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Abstract - Since many cloud data centers provide worldwide services on demand, it has been a popular research topic in 

recent years. Users and virtual machines grow in the number directly to data centers’ expanding size. Virtual Machine 

Placement methods are mainly used in data centers to consolidate servers. Therefore, the placement of virtual machines is the 

most active research area today. The performance of VM Placements in cloud computing depends on various factors, including 

resource management, power consumption, and others. This paper provides the optimal solution for VM placements in cloud 

environments using ACOTS (Ant Colony Optimization with Tabu Search) hybrid metaheuristic algorithm enhancing with the 

feature of modified Eagle strategy. The hybridization leverages ACO’s global search capabilities, TS’s memory-driven 

diversification, and the adaptive exploration-exploitation balance of EagleMOD (modified EAGLE strategy). By integrating 

these techniques, the proposed algorithm enhances convergence speed and resolves the issue of local optima, ensuring robust 

performance across various scenarios. 

Keywords - Cloud computing, Meta-heuristic algorithms, Optimal solution, Resource management, Virtual machine 

placement, Power consumption. 

1. Introduction 
One well-known source of high-performance services is 

the cloud. On-demand services offered by cloud computing 

give users online access to a number of very useful 

resources. All of this makes cloud computing dynamically 

scalable. Task scheduling is essential to cloud computing 

because it increases the efficiency of several services and 

drastically lowers energy consumption in cloud 

environments and Internet of Things (IoT) networks. 

Choosing the best and most appropriate scheduling algorithm 

is essential for task scheduling and resource allocation [1]. It 

requires that jobs or tasks be assigned to a resource most 

efficiently and appropriately. It is necessary to consider and 

track a number of factors, such as resource usage, makespan, 

accessibility, time, scalability, cost, and others[2]. They are 

accessible over the internet. The Cloud can be viewed as a 

conceptual layer on top of the Internet, providing 

transparency to a data centre's software and hardware 

resources. This transparency enables accessibility through a 

clearly defined interface [3, 4].  

 

All users of this multi-tenant system utilize the same 

provider-maintained code base. The hardware, network, and 

operating system are not under the user’s control [5]. 

The biggest issue to be solved is how to reduce the 

electrical power usage of data stored in cloud centers, which 

has been noticed to have increased due to the widespread use 

of cloud computing [6]. It chooses the fewest PMs (Physical 

Machines) that can provide what is needed for hosting 

certain amounts of VMs (Virtual Machines) while 

consuming the least amount of power. It is an NP-hard 

combined issue to optimize VMP. Diverse, opposing goals 

can be used to address the issue. The VMP challenge was 

successfully solved for various goals, including alone, 

numerous, and many objective processes [6].In relation to 

Virtual Machine Placement (VMP), the study focuses on the 

idea of computing in the cloud. Addressing distinct issues 

frameworks, such as VM allocation and 

VMP Optimization methods, is a part of VMP. Assuring 

Quality of Service (also called QoS) while distributing 

virtual servers to physical computers is known as VM 

allocation. An SLA is an agreement between an end user and 

a service supplier regarding the latter's offerings' calibre, 

accountability, and availability. As a result, maintaining a 

perfect equilibrium between QoS and energy use is today’s 

most challenging problem [7]. 

In the literature, current techniques for 

this optimization problem have been discussed. This study’s 
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main goal is to find pertinent problem compositions. The 

Eagle Strategy, well-known for balancing exploration and 

exploitation by combining local refinement with global 

search, is a great place to start when hybridizing. Adding 

ACOTS aims to enhance performance by leveraging ACO’s 

global optimization capabilities and TS’s memory-driven 

diversification. 

 

Because ACO depends on pheromone updates, it can 

stall in local optima even though it is good at exploring 

solutions. Although TS is better at fine-tuning solutions, its 

deterministic nature and reliance on a fixed tabu list size 

restrict its applicability to larger problem spaces. In many 

hybrid algorithms, exploration (global search) and 

exploitation (local refinement) are not sufficiently balanced, 

leading to less-than-ideal trade-offs in crucial metrics like 

makespan, resource usage, and power consumption. Creating 

and evaluating a Hybrid Optimization Framework that 

combines the enhanced Eagle Strategy with ACOTS is 

necessary to overcome these challenges. In order to avoid 

premature convergence, it employs adaptive exploration 

techniques. To improve scalability, it leverages TS’s 

diversity mechanisms.  

 

 In particular, Section 2 reviews research on the 

background and fundamentals of cloud computing and its 

architecture, traits, and deployment model. This is followed 

by describing how virtual machines are placed in the cloud. 

The VMP optimization strategies and objective functions are 

the main topics of this section. Additionally covered are 

current metaheuristic placement strategies for virtual 

machines. The suggested method for placing VMs in a 

cloud-based setup is explained in the following section. The 

assessment of the suggested examines, and the outcome of 

the reviews is covered in the following section. In the final 

section, the last words are provided. 

 

2. Literature Review 
  Splitting the real machine’s physical assets, such as its 

hard drive storage and processing memory, signal 

strength network, and power consumption, into various 

environments for operation known as virtual machines 

(VMs) is a form of storage virtualization. The virtualization 

process increases the Return on Investment (ROI) by creating 

multiple VMs to increase resource utilization on a single 

physical server.  

 

 Including virtual machines is simply the assignment of 

appropriate virtual machines to every PM in a remote data 

center. The positioning strategy for the VM to PMs 

connecting is another name for it [8]. As its name suggests, a 

mono-objective tackle only considers optimizing just a single 

resource. Multiple objective functions are individually 

optimized, one at each stage. According to the survey, 61.9% 

of the studied research planned a mono-objective way (MOP) 

for resolving the VM placement issues [9]. 

 The optimization of multiple goals resolved as a single 

objective function is referred to as a multifaceted view 

resolved as a mono-objective in this context. An issue with 

this approach is that, in most cases, it is impossible to allow a 

correct combination of the objective functions because doing 

so requires an in-depth knowledge of the issue at hand. Pure 

multi-objectives refer to optimizing multiple goals at once. A 

PMO approach might produce a more practical solution 

despite much research already being done on single objective 

methods for operating an actual cloud system [10]. 

 

 Many-objective optimization problems are defined 

informally as having three or more objective functions up to 

twenty objectives. Numerous real-life applications, including 

engineering layouts, frequently use MaOPs [11]. The specific 

research has not offered the creation of 

multi objective optimization issues for the VMP problem 

[12, 13].  

 

The procedure of choosing the best Physical Machine 

(PM) over a specific Virtual Machine (VM) is known as 

virtual machine positioning. Therefore, whether it is an initial 

VM placement or a VM movement for positioning re-

optimization, a VM installation method aims at identifying 

an ideal VM to PM mapping. One of the two main objectives 

of the deployment method in consolidated virtual machines 

can be energy savings or QoS delivery. These two objectives 

obviously go against one another [14]. In [15], an altered 

version of the ant colony optimizing approach is suggested to 

distribute load across nodes in the cloud or the grid system 

networks.  

 

In [16], a multifaceted optimization issue is addressed by 

considering two objectives for the formulation of virtual 

machine placement: all storage wasted and total processing 

wasted resources. The proposed ant colony optimization 

algorithm is developed to find a set of non-dominated 

alternatives to massive data centers. Another strategy using 

Order Exchange and Migration (OEM) local discovery 

methods in conjunction with ant colony optimization has 

been suggested [17]; the outcome of this approach is known 

as an OEMACS. According to the author, OEMACS 

performs better than other evolutionary-based methods and 

traditional heuristics in most situations. It offers substantial 

energy savings and more effective use of various resources. 

 

In order to solve the VM scheduling problem, a novel 

hybrid algorithm called ACOPS (Ant Colony Optimization 

with Particle Swarm) was proposed [18]. It considers three 

resources for load distribution, including RAM, processor 

utilization, and disc utilization. Without further facts, 

ACOPS uses historical data to anticipate new data demands 

and adapt to changing circumstances. The suggested 

algorithm outperforms other methods and can maintain load 

balance in a changing environment. Power consumption, 

load balancing, and migration time were addressed by the 
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hybrid model form of the multi-objective biogeography-

based optimization method with variation in evolution 

(MBBO/DE) [19], which has been suggested for VMP 

challenges. 

 

A blend of algorithms called GATA has been suggested, 

combining the algorithm known as genetics and the Tabu 

search algorithm with an energy-aware goal for the VMP 

issue. The algorithm is contrasted with a few existing VMP 

algorithms to minimize data center energy use 

while increasing load equilibrium. The experimental findings 

demonstrate that when contrasted to both heuristic 

algorithms and a recently proposed ant colony algorithm, the 

GATA algorithm may produce a more environmentally 

friendly and feasible placement scheme in a suitable period 

[20].  

 

 The cuckoo search method inspired an innovative VM 

placement method called ECS, which was suggested [21] and 

aimed to optimize total energy use and waste of resources in 

data centers in the cloud centers. In addition to stable 

performance for SLA and VM migration, this work 

demonstrated an improved energy metric for assessing the 

efficiency of the suggested ECS method with VM choosing 

regulations like Minimum Migration Time (MMT) and 

Minimum Utilization (MU). The comparison’s findings 

demonstrated that ECS operates efficiently when there are 

fewer virtual machines (i.e., less workload). Due to its ability 

to use the levy flight system, this algorithm can operate 

effectively even in a massive, changing cloud environment. 

 

 The discrete firefly algorithm proposes a multi-objective 

constraint optimization framework for VM placement that 

considers system effectiveness and safety. In order to deal 

with the side-channel take on problem on the IaaS structure, 

this research also suggested a successful VM positioning 

approach. From the perspective of physical isolation, it 

allocates VMs for unauthorized users and targets occupants 

on different physical hosts [22]. 

  

 The main objective of the previous study was to review 

the existing meta-heuristic approaches for different 

objectives and environments. Each algorithm is quite 

different from each other. Each of them works on different 

perspectives and objectives. The most commonly studied 

objectives are optimizing energy consumption and resource 

allocation. So, for future work, it is a good idea to consider 

additional objectives comparable to resource balancing, 

traffic communication, number of VM migrations, migration 

time, economic, SLA violations, and resource utilization. 

Selecting a good mixture of algorithms can improve the 

performance of the system. So, selecting a proper 

hybridization is again a part of research. It should not 

complicate the problem execution [10]. The Enhanced 

solution for optimizing the VMP in a cloud environment is 

discussed in the next section. 

3. VMP Modelling and Problem Description 
To efficiently assign virtual machines (VMs) to physical 

machines (PMs), the Virtual Machine Placement (VMP) 

model consists of several parts. Here is a description of a 

typical VMP model’s architecture [23]: 

• Input Data: The VMP model needs input data to 

function, and this data describes the traits of the VMs 

and PMs. This information includes each VM’s 

requirements for computational resources, each PM’s 

available computational capacity, the communication 

cost between VMs and PMs, and other pertinent details. 

• Objective Function: The objective function specifies the 

VMP model’s optimization objective. It quantifies the 

performance metric that needs to be increased or 

decreased, such as energy consumption, resource 

utilization, or communication latency.  

• Decision Variables: The decision variables represent the 

VMP model’s placement choices. The decision variable 

in this instance is a binary variable with the notation x_i, 

j, which indicates whether VM i is positioned on PM j. 

In addition, PM j is indicated by a binary variable with 

the symbol y_j. 

• Constraints: The constraints ensure that placement 

choices abide by specific requirements and restrictions. 

These limitations consist of: 

▪ Each VM must have exactly one PM: In V, (x_i,j) = 

1 for all i. 

▪ No PM may have a capacity greater than (C_i * 

x_i,j) U_j for all j in P. 

▪ A minimum of one VM must be assigned to a PM if 

one is being used: For every j in P, y_j = (x_i,j). 

• Solver/Algorithm: The VMP model employs an 

optimization solver or algorithm to identify the best 

possible placement that satisfies the constraints and 

objective function. To effectively explore the solution 

space and find the best VM-PM assignments, the solver 

uses linear programming, mixed-integer programming, 

or heuristics/metaheuristics. 

• Output: the optimal or nearly optimal placement 

solution, which identifies the assignment of VMs to 

PMs, is the output of the VMP model. This output can 

be used as a reference for managing the placement of 

virtual machines in a data centre or cloud environment 

and allocating resources accordingly. 

 

 The VMP model can be expanded or altered depending 

on specific needs to consider additional constraints, goals, or 

system-specific factors. The objective of this research is to 

create a placement strategy that is efficient and effective and 

optimizes resource use, energy consumption, or other 

relevant factors in the environment. 
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3.1. Problem Description  

 The Virtual Machine Placement (VMP) problem is a 

combined optimization issue that seeks to distribute virtual 

machines (VMs) to physical machines (PMs) in a data center 

while optimizing some goals, like reducing the use of 

energy, enhancing resource utilization, or lowering 

communication latency [24]. The specific goals and 

restrictions taken into account can change how the VMP 

problem is mathematically formulated.  A general 

formulation is given here: 

Sets: 

V: A collection of VMs, where an index identifies each 

VM. i.  

 P: A collection of PMs, where an index j identifies each 

PM. 

Parameters: 

M_i: The list of PMs a VM may be assigned to. 

C_i: VM i’s demand for computational resources. 

D_i,j: The communication cost over the PM j and VM i 

network. 

U_j: The total amount of computing power PM j is 

capable of. 

E_j: The amount of energy used by PM j. 

Decision-making factors 

Binary variable x_i, j reveals whether VM i is attached to 

PM j. 

y_j: A binary variable indicating the use of PM j. 

For modified Eagle Strategy ACOTS Formulation, three 

stages can be used to model the hybrid approach. 

Let us define the key variables for the combined formulation: 

 S: Solution space (all task-resource mappings). 

X: Current solution. 

f(X): Objective function value  

P(X): Probability of choosing solution X (from ACO 

pheromones). 

L(X): Tabu list memory, indicating forbidden solutions. 

Global Exploration: For mapping tasks to resources and 

conducting extensive exploration. The Eagle strategy uses 

Gaussian-based random walks or Levy flight to explore the 

solution space S and find promising areas. It alters solutions 

by: 

𝑋𝑛𝑒𝑤 = 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝛼. 𝐿𝑒𝑣𝑦(𝛽)               (1) 

Where: 

• α: Step size scaling factor. 

• β: Parameter controlling Levy flight’s distribution 

(typically 1<β≤3). 

• Levy(β): A stochastic jump based on the Levy 

distribution. 

For task scheduling, Eagle’s global search maps tasks Ti to 

resources Rj where:  

 

Resource Assignment: Rj = argRminf(Ti, R) 

f(Ti, R) Includes power consumption, execution time, or any 

cost metric. 

 

Guided Exploration: Using pheromone trails, guided 

exploration optimizes task assignments. Following the 

discovery of a promising area by global exploration, ACO 

uses pheromones to direct task-resource assignment: 

 

P( Rj ∣∣ Ti ) =
τ(Rj)α.η(Rj∣Ti)𝛃

∑ τ(Rk)α.η(Rk∣Ti)𝛃
𝑘𝜀𝑅

               (2) 

 

Where: 

• τ(Rj): Pheromone intensity for resource Rj 

• η(Rj ∣ Ti): Heuristic desirability (e.g., the computational 

power of Rj for task Ti). 

• α,β: Balancing factors for pheromone vs. heuristic 

importance. 

The pheromones are updated after every iteration: 

τ(Rj) = (1 − ρ). τ(Rj) + Δτ(Rj)                 (3) 

Where: 

ρ: Evaporation rate. 

Δτ(Rj): Pheromone deposit based on solution quality. 

Local Refinement: To use memory to stabilize and improve 

the schedule. By examining the area around the current 

solution, Tabu Search improves solution X.  

 

N(X)={X′: minor adjustments to X}'s task-resource 

mappings  

 

To make sure it is not in the Tabu List L(X), the best 

neighbour is selected: 

𝑋𝑛𝑒𝑥𝑡 = 𝑎𝑟𝑔𝑋′∈𝑁(𝑋),𝑋′∉𝐿(𝑋)
𝑚𝑖𝑛 𝑓(𝑋′)            (4) 

The Tabu List L(X) ensures diversification: 

L(X): stores recently visited solutions. 

|L(X)|: Tabu list size. 

 

 The specific objective of the VMP problem determines 

the objective function. Here are a few illustrations: 

3.1.1. Minimization on Energy Use 

Reduce the total amount of energy used by the assigned 

PMs: 

𝑅𝑒 = (𝐸𝑗 ∗ 𝑦𝑗)              (5) 

3.1.2. Increase Resource Usage  

 Increase the allotted VMs’ combined resource usage. 

𝐼𝑟 = (𝐶𝑖 ∗ 𝑥𝑖𝑗)                (6) 
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3.2. Modeling Energy Consumption  

Energy consumption modelling is an essential 

component of the Virtual Machine Placement (VMP) 

problem. Using the energy consumption model, we can 

calculate and optimize the energy usage of physical machines 

(PMs) in the data centre. The VMP problem can be used to 

model energy consumption in the following ways [25]: 

 

 Measures of energy consumption: It is necessary to 

identify the elements affecting a PM’s energy usage to model 

energy consumption. These specifications could include the 

power a PM uses when no VMs are running in the 

background. 

• CPU power consumption: The amount of energy a PM’s 

CPU uses when running virtual machines and carrying 

out computational tasks. 

• Memory power consumption: The amount of energy a 

PM’s memory subsystem uses. 

• Network power consumption is the amount of energy 

used by a PM’s network interface to connect to VMs and 

other components. 

  

It is possible to find these parameters through 

measurements, product specifications, or empirical research. 

  

We can use a linear power model to express the overall 

CPU utilization (Pc) power consumption. Here is an 

illustration formula: 

 

𝑃𝑐 = 𝐼𝑝 + (𝐶𝑝 − 𝐼𝑝) ∗ 𝑇𝑢𝑐                    (7) 

 

Idle Power(Ip) measures how much energy is used when 

the CPU is not. The additional power used by the CPU when 

it is active and performing computational tasks is known as 

CPU Power(Cp). The CPU’s utilization, which ranges from 0 

to 1, is represented by the term “CPU Utilization,” which 

shows what percentage of its maximum capacity is used. The 

phrase “CPU Power - Idle Power” refers to the extra power 

used by the CPU when it is in use instead of when it is idle. 

We calculate the power used by the CPU by multiplying this 

value by the Total CPU utilization (Tuc). 

 

 The sum of the power consumption of all used Physical 

Machines (PMs) in the data centre can be used to calculate 

the total power consumption in a Virtual Machine Placement 

(VMP) model. The particular power model used for each PM 

determines the formula for the overall power consumption 

[23]. Here is a basic formula: 

𝑇𝑝𝑐 = 𝑃𝑐 ∗ 𝑦𝑗                       (8) 

 

Power Consumption represents the power usage of PMj. 

 

A binary variable named y_j indicates whether or not 

PM j is being used. y_j will be 1 if PMj is used (with at least 

one VM allocated) and 0 otherwise. 

3.3. Modeling Resource Utilization 

A crucial component of the Virtual Machine Placement 

(VMP) problem is modeling resource utilization. It calculates 

how the data center’s computational resources are allocated 

and used. An overview of how the VMP problem can model 

resource utilization is given below: 

• Parameters for Resource Utilization: 

The key variables that define the resource needs of 

Virtual Machines (VMs) and the resources available to 

Physical Machines (PMs) must be identified to model 

resource utilization. These specifications could include: 

The amount of CPU, memory, storage, and other 

resources needed by each VM is called their 

computational resource demand. 

• Computing power: The sum of each PM’s CPU, 

memory, storage, and other resources. 

 

 Measurements, virtual machine configurations, or 

resource profiling can all be used to get these parameters. 

3.4. Resource Utilization Model 

After determining the resource utilization (Cu) 

parameters, a utilisation model is built. The model connects a 

PM’s resource use to the VMs assigned.  

The model may be linear or nonlinear depending on how 

complex the resource usage behavior is. 

𝐶𝑢 =  ∑(CPU Demand_i ∗  x_i, j) / CPU Capacity_j        (9) 

Here, x_i,j is a binary variable indicating whether VMi is 

placed on PMj, and CPU Capacity_j represents the CPU 

capacity of PMj. CPU Demand_i represents the CPU 

resource demand of VMi. 

 

The total resource utilization in a Virtual Machine 

Placement (VMP) model can be formulated as the sum of all 

allocated Virtual Machines (VMs) resource utilisation.  

 

The formula for the total resource utilization (Tru) 

depends on the specific resources considered, such as CPU, 

memory, or network resources. Here is a general formula: 

𝑇𝑟𝑢 =  ∑(Resource Utilization_i)         (10) 

In this formula: 

- Resource Utilization_i represents the resource utilization of 

VMi. 

 

The resource utilization of a VM can be expressed as a 

fraction or percentage of the maximum capacity of the 

corresponding resource. The specific resource utilization 

metric depends on the type of resource being considered. 

 

Memory, storage, and other resources can all be modeled 

similarly, taking into account the demands and capabilities of 

each. 
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3.5. The Fitness Function  

 A fitness function is used in evolutionary algorithms or 

metaheuristic approaches to evaluate and compare various 

solutions or individuals in the search space when applied to 

the Virtual Machine Placement (VMP) problem. Based on 

the problem’s stated objectives and restrictions, the fitness 

function assesses a particular VM placement solution’s 

quality or desirability. 

 

Usually, the fitness function is created to reflect the 

VMP problem’s optimization objective [26]. Examples of 

fitness functions for the VMP problem include the following: 

 

3.5.1. Minimizing Energy Consumption  

The fitness function is the opposite of the allocated PMs’ 

overall energy consumption. The fitness value(Fv) should be 

lower for better solutions since the objective is to minimize 

Energy Consumption(EC). 

𝐹𝑣 =  ∑ ECj ∗ yj                 (11) 

 

3.5.2. Maximize Resource Usage 

 The total resource usage of the assigned VMs can be 

referred to as the fitness function(Ft). The fitness value 

should be higher for better solutions because the objective is 

to maximize resource utilization (Ru). 

𝐹𝑡 =  ∑ 𝑅𝑢 ∗ 𝑥_𝑖𝑗               (12) 

 A weighted sum approach has been applied to combine 

resource utilization and power consumption into a single 

fitness function. Here is the formula for the fitness function 

(Tfit): 

𝑇𝑓𝑖𝑡 = (𝑃𝑤𝑡 ∗ (( 1 − 𝑇𝑝𝑐)) + (𝑈𝑤𝑡 ∗ 𝑇𝑟𝑢)              (13) 

In this formula, Resource Utilization represents the 

resource utilization value calculated using the earlier 

formula, and Power Consumption represents the power 

consumption value calculated using the formula provided 

earlier. 

  

 Parameter w is the weight or trade-off factor 

determining the importance of resource utilisation versus 

power consumption in fitness evaluation. It should be 

between 0 and 1, where 0 prioritises power consumption, and 

1 prioritises resource utilization. For example, a higher 

weight on resource utilization (w close to 1) will prioritize 

maximizing resource utilization while considering power 

consumption, whereas a lower weight on resource utilization 

(w close to 0) will prioritize minimizing power consumption 

while considering resource utilization. 

 

4. The Enhancement of the ACOTS Hybrid 

Algorithm with the Eagle Strategy 
This section presents the enhancement of the ACOTS by 

enriching the features of the Eagle strategy. This approach 

adopted an energy-awareness local appropriateness first 

strategy to update the VM position and improve problem-

solving efficiency. The proposed approach can be better in 

many scenarios in terms of energy reduction. ACOTS, which 

combines the memory-based local refinement of Tabu 

Search, the guided exploration of ACO, and the global search 

capabilities of the modified Eagle strategy, performs better 

with ACOTS. This framework’s superiority in metrics such 

as makespan, power consumption, CPU utilization, and 

resource utilization is mathematically and practically 

demonstrated. Table 1 shows the pseudo code for the 

ACOTS-EagleMOD Strategies. 

 

Inspired by eagle hunting, the Eagle strategy is a 

metaheuristic that blends local exploitation (to improve 

solutions in those areas) with global exploration (to identify 

promising areas). It is distinguished by:  

• Global Search: Diverse exploration using a probabilistic 

method such as Levy flight or another random 

distribution. 

• Local Search: Concentrating on fine-tuning in areas with 

high potential that the global search found.  

 

Pheromone trails are used in Ant Colony Optimization 

to direct the search for the best answers. To improve 

exploitation, Tabu Search uses memory structures to prevent 

going back to previously investigated (or less-than-ideal) 

solutions. The Eagle strategy's random global search lessens 

ACO’s drawback of becoming trapped in local optima [27, 

28]. Eagle Strategy and Tabu Search ensure diversity in 

exploration by bolstering local refinement with memory. 

This hybrid strategy aims to reduce makespan (total 

execution), Optimize task scheduling to minimize power 

consumption and increase CPU utilization and resource 

allocation effectiveness. 

 

The Eagle Strategy’s efficiency during the global 

exploration stage can be significantly improved by including 

an adaptive search radius. By dynamically adjusting the 

search radius according to workload or virtual machine (VM) 

distribution, the algorithm can initially employ a larger 

radius to cover a larger portion of the solution space and then 

gradually reduce it as solutions begin to converge. This 

approach helps to preserve a balance between exploration 

and exploitation by avoiding early convergence to local 

optima and improving the ability to find globally optimal 

solutions [2].  

  

 By combining the exploration-exploitation balance of 

Modified Eagle Strategy (EAGLEMOD), the local search 

refinement of Tabu Search (TS), and the global search 

capabilities of Ant Colony Optimization (ACO), the 

Enhanced ACOTS_EAGLEMOD algorithm is intended to 

address the VM Placement problem. The flow diagram in Fig. 

1 shows how these techniques complement one another to 

produce the best possible outcome. 
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Table 1. The Pseudo code for the ACOTS-EagleMOD strategy 

BEGIN 

// Initialize parameters 

Initialize: 

    num_iterations 

    num_ants 

    tabu_tenure 

    evaporation_rate 

    pheromone_deposit 

    step_size 

// Define objective functions 

Define objective_function_ACO(x, y) 

Define objective_function_Eagle(x, y) 

// Initialize pheromone matrix 

pheromone_matrix ← [[1.0] for i = 1 to num_positions] 

// Generate initial solution 

initial_solution ← generate_initial_solution(num_positions) 

// Define ant solution construction 

FUNCTION construct_ant_solution(pheromone_matrix, 

heuristic_matrix) 

    Use Ant Colony Optimization (ACO) strategy to construct a 

solution 

END FUNCTION 

// Define Eagle Strategy 

FUNCTION perform_eagle_strategy(pheromone_matrix, 

heuristic_matrix) 

    Apply Eagle Strategy operations 

END FUNCTION 

// Update the best solution and fitness 

FUNCTION update_best_solution(new_solution, best_solution, 

best_fitness) 

    IF objective_function(new_solution) < best_fitness THEN 

        best_solution ← new_solution 

        best_fitness ← objective_function(new_solution) 

    END IF 

    RETURN best_solution 

END FUNCTION 

// Define Tabu Search 

FUNCTION perform_tabu_search(initial_solution) 

    current_solution ← initial_solution 

    tabu_list ← [] 

    best_solution ← initial_solution 

    WHILE stopping_condition NOT met DO 

        neighboring_solutions ← 

generate_neighboring_solutions(current_solution) 

        best_neighboring_solution ← NULL     

        FOR solution IN neighboring_solutions DO 

            IF best_neighboring_solution IS NULL OR 

objective_function(solution) < 

objective_function(best_neighboring_solution) THEN 

                best_neighboring_solution ← solution 

            END IF 

        END FOR         

        // Update tabu list 

        IF tabu_list.size > tabu_tenure THEN 

            Remove oldest element from tabu_list 

        END IF         

        // Update current and best solutions 

        current_solution ← best_neighboring_solution 

        IF objective_function(current_solution) < 

objective_function(best_solution) THEN 

            best_solution ← current_solution 

        END IF 

    END WHILE 

    RETURN best_solution 

END FUNCTION 

// Run the hybrid algorithm 

FUNCTION hybrid_algorithm() 

    best_solution_ACO ← initial_solution 

    best_fitness_ACO ← 

objective_function_ACO(initial_solution) 

    best_solution_Eagle ← initial_solution 

    best_fitness_Eagle ← 

objective_function_Eagle(initial_solution) 

    FOR iteration = 1 TO num_iterations DO 

        // Apply ACO 

        new_solution_ACO ← 

construct_ant_solution(pheromone_matrix, heuristic_matrix) 

        new_fitness_ACO ← 

objective_function_ACO(new_solution_ACO) 

        best_solution_ACO ← 

update_best_solution(new_solution_ACO, best_solution_ACO, 

best_fitness_ACO) 

        // Apply Eagle Strategy 

        new_solution_Eagle ← 

perform_eagle_strategy(pheromone_matrix, heuristic_matrix) 

        new_fitness_Eagle ← 

objective_function_Eagle(new_solution_Eagle) 

        best_solution_Eagle ← 

update_best_solution(new_solution_Eagle, best_solution_Eagle, 

best_fitness_Eagle) 

        // Compare solutions 

        IF best_fitness_ACO < best_fitness_Eagle THEN 

            best_fitness_hybrid ← best_fitness_ACO 

        ELSE 

            best_fitness_hybrid ← best_fitness_Eagle 

        END IF 

    END FOR 

    final_solution ← perform_tabu_search(best_fitness_hybrid) 

    RETURN final_solution 

END FUNCTION 

END 
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Fig. 1 Flow diagram of enhanced ACOTS_EAGLEMOD approach for the virtual machine placement 
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5. Simulation Evaluation 
The Python 3.8 simulator, which runs on a PC with an 

Intel Core i7 processor, 8 GB RAM, 3.4 GHz CPU, and 

Windows 10 operating system, is used to evaluate the 

algorithms ACOTS_EAGLEMOD, ACO, TS, and 

EAGLEMOD for a variety of workloads, virtual machines, 

and physical machines.  

  

 Table 2 shows the simulation environment for the 

experiments. 

 
Table 2. Configuration parameters for virtual environment 

Types Parameters  Values 

Data 

Centre 

Number of Data 

Center 

1 

 Arch x86 

 OS Linux 

 VM Monitor Xen 

Virtual 

Machines 

Processor speed 9726MIPS 

 Memory 0.5 GB 

 Bandwidth 1 GB/s 

 Number of VMs 200 to 1200 

 VM Monitor Xen 

Host   

 Storage 4.0 TB 

 RAM 16.0 GB 

 Bandwidth 15GB/s 

Task Task Ranges   100 to 2000 

 Length of the Task 100000 

 Size of a File under 

Consideration 

300 MB 

 Amount of energy 

consumption (Watt) 

in 100% CPU 

utilization 

[100–1000] 

 

5.1. Power Consumption Performance 

Based on the comparative analysis shown in Figure 2, it 

appears that in the presented research or study, the ACOTS 

(ACO and Tabu Search) algorithm with Eagle Strategy 

consistently exhibits lower power consumption than other 

algorithms as the number of VM requests increases.  

 

The improved performance of ACOTS_EMOD is 

highlighted by the updated data, which makes it the best 

algorithm for power-efficient virtual machine management, 

particularly in settings with varying workloads. 

The shortcomings in scalability and energy optimization are 

highlighted by the notable power increase for ACO and TS at 

higher VM counts. 

 

Although ACOTS and EagleMOD these algorithms 

show a moderate level of efficiency, ACOTS_EMOD 

performs better, particularly when workloads are heavy. 

This suggests that the ACOTS with Eagle Strategy 

algorithm is more power-efficient in handling more VM 

requests. 

 
Fig. 2 power consumption vs. the number of requested VMs 

 

5.2. CPU Utilization Performance 

CPU utilization performance refers to how effectively 

the CPU resources are utilized during the execution of an 

algorithm or system [2]. High CPU utilization indicates that 

the CPU is being utilized efficiently and effectively, while 

low CPU utilization may suggest underutilization or idle 

periods. 

 

In the context of this optimization algorithm, CPU 

utilization performance is often evaluated in terms of the 

percentage of time the CPU is actively engaged in executing 

computations related to the algorithm. Figure 3 shows higher 

CPU utilization, indicating that the algorithm uses CPU 

resources efficiently. 

 

 
Fig. 3 Average CPU utilization 

 

5.3. Resource Utilization Performance 

ACOTS_EMOD effectively maximizes resource usage, 

as evidenced by consistently high utilization values. This is 

consistent with its ability to reduce power consumption (as 

demonstrated in the previous graph), demonstrating its 

strength as a VM placement algorithm in resource-

constrained settings. 
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Despite maintaining a respectable level of stability, 

EagleMOD and ACOTS’ utilization levels are significantly 

lower than ACOTS_EMOD’s, suggesting that resource 

allocation could be improved. ACO and TS use inefficient 

resources, especially at lower workloads, which may result in 

poor performance in real-world situations where effective 

virtual machine placement is necessary. ACOTS_EMOD 

maintains high utilization with little fluctuation as the 

number of virtual machines (VMs) rises. This suggests 

strong adaptability to changing or high-demand situations. 

Resource utilization refers to the efficient and effective usage 

of available resources during the execution of an algorithm 

or system. In Figure 4, resource utilization typically refers to 

how effectively the algorithms utilize server resource CPU to 

solve the virtual machine placement problem. 

 

 
Fig. 4 Average resource utilization 

 
Fig. 5 Comparative analysis of the makespan (sec) versus the number of jobs 

 

5.4. Makespan 

The makespan measures the total time required to 

complete the execution of a set of tasks or operations, as 

shown in Figure 5. In the context of an algorithm, the 

makespan refers to the time taken to execute the entire 

algorithm, from the start to the completion. Figure 5 shows 

that the projected method decreases the makespan compared 

to the existing algorithm. 
 

6. Conclusion and Future Work  
This paper uses a hybrid metaheuristic placement 

algorithm to present the best solution for VM placements in 

cloud environments. The proposed method aims to maximize 

VMP efficiency while simultaneously reducing resource and 

energy waste. Using the hybrid metaheuristic algorithm 

ACOTS (Ant Colony Optimization with Tabu Search) 

enhancing with the feature of Eagle Strategy, this paper 

offers the best solution for VM placements in cloud 

environments. The suggested strategy addresses the problem 

of local optimum. Comparisons are made between the 

improved algorithm and Ant Colony Optimization, Tabu 

search, ACOTS, and EAGLE MOD. Based on a fitness 

function that considers the total CPU Utilization of the 
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requested VMs, makespan, power consumption, and resource 

waste in the cloud DC, the best VMP solution was 

determined. The enhanced ACOTS with the Eagle Strategy 

algorithm is more effective than the other algorithms 

mentioned, according to the experimental results of the 

simulation evaluations. This algorithm combines the Ant 

Colony Optimization approach with the Tabu Search 

approach to find an optimal or near-optimal solution for the 

given problem. The Eagle Strategy guides the exploration 

and exploitation of the search space. At the same time, the 

Tabu Search helps to overcome local optima by searching in 

the neighbourhood of the current solution. In future, 

Strategies such as task migration, workload redistribution, 

Use of Reinforcement Learning (RL) to train the eagle 

strategy to improve decision-making over time can be 

explored.  
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