetes from foot plantar 

thermograph images is crucial for early diagnosis and 

prevention of severe complications like diabetic foot ulcers 

and amputations. So, in this study, a hybrid model 

incorporating a modified inceptionV3 model enhanced with 

attention and residual block is proposed. Initially, the 

thermographic image data is preprocessed and data augmented 

to input into the hybrid deep learning model. The model is 

trained to efficiently and accurately classify diabetes and 

healthy cases through a sigmoid output layer. The schematic 
block of the suggested model is illustrated in Figure 2. 

 

 

 

 

 

 

 
Fig. 2 Schematic block of the suggested model 
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3.1. Dataset 

Foot plantar thermography, a non-invasive thermographic 

technique, is used for this study since it is crucial for the early 

detection of diabetes and related complications. Foot plantar 

thermographic images are selected for this study because of 

their capability to detect abnormalities in tissue health and 
blood flow by capturing the temperature distribution across 

the foot. In the case of diabetic patients, the temperature 

distribution across the plantar region changes due to the 

impairment in the tissues and nerves, and thermography can 

easily detect it even before the symptoms occur. The images 

have been collected from the Kaggle Repository [19] and are 

stored in the Foot Plantar Dataset for the early intervention of 

diabetes. The dataset comprises 1866 thermal images, where 

890 images of ‘Healthy’ stands for healthy controls, labelled 

as ‘0’ and 976 images of ‘Diabetic’ stands for diabetic foot, 

labelled as ‘1’. For training and testing, 1586 images and 280 

images were used. Sample images from the foot plantar 
thermograph dataset are illustrated in Figure 3. The 

distribution of diabetic/ healthy classes is represented by 

Figure 4, indicating that the class distribution of diabetes and 

healthy images is relatively balanced. 

 
Fig. 3 Sample images from foot plantar thermograph dataset: healthy 

and diabetic 

 
Fig. 4 Class distribution  

3.2. Preprocessing and Data Augmentation  

The images experienced a series of preprocessing and 

augmentation steps, following the dataset collection phase, to 
prepare them for training. Resizing is done to ensure 

uniformity across the images in the dataset. All the 

thermographic images are resized into 224 x 224 pixels. Color 

channel adjustment is implemented for converting the BGR 

color format to RGB color format, ensuring the efficient 

interpretation of the model for accurate feature extraction. The 

unwanted background information in the foot plantar 

thermography images introduces noise into the training 
process.  

To avoid this, the Region of Interest (ROI) is recognized 

and cropped from each image based on the extreme points 

detected from the contour of the image. Initially, the image is 

converted to grayscale and is then blurred using a Gaussian 

filter to reduce noise and smoothen the image. The Gaussian 

function is expressed by Equation (1). 

                   𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2 𝑒
−

𝑥2+𝑦2

2𝜎2                       (1) 

Where 𝜎 denotes the degree of blurring. Thresholding is 

performed after blurring to create the binary image as 

represented by Equation (2). 

  𝑇(𝑥, 𝑦) = {
255   𝑖𝑓 𝐼(𝑥, 𝑦) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0       𝑖𝑓 𝐼(𝑥, 𝑦) ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
               (2) 

Where, 𝐼(𝑥, 𝑦) is the pixel intensity at (x, y) coordinates. 

The binary image highlights the ROI; erosion and dilation 
operations were applied for further refinements. The erosion 

process removes small white regions with noises, while 

dilation enlarges the remaining white noise regions, making 

the ROI more distinct. Now, the contour is selected by joining 

the points with the same colour or intensity along the 

boundary. Extreme points were determined by analyzing the 

contour coordinates, and the ROI was cropped from the 

original image based on these extreme points. As shown in 

Figure 5, this cropped image is then resized to ensure 

uniformity. 

 
Fig. 5 Foot plantar thermography image before and after cropping 

The image pixel values are scaled to a range of [0,1] by 

the normalization process as given by Equation (3). 

                     𝐼𝑛𝑜𝑟𝑚(𝑥, 𝑦) =
𝐼(𝑥,𝑦)

255
                                (3) 
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Where 𝐼𝑛𝑜𝑟𝑚(𝑥, 𝑦) is the normalized pixel value. Data 

augmentation is also vital since it enlarges the dataset by 

applying various transformations.  

In this study, transformations such as rotating, shifting, 

shearing, adjusting brightness, and flipping horizontally and 
vertically are implemented to get the augmented data for 

increasing the dataset’s diversity and generalizability and 

avoiding the risk of overfitting. 

3.3. Proposed Hybrid Model 

Figure 6 represents the block diagram of the hybrid model 

architecture for efficiently detecting diabetes from foot plantar 

thermography images. The input layer consisting of 

preprocessed and data augmented images of dimension 224 x 

224 x 3 is given to the inceptionV3 model, the backbone of 

the hybrid model.  

Then, an attention mechanism attains an attention score 

for the important regions in the feature map and is provided to 
the residual block, which helps refine important extracted 

features. Then, the model is connected to a fully connected 

layer and a sigmoid output layer to classify healthy/ diabetic 

cases from the thermography images. 

3.3.1. InceptionV3 

A CNN architecture, InceptionV3 is recognized for its 

efficient design and high performance in image classification 

tasks [20]. The InceptionV3 network uses several inception 

modules, each comprising multiple convolutional layers with 

different kernel sizes running in parallel, as shown in Figure 
7. This lets the network capture features at multiple scales. The 

pretrained InceptionV3 model, a transfer learning framework 

that is trained on ImageNet datasets, is employed and has good 

performance on a small dataset. An inception module is 

mathematically represented by Equation (4). 

𝑂𝑢𝑡𝑝𝑢𝑡𝐶𝑜𝑛𝑐𝑎𝑡(𝐶𝑜𝑛𝑣1×1(𝑋), 𝐶𝑜𝑛𝑣3×3(𝑋), 𝐶𝑜𝑛𝑣5×5(𝑋), 𝑀𝑎𝑥𝑃𝑜𝑜𝑙3×3(𝑋)                                                                                                          

(4)    

Where 𝐶𝑜𝑛𝑐𝑎𝑡 is the concatenation of feature maps, 

𝐶𝑜𝑛𝑣𝑘×𝑘 denotes a convolution operation with a 𝑘 × 𝑘 kernel 

and 𝑀𝑎𝑥𝑃𝑜𝑜𝑙3×3 is a max-pooling operation with a 3×3 

window. The input X is processed in parallel through these 

operations, concatenating their outputs. To minimize 

computational complexity, inceptionV3 factorizes larger 

convolutions into smaller ones. This factorization decreases 

the computational cost and the number of parameters while 

maintaining the ability to capture complex patterns.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Block diagram of the proposed hybrid architecture 
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Fig. 7 Basic architecture of inception V3 

Batch normalization is used to regulate and accelerate the 

training process. It normalizes each input layer to have a mean 

of zero and a variance of one. For an input X with mini-batch 

mean 𝜇𝐵 and variance 𝜎𝐵
2, 

                      �̂� =
𝑋−𝜇𝐵

√𝜎𝐵
2+𝜖

                             (5) 

Where ϵ is a small constant to avoid division by zero, and 

the learnable parameters are given by Equation (6), 

                     𝑌 = 𝛾𝑋 + �̂�                          (6) 

Where γ and β are learnable parameters that allow the 

model to scale and shift the normalized output. InceptionV3 

includes auxiliary classifiers to provide additional gradient 

signals and regularization during training. The mathematical 

expression of auxiliary classifier loss is given by Equation (7), 

                   𝐿 = 𝐿𝑚𝑎𝑖𝑛 + 𝛼𝐿𝑎𝑢𝑥                         (7) 

Where total loss L is a weighted sum of the main loss 

𝐿𝑚𝑎𝑖𝑛  and the auxiliary loss 𝐿𝑎𝑢𝑥 and 𝛼 is a hyperparameter 

that determines the contribution of the auxiliary loss. The 

optimizer used by inceptionV3, which adjusts the learning rate 

for each parameter according to the magnitude of recent 

gradients, helps to stabilize the training process. For a 

parameter 𝜃 with a gradient 𝑔𝑡 at time step t, the optimizer 

update equation is given by Equation (8). 

𝐸[𝑔2]𝑡 = 𝜌𝐸[𝑔2]𝑡−1 + (1 − 𝜌)𝑔𝑡
2 

              𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝐸[𝑔2]𝑡+𝜖
𝑔𝑡                          (8) 

Where 𝜌 is the decay rate, η is the learning rate, and ϵ is a 

small constant. 

3.3.2. Convolutional Neural Network 

A common class of DNN used to analyze visual imagery 

is the CNN model, as shown in Figure 8. Unlike conventional 

methods that rely on matrix multiplication, CNN employs 

convolution, which involves a mathematical operation on two 

functions to create a third function that represents how one’s 

shape is altered by the other [21]. The convolved feature is 
obtained by applying a kernel /filter (3×3 matrix). This feature 

is given as an input to the next layer. Figure 9 represents the 

convolution operation. 

 
Fig. 8 Basic CNN architecture 
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Fig. 9 Basic convolution operation

The average pooling operation is done as a down-

sampling method by maintaining important information to 

reduce the spatial dimensions of the feature maps. The pooling 

operation is done by applying a filter over the feature map and 

taking the average of the elements within each patch covered 

by the filter. This average is used to represent the entire patch. 

The average pooling is visualized in Figure 10. 

Each input node is connected to the preceding output layer 

to form a fully connected network, as shown in Figure 11. 

Each neuron in this layer performs a linear transformation on 

the input vector using a weights matrix, ensuring that each 

input influences the corresponding output. 

 
Fig. 10 Visualization of average pooling operation 

 

 
Fig. 11 Fully connected layer 

 
Fig. 12 Activation curve of sigmoid function 
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Fig. 13 Process flow of suggested attention mechanism 

As shown in Figure 12, the sigmoid function is used as 

the output layer, producing input values in a range between 0 

and 1, making it suitable for classification tasks. At z = 0, 

when the curve crosses 0.5, the activation function’s rules are 

established. The function outputs 1 if the value is equal to or 

greater than 0.5 and 0 otherwise, providing a probabilistic 

interpretation of the outputs. 

3.4. Attention Mechanism 
The attention mechanism allows the model to emphasize 

the pertinent information of the input for achieving better 

accuracy in detecting diabetes from foot plantar thermography 

images [22]. The process flow of the suggested attention 

mechanism is given in Figure 13. 

X is the input feature map of shape (batch size, height, 

width, channels) from the previous layer. The weight of each 

feature is calculated using the weight matrix of the shape, W 

and bias, b. Attention scores are calculated by performing a 

linear transformation on X. For each position (i, j) in the 

feature map, the transformation is given by taking the dot 
product of W and X, then adding the bias function, 

                         𝐴𝑖𝑗 = 𝑋𝑖𝑗 ∙ 𝑊 + 𝑏                              (9) 

Finally, the attention score is calculated by applying the 

softmax operation to the transformed function 𝐴𝑖𝑗 as in 

Equation (10). 

                        𝑆𝑖𝑗 =
𝑒𝑥𝑝(𝐴𝑖𝑗)

∑ 𝑒𝑥𝑝(𝐴�́��́�)�́��́�
                                  (10) 

Now, the weighted feature map is computed by the 

element-wise multiplication of the attention score S with the 

X to obtain the attention output Y, as illustrated by Equation 

(11), which has the same shape as X. 

                            𝑌𝑖𝑗 = 𝑆𝑖𝑗 ∙ 𝑋𝑖𝑗                                 (11) 

3.5. Residual Block 

Residual block addresses the key challenges, such as 

vanishing gradient and degradation, for effectively training 
the suggested model [23]. By learning the residuals, the block 

refines the features extracted for the enhanced detection of 

healthy/ diabetic feet. The workflow of the proposed residual 

block is given in Figure 14. 

 

 

 

 

 

 

 

 

Fig. 14 Process flow of proposed residual block 
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The input, X, to the residual block is the output from the 

attention block. The block consists of two convolutional 

layers.  

Initially, the first convolution layer incorporates a 2D 

convolution operation with a filter size of 3×3 with specified 

stride and padding to preserve the spatial dimensions. The first 
convolutional layer is represented as Equation (12). 

                    𝑍1 = 𝐶𝑜𝑛𝑣2𝐷(𝑋, 𝑊1)                            (12) 

The output is normalized to obtain Equation (13). 

                          𝑍1̂ =
𝑍1−𝜇𝑏𝑎𝑡𝑐ℎ

√𝜎𝑏𝑎𝑡𝑐ℎ
2 +𝜖

                                  (13) 

This normalized output is then passed to a ReLU activation 

function as Equation (14). 

                   𝐴1 = 𝑅𝑒𝐿𝑈(𝑍1̂)                                  (14) 

Now, the second convolutional layer with the same filter 

dimension as the first layer is applied to the ReLU output with 

bias, as in Equation (15). 

                𝑍2 = 𝐶𝑜𝑛𝑣2𝐷(𝐴1, 𝑊2) + 𝑏1                      (15) 

The output 𝑍2 is normalized as,  

                             𝑍2̂ =
𝑍2−𝜇𝑏𝑎𝑡𝑐ℎ

√𝜎𝑏𝑎𝑡𝑐ℎ
2 +𝜖

                                (16) 

If the stride is not 1, to match the dimensions of the input, 

the shortcut path is initialized with a convolutional layer of 

1x1 as represented by Equation (17) and the normalization 

 �̂�𝑠ℎ𝑜𝑟𝑡𝑐𝑢𝑡  is applied if convolution initializes. 

𝑋𝑠ℎ𝑜𝑟𝑡𝑐𝑢𝑡 = 𝐶𝑜𝑛𝑣2𝐷(𝑋, 𝑊𝑠) + 𝑏𝑠                       (17) 

The output from the second convolutional layer is added to 

the shortcut path, where the output will be the original input X 

or the transformed input if convolution is applied.  

                   𝑌 = 𝑍2̂ +  �̂�𝑠ℎ𝑜𝑟𝑡𝑐𝑢𝑡                               (18) 

ReLU activation is applied to the summed output and 

passed into the next layer. Global Average Pooling (GAP) is 

applied to minimalize the dimension of the feature map by 

reducing the number of parameters. The mathematical 

representation of GAP is given by Equation (19). 

              𝐺𝐴𝑃(𝑋) =
1

𝐻×𝑊
∑ ∑ 𝑋𝑖,𝑗

𝑊
𝑗=1

𝐻
𝑖=1                      (19) 

The model includes fully connected layers, starting with a 

dense layer of 1024 units and ReLU activation, followed by a 

dropout layer to prevent overfitting.  

Finally, the output layer is a single neuron with a sigmoid 

activation function, producing a probability for classifying the 

given foot plantar thermography images to correspond to a 
healthy or diabetic foot. Algorithm 1 represents data 

augmentation, and Algorithm 2 represents the proposed model 

given below. 

Algorithm 1: Data Augmentation for Foot Plantar 

Thermography Images 

Input: Foot plantar thermography images. 

Result: Augmented dataset with relatable healthy and diabetic 

class images 

for each image i in N images of healthy class do 

 P[i]←P[i] Rotate (probability = 0.3, 

max_left_rotation = 10, max_right_rotation = 10) 

 P[i]←P[i] Brightness (probability = 0.3, min_factor 

= 0.3, max_factor = 1.0) 

 P[i]←P[i] Zoom (probability = 0.4, min_factor = 

1.0, max_factor = 1.3) 

 P[i]←P[i] Width _ Shift (probability= 0.1) 

 P[i]←P[i] Height _ Shift (probability= 0.1) 

 P[i]←P[i] Flip_Horizontal (probability = 0.5) 

 P[i]←P[i] Flip_Vertical (probability = 0.5) 

 P[i]←P[i] Random_Shear (probability = 0.3, 

max_shear_left = 10, max_shear_right = 10) 

end for 

3.6. Hardware and Software Setup 

The study utilized a comprehensive setup consisting of an 
NVIDIA GeForce GTX 1080Ti GPU, an Intel Core i7 

processor, 32GB of RAM, and the Python-based Keras library 

integrated with the TensorFlow framework. The user-friendly 

interface of Keras, integrated with Google Colab’s vast 

computational ability, ensures enhanced model development 

with GPU acceleration. The data splitting is done in the 75: 

15: 10 ratio for training, testing and validation respectively. 

Table 1 illustrates the hyperparameters used in the training, 

which is critical for optimizing the model’s accuracy and 

efficiency. These parameters are set before the model 

execution to govern the training process, ensuring efficient 
handling of the diabetic foot plantar thermography dataset and 

facilitating faster convergence. 
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Algorithm 2: Proposed Hybrid Model 

Input: Foot plantar thermography images 

Output: Efficient diabetic detection 

Begin: 
Load, preprocess and augment data: 

1. Collect dataset: 𝐷 = {(𝑋𝑖 , 𝑦𝑖), where 𝑋𝑖  is the foot plantar image in the Foot Plantar Thermo Dataset, and 𝑦𝑖 is its 

corresponding label as ‘1’ for diabetic and ‘0’ for healthy. 

2. Preprocessing and data augmentation 

 Resize: 𝑋𝑖→𝑋𝑖
′∈𝑅224×224 

 Normalize: 𝑋𝑖
′ →

𝑋𝑖
′−𝜇

𝜎
 

 Cropping the ROI out of the image 

 Data Augmentation: 𝑋𝑖
′ → {𝑋𝑖

′′}(Shear, Rotation, Brightness, Shift, Zoom, Flipp) 

Split the dataset into training, testing and validation in the ratio of 75:15:10. 

Load Models: Hybrid model architecture combining InceptionV3 and custom layers with attention mechanism and residual 

blocks. 

     1.InceptionV3: 

     Apply inception modules for multi-scale feature extraction:  Concatenate outputs of different convolutional 

layers: 

    𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐶𝑜𝑛𝑣1𝑥1(𝑋), 𝐶𝑜𝑛𝑣3𝑥3(𝑋), 𝐶𝑜𝑛𝑣5𝑥5(𝑋), 𝑀𝑎𝑥𝑃𝑜𝑜𝑙3𝑥3(𝑋))      

 Implement batch normalization and Auxiliary classifiers for regularization. 

2. Attention Mechanism: 

 Calculate attention scores and apply them to the feature maps: 

Attention Output, 𝑌𝑖𝑗 = 𝑆𝑖𝑗 ∙ 𝑋𝑖𝑗  

3. Residual Block: 

 Implement residual connections with batch normalization and ReLU activation: 

                 Residual block output, 𝑌 = 𝑍2̂ +  �̂�𝑠ℎ𝑜𝑟𝑡𝑐𝑢𝑡  

 

4. Global Average Pooling: GlobalAvgPooling2D () 

5. Fully Connected Layers: 

 Dropout (0.5) (x) 

 Dense (1024, activation='relu') (x) 

6. Output layer 

 predictions = Dense (1, activation='sigmoid') (x) 

Model Compilation and Training: 

1. Compile each model M: 

                  loss=binary_crossentropy 

              optimizer=Adam () 
              metrics=[accuracy] 

2. Train: M.fit (𝑋𝑡𝑟𝑎𝑖𝑛  , 𝑦𝑡𝑟𝑎𝑖𝑛 ,validation_data= (𝑋𝑣𝑎𝑙 , 𝑦𝑣𝑎𝑙)) 

Model Evaluation and Comparison: 

1. Evaluate:  

           metrics=M.evaluate(𝑋𝑡𝑒𝑠𝑡 , 𝑦𝑡𝑒𝑠𝑡), where metrics include accuracy, precision, and recall.  

Save the Model:  

End 
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Table 1. Hyperparameter specifications 

Hyperparameters  Values  

Loss Function Binary Cross Entropy 

Epochs  30 

Optimizer  Adam  

Dropout 0.5 

Activation Function  ReLU 

Batch Size  64 

Learning Rate  0.0001 

 

4. Results and Discussion 
4.1. Performance Evaluation 

The model’s performance is mainly evaluated on four 

parameters: accuracy, precision, recall, and F1-score. These 

measures, which are based on the concepts of False Positive 

(FP), False Negative (FN), True Negative (TN), and True 

Positive (TP), are essential for assessing the model’s 

performance in detecting diabetes from foot plantar 

thermography images.  

Accuracy calculation involves dividing the total number 

of predictions by the number of right predictions. 

              𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                             (20) 

The exactness of a prediction is measured by its precision 

or the number of true positives. Instead, recall quantifies 

completeness, or the number of real positives that were 

anticipated as positives. 

      𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                (21) 

       𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
              (22) 

       𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗ (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
)      (23) 

The classification report of the suggested method is given 

in Table 2, and Figure 15 illustrates its graphical 

representation. 

Table 2. Classification report of the proposed hybrid model 

Performance metrics Values (%) 

Accuracy 95.7143 

Precision 97.8571 

Recall 93.8356 

F1 Score 95.8042 

Cohen’s kappa 91.4286 

Area under curve 95.7984 

Specificity 97.7611 

 

The model’s performance metrics indicate a strong and 

well-balanced classifier, particularly in the context of diabetic 

and healthy foot plantar thermography image classification. 

From Table 2, it is clear that the model correctly classified the 

diabetes cases with an accuracy of 95.71 %. 97.85 % precision 

indicates effective detection of diabetic cases to avoid 

unnecessary interventions. 93.83% recall value represents that 
the model successfully identified the true diabetic cases. The 

F1 score indicates a balance between precision and recall by 

avoiding false positives and capturing true positives with a 

value of 95.80%. The reliability of the model is underscored 

by the Cohens kappa value of 91.42%. The high specificity 

value means the model correctly identified 97.76 % of healthy 

cases by minimizing FP rates.  

 
Fig. 15 Graphical representation with evaluation metrics 
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The accuracy and loss plot evaluate the model 

performance throughout the training process. The accuracy 

plot indicates how well the model fits the training data for the 

correct diabetes prediction. The accuracy plot illustrates the 

training and validation accuracy over 30 epochs for the 

proposed model, as shown in Figure 16. The training accuracy 
starts at around 0.6 and rapidly increases, reaching near-

perfect accuracy (1.0) by the 10th epoch, after which it 

stabilizes. The validation accuracy also improves steadily, 

beginning at around 0.6 and reaching a peak of around 0.95 by 

the 20th epoch before showing minor fluctuations and 

stabilizing. The gap between training and validation accuracy 

suggests that the model fits the training data very well but may 

experience slight overfitting, as the validation accuracy does 

not quite reach the same level as the training accuracy. 

 
Fig. 16 Accuracy plot of the suggested model 

 
Fig. 17 Loss plot of the suggested model 

The loss plot demonstrates a consistent decrease in both 

training and validation loss, as depicted in Figure 17, 

providing insights into the performance of the suggested 

hybrid model by measuring the dissimilarity between the true 

output and predicted output. These plots exhibit no overfitting 

since no significant divergence exists between training and 

validation.  

Initially, both the training and validation losses start high, 
around 0.7, indicating a substantial error in predictions at the 

beginning of training. The training loss drops sharply within 

the first 5 epochs, reaching close to 0.05 and gradually 

decreasing, eventually nearing zero by the 30th epoch. This 

indicates that the model is learning efficiently and fitting the 

training data well. 

The validation loss also decreases steadily but at a slower 

pace compared to the training loss. It reaches a minimum of 

around 0.1 by the 20th epoch, with slight fluctuations 

afterwards. The gap between the training and validation losses 

after the initial epochs suggests some level of overfitting, as 

the model achieves near-zero training loss but maintains a 
slightly higher validation loss. Nonetheless, the low validation 

loss demonstrates that the model performs well in 

generalization, maintaining effective accuracy for unseen data 

making it robust for diabetes detection applications. 

Figure 18 presents the confusion matrix of the suggested 

hybrid model, indicating the classification performance across 

healthy and diabetes cases by comparing the predicted values 

to actual values. It reveals the number of correctly and 

incorrectly classified data to identify the most often misplaced 

cases. In this case, 137 cases of diabetes were correctly 

classified as a diabetic class, and 131 healthy cases were 
correctly classified under the healthy class. 

 
Fig. 18 Confusion matrix of the suggested model 

The Receiver Operating Characteristics (ROC) curve 

illustrated in Figure 19 represents the model’s performance 

across various thresholds. The ROC curve describes the trade-
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off between sensitivity and specificity regarding probability. 

AUC represents the model performance across all threshold 

levels, with a value closer to 1 representing good performance. 

A perfect model shows a threshold having a TP rate of ‘1’ and 

an FP rate of ‘0’. The ROC-AUC obtained from the proposed 

model is 0.9579, close to 1, indicating effective classification. 
Figure 20 illustrates the predicted output, indicating each 

diabetic case and healthy case were correctly predicted using 

the proposed model from the foot plantar thermography 

images. 

 

4.2. Performance Comparison 

Table 3 illustrates the performance comparison of state-

of-the-art models with the proposed attention-based Inception 

V3 model with residual block, showing the ability of the 

proposed model to detect diabetes from foot plantar 

thermography images. Figure 21 represents the graphical 

representation of the performance comparison of the 
suggested model with existing models. 

 
Fig. 19 ROC Curve 

 

 
Fig. 20 Predicted output 

Table 3. Comparison of the suggested hybrid model with existing methods 

Methodology Accuracy Precision Recall F1 Score 

VGG19 95.08 95.08 95.09 95.08 

DFTNET 94.53 94.01 93.75 94.57 

ResNet 50V2 82.39 80.32 78.65 79.07 

DFINET 91.98 93.72 93.49 92.12 

Proposed Hybrid 

Model 
95.71 97.85 93.83 95.80 
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Fig. 21 Graphical representation of performance comparison

Table 3 illustrates that the proposed model demonstrated 

superior performance over conventional methods under all 

evaluation metrics in detecting diabetes from foot plantar 

thermography images. With 95.71 % accuracy, the proposed 

model surpassed DFINET, DFTNET, VGG19 and ResNet 

50V2 models. The high values of precision and recall for the 

proposed model indicate a very low FP rate. Additionally, the 

95.80 % F1 Score, the highest among all, reflects the highest 

balance between precision and recall. Thus, the proposed 

model combines the strengths of InceptionV3 and custom 

layers with attention mechanisms and residual blocks to 

improve classification performance, making it highly suitable 
for clinical applications. 

 

5. Conclusion 
Early intervention and suitable treatment of diabetes can 

prevent traumatic outcomes like lower extremity amputation. 

The circulatory deviations are vital in the pathogenesis of the 

diabetic foot. So, thermographic foot images are utilized for 

the effective detection of diabetic cases since patients with 

diabetes show higher temperatures in foot regions than non-

diabetic patients. The study proposed a hybrid deep learning 

model incorporating a pretrained inceptionV3, custom 

attention, and residual block layers. The results indicated the 

superior performance of the model with 95.71% accuracy, 

97.85% precision, 93.83% recall and 95.80 % F1score. The 

reliability of the classification task is evaluated by comparing 

it with existing models, such as VGG19, DFINET, DFTNET, 

and ResNet50V2, across multiple performance metrics. The 

proposed model enhances real-time implementation in health 

care for better management of diabetic conditions and 
improves diagnostic practices in clinical settings. 
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