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Abstract - Urbanization is a dynamic process marked by rapid and intricate land use, infrastructure, and population distribution 

transformations. Monitoring these changes for sustainable urban development, resource management, and disaster readiness is 

imperative. Satellite image Change Detection (CD) has emerged as a potent tool for comprehensively and efficiently evaluating 

urban changes over time. Techniques for CD facilitate identifying, characterising, and quantifying modifications in land cover, 

land use, and natural phenomena. This capability is pivotal for environmental monitoring, resource management, and disaster 

response. Detecting changes in urban expansion, deforestation, agricultural practices, and natural disasters contributes to 

informed decision-making and sustainable development. Whether it is gradual urban expansion or sudden infrastructural 

developments, the ability to detect changes offers valuable insights into the patterns and drivers of urban growth. Integrating 

remote sensing technologies and advanced image processing techniques has remarkably enhanced the accuracy and efficiency 

of CD in urban environments. These methods enable the identification of land cover changes, such as converting green spaces 
to built-up areas or adjusting transportation networks. This paper introduces an effective CD model that incorporates a deep 

learning approach. The proposed architecture is directly inspired by the U-Net model, adapted into the AC-PF while considering 

the available training data. Finally, the Dice similarity score is computed for a specific image compared to the ground truth 

images and the corresponding input images. 

Keywords - Change detection, Convolutional neural network, Deep learning, Image processing, Remote sensing, Satellite 

imagery, Urban monitoring.  

1. Introduction  
Remote sensing is vital for obtaining up-to-date 

information in various applications like land-cover 

categorization and inspection of agricultural changes. Despite 

its importance, traditional categorization approaches 

encounter challenges when processing satellite images. These 

approaches often make oversimplified hypotheses in their 

algorithms and neglect potential issues arising from sensor 

variations, atmospheric impacts, and the radiometric overlap 

of land-cover objects in interpreted images. As a result, 

inaccuracies may arise when analysing these images [1]. 

Remote sensing is a non-contact technique for gathering data 
about the Earth's surface. This is accomplished by recording 

the reflectance of different objects on the Earth. Upon the 

arrival of solar radiation at the Earth's surface, a portion of the 

energy is taken by the Earth's surface, atmospheric gases, 

clouds, water vapor, and dust. A portion of this energy is then 

reflected from both clouds and the Earth's surface. The 

fundamental principle of remote sensing, illustrated in Figure 

1, involves reflecting solar energy from diverse objects on the 

Earth's surface. Some of this energy is received, while some is 

scattered. Satellite sensors record the reflected energy from 

different Earth objects, which is subsequently collected by a 

satellite receiver, processed, and finally analysed for various 

applications. 

 

 
Fig. 1 Basic principle of remote sensing 

http://www.internationaljournalssrg.org/
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Fig. 2 Satellite images 

Images from satellites in orbit around the Earth document 

electromagnetic radiation released or bounced back from the 

Earth's surface across different wavelengths, encompassing 

visible light, infrared, and microwave frequencies. Processed 

satellite images serve diverse purposes and offer several 

advantages over traditional ground-based observations, such 

as providing bird's-eye views and enabling tracking changes 

over time. Governmental organizations, non-governmental 

organizations, academic institutions, and commercial 

enterprises widely utilize these images. Moreover, 

technological advancements have made High-Resolution 

(HR) satellite images readily accessible to the public through 

various online platforms. This increased accessibility has 

facilitated a better understanding of our planet by offering 

clear and recent global views of the Earth's surface. Figure 2 
illustrates examples of satellite images. In Earth remote 

sensing CD, the process involves recognizing disparities in the 

Earth's surface. This detection process encompasses observing 

and evaluating differences to document the spectral and 

temporal progression. 

 

The CD systematically analyses a pair of remote sensing 

images snapped over a similar geographical area but at distinct 

time points. The major objective is to recognize and highlight 

any alterations that may have arisen between the two 

attainment dates [2]. This technique, widely applied across 

various fields, integrates the examination of disparities within 
a specific area using remote sensing data or images obtained 

at distinct time intervals [3]. As urban areas continue to 

experience rapid growth and development, CD methodology, 

particularly based on remote sensing images, has proven to be 

highly effective in quantitatively extracting and analyzing 

these changes [4]. The detection of altered regions within 

images of similar scenes obtained at distinct times holds 

significant importance, given its diverse applications across 

various disciplines [5]. Figure 3 illustrates the general 

workflow for CD.

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 General workflow of change detection 
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Fig. 4 Applications of satellite image change detection 

Detection of changes is a significant use of data acquired 

through remote sensing from satellites orbiting the Earth [6]. 

The primary objective of employing remote sensor data for 

CD is to identify and comprehend modifications in features or 

phenomena of interest, such as deforestation or land use, 

across two or more sets of image dates [7]. Figure 4 illustrates 

the diverse range of applications for CD in satellite imagery. 

 

The abundant information within satellite images is 
crucial in supplying topographical data. Techniques in 

satellite remote sensing regularly capture data and images, 

contributing to various environmental applications. These 

applications address diverse challenges, such as soil quality 

assessments, water resource studies, meteorological 

simulations, and environmental protection efforts. However, 

the substantial volume of satellite imagery data poses a 

challenge, requiring efficient acquisition and processing 

methods. The data received at remote sensing data centers is 

substantial and continually expanding. Consequently, there is 

a pressing need for a streamlined and effective mechanism to 

extract and interpret valuable information from the extensive 
satellite imagery dataset.  

Using DL methodologies for CD in satellite images has 

brought about a paradigm shift in remote sensing and 

geospatial analysis. This approach, employing Convolutional 

Neural Networks (CNNs) and other sophisticated DL 

methodologies, has revolutionized the automated recognition 

and characterization of significant alterations on Earth's 

surface over time. The primary strength lies in the model's 

capacity to comprehend intricate spatial and spectral patterns 

inherent in satellite imagery, facilitating precise detection of 

changes such as urban expansion, deforestation, or natural 

disasters. Incorporating DL not only elevates the accuracy and 

efficiency of CD but also diminishes the need for manual 

interpretation. This renders it an indispensable tool for 

monitoring large-scale environmental transformations, 

providing valuable support to decision-makers in addressing 
environmental challenges. So, an effective satellite image CD 

model was proposed in this paper. 

2. Literature Review 
Ebrahim Ghaderpour and Tijana Vujadinovic [8] 

introduced a resilient jump detection technique that relies on 

anti-leakage least-squares spectral assessment and suitable 

temporal segmentation. This approach enables the concurrent 
exploration of trends and statistically notable spectral 

elements in each time series segment, allowing for the 

identification of potential jumps. The approach incorporates 

appropriate weights for the time series, enhancing its ability to 

discern jumps effectively. The simulation results indicated 

that the suggested approach surpasses existing Trends in 

recognizing jumps within the trend component of time series 

across different types. 

 

Jie Chen et al. [9] developed an approach for CD in HR 

images, employing dual attentive, fully convolutional Siamese 

networks. The dual attention approach is integral in capturing 
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extensive dependencies, improving the potential of the model 

to discern features more efficiently and thereby improving 

detection performance. Weighted double-margin contrastive 

loss is introduced to differentiate between altered and 

unaltered feature pairs. Experimental results on both a CD 

dataset and a building CD dataset illustrated the efficacy of the 
suggested method. Compared to various baseline methods, the 

new approach achieved significant improvements, 

demonstrating maximum enhancements of 2.9% and 4.2% in 

the F1 score for the respective datasets.  
 

Xiuwei Zhang et al. [10] introduced a proficient network 

for detecting changes in satellite images. The innovative 

differential change network module enhances the extraction of 

change features. Multiple side output features are employed to 

accommodate the diverse scales of altered regions. 

Addressing the imbalance in the distribution of changed and 

unchanged data samples and facilitating challenging sample 

mining is achieved through the application of focal loss. The 

assessment of the suggested approach on two publicly 
accessible change detection datasets showcased its 

outstanding performance compared to current methodologies. 
 

Caijun Ren et al. [11] developed a Generative Adversarial 

Network (GAN)-based technique for recognizing changes in 
satellite images. The GAN framework is specifically crafted 

to generate co-registered images representing similar 

landscapes but with variations in the changed regions. The 

defined objective functions include Lipschitz constraints to 

ensure that gradients do not vanish during training. A 

straightforward comparison strategy is employed to derive the 

final change map, utilizing the outputs of the optimized 

generator. The proposed method demonstrated effectiveness 

in generating authentic images and yielded compelling results 

in unsupervised CD by effectively addressing the challenges 

associated with unregistered pixels.  
 

Ekaterina Kalinicheva et al. [12] presented an innovative 

method for recognizing and clustering satellite image time 

series changes. The process begins with creating bitemporal 

change masks for each set of consecutive images using neural 
network autoencoders. Following this, the recognized changes 

are associated with individual spatial objects. Spatial entities 

sharing identical geographical coordinates are consolidated 

into spatiotemporal evolution graphs. Subsequently, these 

graphs are clustered according to the nature of the change 

process using a model based on Gated Recurrent Unit (GRU) 

autoencoders. The effectiveness of this methodology was 

assessed utilizing real-world SITS data, yielding encouraging 

outcomes. 
 

Xuan Hou et al. [13] developed a framework known as 

the High-Resolution Triplet Network (HRTNet) to address 

limitations in CD. The framework incorporates a dynamic 

inception phase designed to overcome challenges in this 

domain. Initially, a distinctive triplet input network was 

devised to learn attributes from bi-temporal images and 

capture temporal discrepancies between images across time. 

Then, a network was utilized to retrieve fine-grained attributes 

from HR images and preserve complex features with the least 

amount of information loss. In order to increase HRTNet's 

ability to express features and boost the representation of 

multi-scale data in the extracted features, the study included a 
dynamic inception component. Finally, an accurate change 

map was produced by examining the distances between pairs 

of attributes. Three widely used HR remote sensing image 

datasets were utilized to assess the effectiveness and reliability 

of HRTNet. The results of the systematic experiments showed 

that the suggested strategy outperformed the most advanced 

change detection techniques. 

 

Hichem Sahbi et al. [14] presented an innovative active 

learning algorithm for CD in satellite images. The method 

employs a question-and-answer model, suggesting the most 

informative pairs of patches to an oracle. The decision 
criterion is adapted based on the oracle's feedback to align 

with the oracle's intent. The recommended display approach is 

probabilistic and is determined by reducing a constrained 

blend of objective functions. Experimental assessments 

carried out on the demanding task of satellite image CD 

showcased the reliability of the suggested method. 

 

Xin Huang et al. [15] introduced an automated model for 

CD, with a primary focus on identifying recently developed 

building areas employing time-series multi-view ZY-3 HR 

satellite images. The central aim of this proposed approach is 
to assess the possibility of determining the timing of changes 

in these areas. The method comprises three key components 

and undergoes evaluation on two distinct image sets. The 

findings of the experiments affirm the effectiveness of the 

suggested methodology. 

 

Xi et al. [16] developed an innovative spatiotemporal unit 

and a novel segmentation approach to retrieve and depict 

geographic objects within a coherent spatiotemporal 

framework. The study tackled four key technical challenges: 

ST-cube modeling, segmentation, scale, and evaluation. The 

suggested techniques' efficacy was validated using 18 
Landsat-8 images through experimentation. The findings 

underscored the efficiency and dominance of ST-cubes in 

portraying geographic objects and examining spatiotemporal 

features when compared to current pixel- and object-based 

methodologies. 

 

Kaiyu Li et al. [17] developed a fully convolutional 

siamese framework designed for CD. Three siamese networks 

are integrated with UNet++ to investigate how these structures 

influence the CD task when coupled with a robust backbone 

network featuring strong feature extraction capabilities. The 
experimental outcomes demonstrated significant 

enhancements across various metrics. Notably, the proposed 

approach outperforms other methods for CD, showcasing 

superior performance.
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Ran Jing et al. [18] introduced an innovative approach for 

CD employing Very High-Resolution (VHR) satellite 

imagery. The recommended framework integrates multi-scale 

SLIC-CNN and SCAE attributes to effectively address the 

inherent challenges of CD using VHR satellite images. 

Combining multiscale, spectral, geometric, textural, and deep 
structural features, the suggested method leverages the self-

learning SCAE framework as a feature extractor to boost the 

representation of ground objects in the acquired images. 

Through controlled experiments, it was observed that CD 

results become more fragmented without image segmentation, 

leading to increased false-positive and false-negative rates.  

 

Yi Zhang et al. [19] developed an approach for CD in 

VHR satellite images, employing a boundary-aware approach 

coupled with a hybrid loss. The suggested approach adopts a 

coarse-to-fine framework, integrating a higher-level feature-

guided coarse recognition and a refined residual recognition 
to detect changes in pairs of images. Furthermore, a hybrid 

loss is employed to oversee training at pixel, patch, and map 

levels, ensuring stability throughout the training process and 

accommodating scenarios. The experimental findings 

showcased the superior performance of the proposed model 

when compared to alternative approaches.  

 

Ahram Song et al. [20] designed an innovative CD 

approach based on objects to identify alterations in VHR 

satellite imagery through the utilization of DL networks, 

eliminating the need for ground truth data. This methodology 
began by creating an initial pixel-based Change Detection 

(CD) map using diverse unsupervised CD techniques. 

Following this, the map underwent a reconstruction process to 

shape CD objects, which were further identified and refined 

based on the level of uncertainty. Experimental evaluations 

carried out on the Worldview-3 and KOMPSAT-3 datasets 

verified that the suggested approach surpassed conventional 

CD methods, showcasing enhanced performance. 

 

Lukas Kondmann et al. [21] introduced an unsupervised 

approach for detecting changes in optical satellite images 

featuring medium and HR. This approach depends on spatial 
context by viewing a pixel as a linear combination of its 

remote neighbors. The model employs this concept to examine 

differences between the pixel and its predictions based on 

spatial context over successive intervals, aiding in Change 

Detection (CD). CD based on spatial context is combined with 

ensembling techniques applied to mutually exclusive 

neighborhoods to improve precision. The suggested method 

exhibited strong performance in change detection, especially 

when applied to medium-resolution Sentinel-2 and HR Planet 

Scope imagery across four diverse datasets. 

 
Ramen Pal et al. [22] introduced an innovative approach 

to segmenting VHR multispectral images, utilizing a variable-

length multi-objective NSGA-II algorithm. The algorithm 

produces a cluster of solutions that are near Pareto-optimal. 

The research utilises explicitly datasets from Pleiades-HR 1B 

and Landsat 5 TM sensors in the experimental phase. The 

study includes a thorough analysis to demonstrate the 

suggested method's supreme performance compared to 

various existing approaches. 

 
In the realm of supervised learning for satellite image CD, 

the need for a substantial amount of annotated data is a 

significant challenge, as data acquisition and labeling efforts 

can be demanding. Additionally, there is a potential drawback 

to erroneously identifying reconstructed building areas, albeit 

such alterations are infrequent.  

 

Incorporating an attention mechanism aims to improve 

focus on the foreground, especially in scenarios where 

positive ground truth pixels are scarce. Yet, this method faces 

difficulty accurately discerning between high-level and low-

level attributes.  
 

This leads to an unstable attention mechanism when 

positive and negative samples are evenly distributed. 

Approaches based on algebra cannot provide comprehensive 

metrics for change information, while image regression 

methods require the development of precise regression 

functions without yielding a comprehensive change matrix.  

 

Image rationing methods introduce a limitation associated 

with scale changes based on a single date, potentially resulting 

in varying scores for the same ground-level change depending 
on the direction of change. Similarly, image differencing 

methods fall short in furnishing a detailed change matrix, 

necessitating the manual selection of thresholds for 

interpretation. The existing CD approaches with their 

limitations and benefits are tabulated in Table 1. 

 

3. Materials and Methods  
The process of satellite image CD involves several crucial 

stages, starting with acquiring a dataset capturing the same 

geographic area at different points in time. These images act 

as the input for the Absolute Convolutional Prior Fusion 

model, an advanced technique built upon the U-Net 

architecture. Preprocessing is crucial for enhancing the 

image's quality and setting it up for further analysis. Once the 

images undergo preprocessing, they are inputted into the 

Absolute Convolutional Prior Fusion model, leveraging DL to 

extract intricate spatial and spectral features automatically.  

The model aims to amalgamate absolute differences 
between images, effectively enhancing its ability to discern 

subtle and substantial changes. Following the model's 

detection, the dice similarity score is calculated to quantify the 

similarity between predicted change regions and the ground 

truth labels. Ultimately, the areas where changes are identified 

are highlighted, offering a visual depiction of alterations in the 

landscape. Figure 5 illustrates the detailed block schematics of 

the suggested method. 
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Table 1. Change detection methods with merits and demerits 

Approaches Advantages Disadvantages 

Image Differencing  Simple Execution. 
 This methodology does not give a point-by-point 

matrix and requires an acceptable range. 

Image Regression 

 Minimize the effects of 

atmospherical and environmental 

variations between reference 

images. 

 This approach requires a precision regression 

function. 

Change Vector Analysis 
 Potential to handle more bands 

of spectrum. 
 More complex. 

Principal Component 

Analysis (PCA) 
 The repetition of information 

lowers. 

 It cannot give a total matrix to change data and 

requires an edge to identify the progression that 
happened in the territory. 

Tasseled Cap 
 Minimize the amount of gap 

between bands. 

 It is inconvenient to interpret and probably will 

not offer an entire matrix of changes. 

Post Classification 

Comparison 
 Minimize the impact of 

atmospheric. 
 More production time. 

Spectral Mixture Model  Steady and precise output.  Complex implementation. 

Visual Interpretation 
 During analysis, human expertise 

and information are useful. 

 It cannot give point-by-point data that has been 

changing, but it consumes more and more time 

to update the result. 

GIS Approach 
 It allows for mapping changes in 

the images of present and past 

data. 

 The performance of results varies in the 

mathematical and classification processes. 

Integrated GIS and RS 

Method 

 It empowers the elucidation and 

investigation of information to 

be accessed. 

 Detailed data from various sources changes the 

identification. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Block schematics of the proposed method 

3.1. Dataset Description 

The Onera Satellite Change Detection Dataset [23], 

which tackles the challenge of finding differences between 

satellite images taken on different dates, is used in this study. 

A total of 24 pairs of multispectral images gathered from 

Sentinel-2 satellites between 2015 and 2018 constitute the 

collection, which was assembled by the Office National 

d'Etudes et de Recherches Aerospatiales (Onera). The areas 

covered by the locations that were chosen are varied. Thirteen-

band multispectral satellite image pairs with different channel 

resolutions are included in each location. The resolution 

information of various channels is tabulated in Table 2. 
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Table 2. Resolution information of various channels 

Band Resolution (Meters) 

Blue (B2) 10 

Green (B3) 10 

Red (B4) 10 

Near- Infrared (B8) 10 

Red Edge (B5) 20 

Near Infrared NIR (B6, B7, B8A) 20 

Short- Wave Infrared SWIR (B11, B12) 20 

Coastal Aerosol (B1) 60 

Cirrus Band (B10) 60 
 

 
Fig. 6 Images of Beirut in 2015 and 2018, along with its Pixel-Level ground truth 

 

Ground truth data in pixel-level change masks, 

specifically focusing on urban changes like new buildings or 

roads, is provided for all 24 image pairs. In computer vision, 

24 image pairs are regarded as a sparse dataset. The visual 

representation of sample images from this dataset is illustrated 

in Figure 6. 

 

3.2. Image Preprocessing 

The distinctive design of the Absolute Convolutional 
Prior Fusion (AC-PF) model is tailored for processing pairs of 

satellite images (pre-change and post-change). An initial 

preprocessing step involves segmenting each input image into 

96x96 chips to enhance training and diversify the dataset, 

generating a series of smaller image patches. This 

segmentation allows the model to analyze localized details. 

Following this, an augmentation step is implemented, which 

includes rotating each chip by 90, 180, and 270 degrees. This 

quadruples the dataset by introducing variations in 

perspectives, lighting, and spatial orientations, enriching the 

training samples. Dataset augmentation is crucial for 

improving the model's generalization capabilities across 
different scenarios, ultimately enhancing overall accuracy. 

Stacking operations are applied both before and after the 

chipping process to ensure the model receives a composite 

image as input and generates a single output image. This 

meticulous approach streamlines the input-output 

architecture, aligning with the goal of efficiently and 

accurately detecting changes in satellite imagery. The 

combined use of chipping, augmentation, and stacking 

techniques collectively contributes to the AC-PF model's 

robustness and effectiveness in satellite image CD tasks. 

 

3.3. Convolutional Neural Network 

CNN stands out as a distinctive subset within Artificial 

Neural Networks (ANN), distinguished by its capacity to 

leverage spatial information inherent in the data. CNNs are 

integral to the field of DL, where "deep" denotes the network's 
depth, signifying the number of hidden layers [24]. Drawing 

inspiration from the concept of image processing filters and a 

sliding window, CNNs employ filters (kernels) and 

convolutional operations. In deep neural networks, the initial 

convolutional layers focus on extracting fundamental features 

like lines from the input image. Subsequent layers are 

dedicated to capturing more intricate features, progressing 

from basic elements to complex objects. This progression 

enables CNNs to construct increasingly sophisticated 

representations. Figure 7 illustrates the workflow of the CNN 

process. Loss functions, also known as error functions, play 

an integral part in the learning process of deep networks. They 
are instrumental in updating the network weights by utilizing 

derivatives computed from the loss function, which evaluates 

the discrepancy between the predicted output and the actual 

result. Additionally, loss functions guide optimizers in 

minimizing the error as closely to zero as possible throughout 

iterations and epochs. 
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Fig. 7 CNN workflow 

 
Fig. 8 Basic U-Net architecture 
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3.4. U- Net Model 

The U-Net is a CNN framework designed explicitly to 

address semantic image segmentation tasks within computer 

vision. Its fundamental design draws inspiration from the 

encoder-decoder architecture and employs two paths: the 

encoder (contracting path) and the decoder. The encoder is 
responsible for extracting feature maps from input images 

through successive down-sampling using CNN layers [25], 

reducing resolution while enhancing feature extraction. In 

contrast, the decoder focuses on restoring spatial information 

lost during the encoding process.  

The decoder utilizes convolution and deconvolution 

operations to up-sample the feature maps generated by the 

contracting path. Unlike autoencoders, U-Net incorporates 

concatenating skip connections, which is crucial in 

reconstructing spatial information and reinstating image 

resolution. This distinctive feature sets U-Net apart, allowing 

it to address semantic image segmentation tasks effectively.  

The fundamental structure of the U-Net is built upon a 

regular CNN framework. It employs a series of consecutive 

(3×3) convolutions, accompanied by ReLU activation and 

max-pooling layers. This sequence is repeated several times to 

form distinct levels before reaching the bottleneck, which 

serves as the connection point between the encoder and the 

decoder. The receptive field is augmented in the encoder 

section, which is achieved by increasing the depth (number of 

channels). Simultaneously, the resolution is diminished due to 

the inclusion of stride convolutions and pooling layers. Figure 

8 illustrates the basic model architecture of the U-Net 
framework. 

The described architecture incorporates both 

convolutional and deconvolutional layers. Up-sampling layers 

play a crucial role in restoring resolution from the bottleneck 

by employing (2×2) up-convolutions. Corresponding levels in 

the encoder and decoder are aligned, with each decoder level 

featuring a (2×2) up-convolution layer, followed by a (3×3) 

convolutional layer, and ReLU activation. Unlike the encoder, 

the decoder reduces the number of channels while increasing 

the resolution.  

Skip connections, established through concatenation, 

facilitate the transfer of spatial information between 

corresponding levels in the two paths. This process aids in 

reconstructing the spatial structure of the image. Feature map 

cropping is implemented to address the diminished contextual 

data at the borders. The operations of the U-Net model are 

visually depicted in Figure 9. 

3.5. Proposed Change Detection Model Using Absolute 

Convolutional Prior Fusion (AC-PF) 

The AC-PF model proposed here is a direct derivation 

from the U-Net model. This adaptation considers the available 

training data, resulting in the modified architecture depicted in 
Figure 10. In contrast to the U-Net model, the AC-PF 

comprises four max pooling and four up sampling layers 

instead of the original five. Additionally, the layers in the AC-

PF are shallower compared to their counterparts in the U-Net 

model. The input for this network involves concatenating the 

two images within a pair that are being compared.  

The convolutional and pooling layers capture contextual 

information in the model. The central bottleneck plays a 

crucial role in preserving this information. On the decoding 

path, up-sampling and concatenation operations are utilized to 

reconstruct segmentation maps at an HR, emphasizing the 
regions that have changed. Throughout the training process, 

loss functions, such as binary cross-entropy, guide the model 

to reduce the disparity between the predicted change maps and 

ground truth, ensuring effective learning. 

 
Fig. 9 Summary of U-Net operations (a) 3×3 convolution + ReLU, (b) 2 × 2 max-pooling, and (c) 2 × 2 up-convolution operation. 
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Fig. 10 Proposed model architecture 

A pooling or down sampling layer is responsible for 

gradually decreasing the size of feature maps generated by the 

convolution layer. It is important to note that the pooling layer 

does not alter the depth of the convolution layer [26]. Max 

pooling, a specific pooling operation, picks the maximum 

element within the filter-covered region of the feature map. 

Consequently, the output from a max-pooling layer forms a 

feature map, highlighting the most prominent features from 

the preceding layer. In a singular stream U-Net model, max 

pooling layers play a pivotal role during the encoding phase 
by capturing hierarchical features and reducing spatial 

dimensions. As a down sampling operation, Max pooling 

entails choosing the maximum value from a group of 

neighbouring pixels within a specified region. The 

significance of max pooling layers lies in their ability to distill 

essential information while discarding redundant details 

progressively. Through successive reductions in spatial 

resolution, max pooling aids the model in developing a robust 

understanding of hierarchical features, encompassing local 

and global contexts. Moreover, max pooling contributes to the 

computational effectiveness of the approach by diminishing 

the number of parameters and computations in subsequent 

layers. This, in turn, facilitates quicker training and inference 
without compromising the model's capacity to identify 

pertinent features. 
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16→16, up 2 

Concat. 

32 → 16 → 2 

Output 

Input 1 + Input 2 
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Fig. 11 Visualization of maxpooling operation 

Concatenation is widely used in neural network 

architectures, particularly in the U-Net framework during the 

up-sampling phase. The architecture includes a contracting 

path for contextual information and an expanding path for 
precise localization. During down-sampling in the contracting 

path to extract features, it is crucial to maintain spatial 

information for accurate localization during up-sampling.  

Concatenation is key in merging feature maps from 

corresponding layers in the contracting and decoding paths. 

Specifically, this involves taking feature maps from the 

relevant layer in the contracting path and concatenating them 

along the channel dimension with the feature maps from the 

current layer in the expansive path. This operation effectively 

combines detailed HR information with a semantically rich 

context. 
 

The suggested model architecture processes an input of 

dimensions (96, 96, 8), representing an 8-channel image. It 

incorporates a contracting path with multiple layers of 

convolutional and max-pooling operations to capture 
hierarchical features. The bottleneck of the model retains the 

most abstract information, while the expansive path utilizes up 

sampling layers to reconstruct spatial resolution. Notably, the 

concatenation operation is employed in the expansive path to 

merge feature maps from the contracting path, facilitating the 

preservation of fine-grained details. To enhance regularization 

in the contracting path, dropout is applied. 
 

3.6. Performance Evaluation 

The Dice similarity coefficient, commonly known as the 

Dice score or Dice coefficient, is a widely employed metric 

for assessing performance in image segmentation tasks. It 

quantifies the similarity between predicted and ground-truth 

segmentation masks.  
 

This metric is especially valuable in scenarios involving 

imbalanced datasets, where the abundance of background 

pixels far exceeds that of foreground pixels. To compute the 

Dice similarity coefficient, the following formula is 
employed: 

 

𝐷𝑖𝑐𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 =  
2×(𝑋∩𝑌)

|𝑋|+|𝑌|
                          (1)                                  

4. Results and Discussion  
4.1. Hardware and Software Setup 

The proposed work employs Google Colab and Microsoft 

Windows 10 to ensure a reliable computing environment. The 

system is powered by an Intel Core i7-6850K 3.60 GHz 12-

core processor and features an NVIDIA GeForce GTX 1080 

Ti GPU. The dataset is split into three parts: 10% is used for 

testing, 70% is for training, and 20% is for validation. Table 3 

presents a tabulated overview of the diverse hyperparameters 

utilized in the study.  

4.2. Experimental Results 
A common method for assessing model performance is 

through an accuracy plot, a visual representation that depicts 

the correctness of a model across various epochs or iterations 

during training. The horizontal axis depicts the number of 

training iterations or epochs in this graphical representation, 

while the vertical axis displays the corresponding accuracy 

metrics.  

The trend in the accuracy plot is crucial, with an upward 

trajectory signalling the model's progressive improvement and 

convergence towards more accurate predictions. The accuracy 

plot for the suggested model is depicted in Figure 12. 

A loss plot visually depicts the progress of a learning 

model throughout training and validation by illustrating the 

changes in the loss function over epochs or iterations. The loss 

function gauges the disparity between the predictions made by 

the model and the actual values to minimize this distinction 

throughout the training process.  

 

This graphical representation is essential for assessing the 

model's learning from the training data and its generalisation 

ability to new, unseen data. The loss plot for the presented 

model can be observed in Figure 13. 
 

Table 3. Hyperparameters 

Activation Function ReLu, Sigmoid 

Optimizer Adam 

Loss Binary Crossentropy 

Batch Size 2 

Number of Epochs 50 
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                             Fig. 12 Accuracy plot of the proposed model                                             Fig. 13 Loss plot of the proposed model 

Table 4. Dice similarity score calculation 

Initial Image Changed Image Ground Truth Prediction Dice Similarity Score 
 

 

 

 

 

 

 

 
 

0.6978368327274562 

 

 

 

 

 

 

 

 

0.59949129493561 

 

 
 

 

 

 

 

 

 

0.4754219845073826 

 

 

 

 

 

 

 

 

0.6678255080203945 

 

 

 

 

 

 

 

 

0.9037366465587999 



Aiswarya Jeevan & S Amala Shanthi / IJECE, 11(11), 272-285, 2024 

284 

The Dice similarity score is calculated for a specific 

image represented by the variable images compared to the 

ground truth images, and the corresponding input images are 

tabulated in Table 4. 

5. Conclusion  
 CD using satellite imagery is crucial for monitoring urban 

developments, providing valuable insights across various 

sectors and decision-making processes. Systematically 

analyzing changes in urban landscapes over time yields 

critical information on urbanization, infrastructure growth, 

and environmental shifts. This technology aids in identifying 

trends, patterns, and anomalies, informing urban planning, 

resource management, and disaster response. The significance 
of satellite image CD lies in its ability to offer an objective 

view of urban transformations, surpassing the limitations of 

traditional ground-based monitoring. It enables the timely 

detection of alterations like land use changes, urban 

expansion, and environmental degradation, enhancing our 

understanding of the urban environment. This paper 

introduces a robust CD model using a DL approach based on 

the U-Net model. Adapting the U-Net architecture into the 

Absolute Convolutional- Prior Fusion (AC-PF) framework 

considers available training data, improving the model's 
effectiveness in detecting changes. The proposed model's 

efficacy is evaluated through the Dice similarity score, 

calculated by comparing 'images' with ground truth and 

corresponding input images in the final evaluation.  
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