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Abstract - Over the past several years, we have witnessed remarkable progress in hyperspectral (HS) images taken by 

unmanned aerial vehicles. The HS image is very high in spectral resolution in many narrow contiguous bands. The HS image 

compression becomes necessary to effectively handle large amounts of remote sensing data for storage and communication 

purposes. In recent years, many compression algorithms have been proposed to achieve a high compression ratio, but they 

either suffer from coding efficiency or coding memory or coding complexity. Transform-based Hyperspectral Image 

Compression Algorithm (HSICA) exploits the correlation that exists between the pixels or frames of the HS image and works 

with both types of compression. The wavelet transform-based set partitioned HSICAs are a special type of transform based 

HSICAs that use data-dependent link lists or image size-dependent state tables to track the significance of sets or coefficients 

and have better compression performance than other HSICAs due to the exploitation of the HS image redundancies. The 

proposed compression algorithm 3D-Low Memory Zerotree Coding (3D-LMZC) uses the curvelet transform to improve 

directional elements and better the ability to represent edges and other singularities along curves. The objective of the 

proposed HSICA is to achieve a high compression ratio while simultaneously representing HS images at a variety of scales 

and directions. This will allow for the provision of compressed HS images of a high quality. The results of the experiments 

reveal that the suggested approach has a low coding memory demand, and compared to other state-of-the-art compression 

algorithms, it achieves an increase in coding gain of approximately 5%.  

Keywords - Curvelet transform, Hyperspectral image compression, Multiresolution, Set partitioned compression algorithm, 

Zerotree coding. 

1. Introduction  
Hyperspectral Imagery (HSI) collects electromagnetic 

spectrum information (spatial and spectral) in many 

continuous and narrow spectral bands from ultraviolet to 

infrared wavelength. The HS image is 3D data (spatio-

spectral cube) with 2D spatial information and 1D spectral 

signature [1, 2]. Due to this strong resolving power for fine 

spectra, the HS images are utilized extensively in a variety of 

contexts such as archaeological analysis, anomaly detection, 

biomedicine, cultivation, climatology, change area detection, 

drug identification, meteorology, security, food safety 

inspection and control, medical, mining, pollution 

monitoring, remote sensing, oceanography etc. [3, 4]. The 

HS image sensors generate data that must be compressed 

before it communicates to the receiver station. Thus, the 

image compression process of HS image becomes necessary 

to save data transmission bandwidth, reduces demand of 

sensor memory, lower energy consumption, and minimise 

data processing time [5]. The HSICA aims to improve the 

sensor performance by reducing computational complexity 

and removing unwanted data redundancy, achieving high 

coding efficiency and diminishing coding memory 

requirement. The image Compression Ratio (CR) is a unit 

less parameter, a ratio of the memory required by the 

uncompressed HS image to the reconstructed HS image. 

High data redundancy gives high CR, while low data 

redundancy gives low CR [6]. 

 

The compression algorithms can be classified based on 

the coding process or HS image data loss. The HS image 

data loss approaches include lossy compression, lossless 

compression, and near-lossless compression, while based on 

the coding process, can be further categorized into predictive 

coding, vector quantization, compressive sensing, transform 

coding, unmixing based compression, neural network based, 

and machine learning [7]. There is no loss of data for the 
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lossless compression, while for near-lossless, there is very 

less data loss. Data loss happens for the lossy compression 

but depends upon the coding process and bit rate. 

 

In view of the categorization of the HSICAs based on 

the coding complexity, the predictive coding-based HSICA 

has low complexity. In contrast, neural networks and 

machine learning-based HSICA have high coding gain with 

very high coding complexity.  

 

In the predictive coding based HSICA, one or more 

predictors are used to calculate the residual errors in the 

spectral dimension of the HS image and the errors are coded 

by any entropy coding methods (arithmetic coding, Huffman 

coding, variable length coding, etc.) [8].  The vector 

quantization, known as the dictionary-based or code book 

method, has high coding complexity and gain. It has four 

steps (block coding, training set generation, codebook 

generation, and quantization). The codebook is different for 

each HS image sensor. This method is useful when a large 

amount of HS data must be transmitted, as the codebook 

generation is performed only once. Thus, it saves time with 

high coding gain for huge HS data [9, 10]. Compressive 

sensing-based HSICA shifts the computational complexity 

from the encoder to the decoder. It partitioned the HS image 

data into small blocks (pieces), compresses it and sends it to 

the decoder end. These compression algorithms have low 

coding memory requirements during the process and require 

less complex hardware than traditional software [11].  

 

The Neural Network (NN) based HSICAs use multiple 

layer structures to compress HS images. It has a very high 

coding gain with a very complex neural network structure, 

increasing the compression algorithm's complexity. The 

neural network-based compression algorithms work with 

predictive coding or transform coding algorithms [17]. The 

machine learning-based HSICAs use the learning methods 

(deep learning, etc) to compress HS image data. In the same 

way, as NN based HSICA, learning based HSICA has very 

high complexity. It is useful for huge HS data compression 

because the learning process is only completed once. These 

algorithms change from sensor to sensor depending on the 

type of sensor [12].  

 

In recent times, FPGA based HSICAs have been 

proposed. These compression algorithms use the spectral un-

mixing of the pixels of HS images to achieve compression. 

These algorithms have two steps in which endmembers are 

extracted from the HS image followed by the abundance of 

each endmember is determined for each pixel vector of HS 

images [13]. 

 

Transform coding compression algorithms have low 

coding memory requirements have low complexity, and can 

work with lossy and lossless compression processes. 

Wavelet, Karhunen-Lobve, and cosine transform are the 

most used mathematical transform in transform-based 

HSICA [7]. The wavelet transform has many advantages, 

including simultaneous localization in the time and 

frequency domain [14]. The curvelet transform, on the other 

hand, contains singularities comparable to curves, and it 

provides information about the scale, location, and 

orientation of the image, which positions it as an excellent 

option for image compression. Apart from HS image 

compression, curvelet transform is also used for image fusion 

[15], feature classification [16] and image denoising [17].  

 

The 3D set partitioned HSICAs are a special type of 

compression algorithm that uses the set structure of the 

transform HS image to track the significance of 

insignificance of the sets or coefficients. The 3D set 

partitioned HSICAs have lower coding complexity, high 

coding gain, embeddedness, and fewer coding memory 

requirements than other transform HS image compression 

algorithms. The 3D-Set Partitioning in Hierarchical Trees 

(3D-SPIHT), 3D-Set Partitioned Embedded bloCK (3D-

SPECK), 3D-No List SPIHT (3D-NLS) are state of the art 

transform based HSICA. The complex compression 

algorithm requires a complex sensor architecture with much 

energy to execute the process [18, 19]. 

 

This manuscript identifies the coding memory, coding 

complexity, and coding efficiency issues that occur in the 

hyperspectral image compression process. The contributions 

of this study include the following. 

• High coding memory poses a great threat to the 

performance of the HS image sensors. The proposed 

HSICA minimize the requirement for coding memory by 

the use of less number of markers.  

• The coding complexity is at par with state of the art 3D-

NLS but is less than multi-fold to the 3D-SPIHT. 

 

The present compression algorithm follows the same 

partition rule and mathematical transform (curvelet 

transform) as 3D-Listless Embedded Zerotree Set 

Partitioning Coding (3D-LEZSPC) [23]. It uses a smaller 

number of state markers than 3D-LEZSPC. Through this, the 

demand for coding memory reduces by 20%. The coding 

efficiency of the proposed compression algorithm and 3D-

LEZSPC is almost the same, but the coding efficiency is 

slightly higher. 

 

The remaining sections are organized as follows. First, 

the works related to transform based HSICA are covered in 

Section 2, which includes the details about the curvelet 

transform and set partitioned-based transform HSICA. 

Section 3 proposes the details of our proposed 3D-Low 

Memory Zerotree Coding (3D-LMZC). The detailed 

experimental evaluations of the proposed 3D-LMZC with the 

other HSICA are reported in Section 4. Section 5 concludes 

the article with a discussion of future trends. 
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2. Related Work  
Last couple of decades, many compression algorithms 

have been proposed for hyperspectral images. Initially, the 

compression algorithm considers HS images as 3D data 

arranged as a continuous stack of 2D data. The compression 

algorithm compressed the HS image frame by frame. 

Through this, the compression algorithm failed to eliminate 

the correlation (spectral) between the different HS image 

frames. The 3D mathematical transform removes the spectral 

and spectral correlation. The wavelet transform has many 

advantages to the Fourier transform, such as extracting local 

spectral and temporal information. But, the new family of 

mathematical transforms, such as the curvelet transform, 

showed better coding efficiency than the wavelet transform. 

Generating image data creates the issue with the wireless 

channel and affects the performance of the devices associated 

with it. The compression algorithms also address this issue. 

2.1. Curvelet Transform 

Curvelet Transform (CT) has multiple advantages over 

the wavelet transform, such as curve similar singularities, 

which provide adequate information about the scale, 

location, and orientation [20]. Candes and Donoho invented 

the first version of the curvelet transform in 1999. However, 

it suffered from excessive coding complexity and output 

image redundancy as it was the first generation. The second 

generation curvelet transform (fast discrete curvelet 

transform) is developed to solve the above mention issues. 

Two distinct types of curvelet transform families are utilized 

for the fast curvelet transform. They are the Unequispaced 

Fast Fourier Transform (USFFT) based curvelet transform 

and the frequency wrapping based curvelet transform. The 

section of the above methods depends on the application type 

[21, 22]. The curvelet transform-based HSICA 3D-LEZSPC 

shows a higher coding efficiency than wavelet transform 

based HSICA [23]. 

 

2.2. Set Partitioned Hyperspectral Image Compression 

Algorithms 

The set partitioned HSICAs achieve compression by 

aggregating many unimportant coefficients in either spatial 

block cubes, spatial trees, or spatial block cube trees. These 

algorithms have low coding complexity and can work with 

lossy and lossless compression processes according to the 

availability of the remaining bits. The significance of the 

coefficients, block cubes, or block cube tree is either tracked 

by the linked lists or markers (state table). The set partitioned 

HSICAs future divided into two types named list-based set 

partitioned HSICA and listless set partitioned HSICA [24-

33]. The list-based set partitioned HSICA uses data-

dependent link lists to track the significance/insignificance of 

the coefficients/sets. The 3D-SPECK and 3D-SPIHT are the 

most famous HSICA as they have low computational 

complexity and high coding efficiency than other wavelet 

transform-based HSICAs [24, 25]. The listless set partitioned 

HSICA uses markers to track the significance/insignificance 

of the coefficients/sets. The 3D-LSK and 3D-NLS are state 

of art compression algorithms in this category [29, 30]. 

3. 3D- Low Memory Zerotree Coding (3D-

LMZC) 
The proposed algorithm uses the same set structure and 

partition rule and generates similar output embedded bit 

stream types as 3D-SPIHT [17] and 3D-NLS [12]. The 

functionalities of the lists LIP, LIS and LSP in the 3D-SPIHT 

are accomplished by the fixed size of the markers. The 

average coding memory required by the markers in 3D-NLS 

is 8 bits per coefficient, while the proposed algorithm needs 

an average of 1.25 bits per coefficient average coding 

memory. The demand for coding memory is minimized by 

using only two different markers: the State Marker for 

Coefficients (SMC) and the State Marker for Zerotrees 

(SMZ).  

The SMC markers [δ] are used to define the state 

(significance) of the coefficients. It works like a scanner. The 

current coefficient is tested for significance, insignificance, 

or refinement against the current threshold. Thus, a 

coefficient must be assigned to any two values for the SMC 

marker depending on the situation against the current 

threshold. These two values of SMC for each coefficient 

need only one bit per coefficient. All coefficients in the LLL 

sub-band are initialized by the SMC = ‘0’ marker, while the 

rest are initialized by the SMC = ‘1’ marker. The already 

significant coefficients having the SMC value '1' will 

generate the numeric value outputting the nth significant bit 

of the corresponding coefficient. The SMC markers are 

defined in Table 1. The top bit plane 'n' is calculated in 

Equation 1 as 

𝑛 =  ⌊log2 max[Γ𝑖]⌋ (1) 

 
Table 1. Explanation of SMC markers  

Marker Explanation  

δ[0] Coefficient is not under consideration for 

significant tests against ongoing bit plane. 

δ[1] The coefficient will be checked for 

significance/insignificance/refinement for 

significant tests against the ongoing bit plane.   

 

In addition to the SMC markers, one more marker is 

used to define the state (significance or insignificance) of the 

zerotrees. These markers are known as State Markers for 

Zerotrees (SMZ). The SMZ markers have the same 

functionalities as LIS in 3D-SPIHT. From the property of 

wavelet transform, seven-eighth of total transform 

coefficients are present in the seven-eighth lowest sub-bands 

of the wavelet pyramid and have no descendants (end leaf 

nodes of zerotree). Hence, these coefficients need not be 

assigned any SMZ value. The detail descriptions of the SMZ 

markers have been covered in Table 2.  
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Table 2. Explanation of SMZ markers 

Marker Explanation 

ω[0] No consideration is given to the tree node in the 

significant test that is performed against the 

contemporaneous threshold. 

ω[1] To type 'A' zerotree node: A node whose offspring 

and descendants are examined to see whether they 

significantly contribute to the ongoing bit plane. 

ω[2] Kind of 'B' zerotree node: A node whose offspring 

and descendants are examined to see whether they 

significantly contribute to the ongoing bit plane. 

ω[3] The tree node will not tested for significance in 

the upcoming bit plane. 

 

In the significance testing of the coefficients, the 

zerotree node has any one possible state mentioned in Table 

2. The two-bit marker defines this state. Simple arithmetic 

suggests that, on average, for any coefficient, only 0.25 bit 

per zerotree node is required for the SMZ marker. So, the 

total memory requirement for the HS image is given as 1.25 

bits per coefficient.  

 

In the proposed algorithm, all zerotree nodes in the LLL 

sub-band are initialized with the SMZ = ‘1’ while the 

remaining zerotree nodes are initialized with the SMZ = ‘0’. 

During the significance testing of the zerotree nodes, if Type 

A zerotree is found significant, the output is coded with the 

‘1’ and partitioned into eight children and associated grand 

descendent set. First, eight immediate descendants are tested 

for significance against the current bit plane, and the output 

is encoded by the magnitude bit and sign bit. The status of 

the SMC marker is updated accordingly. Afterwards, the 

grand descendants are tested for significance against the 

current threshold. If any one of them is found significant, 

then eight new Type, A zerotree with the offspring as 

zerotree node, will be created with SMZ = ‘1’, and the 

original zerotree root node is assigned the new marker value 

as SMZ = ‘3’. If the Type A zerotree is found insignificant, 

the associated marker is assigned the new numeric value as  

SMZ = ‘2’. The rest of the zerotree nodes are tested 

sequentially for their significance. 

The proposed algorithm has no skip markers as 3D-NLS is 

used for the first coefficient of each zerotree node. If  Type B 

zerotree is found significant, then eight new type A created 

from its parents' node and grandparent node are assigned the 

new marker value SMZ = ‘3’. In contrast, if it is found 

insignificant, the encoder will move to the next node without 

changing any values of the markers.  
 

Table 3. 3D-LMZC encoding process 

3D-Low Memory Zerotree Coding Algorithm 

Encoding Process 

Input:  Curvelet Transform (5 levels) is applied to 

the HS image with the dimension M x N x P. Using 

the linear indexing method, it is transformed into the 

one-dimensional array Γ.  

Output: Generation of Embedded bitstream 

 Initialization Pass 

 Fix: All coefficients of the LLL sub-band are 

assigned SMC [δ] = ‘1’ while others are set as 

SMC = ‘0’ 

Fix: Tree nodes of the LLL band with SMZ [ω]= 

‘1’ and the rest of the associated tree nodes are 

mentioned as SMZ = ‘0’ 

Bit plane (all) 𝑛 =  ⌊log2 max[Γ𝑖]⌋ 
Required bits 𝜂 = [𝐵𝑖𝑡 𝑟𝑎𝑡𝑒 ∗ 𝑀 ∗ 𝑁 ∗ 𝑃] 

 Bit Plane Pass 

  while (n≥0) 

  Insignificant Coefficient Pass 

  for i = 1:η 

   if {δ (i)  = ‘1’ && 2n  ≤ Г(i) ≤ 2n+1 } 

    Output = ‘1’ and sign bit of  Г(i) 

   end 

  end 

  Insignificant Set Pass 

  for j = 1:η/8 

   if {ω(j) = ‘1’} 

    if {Max_SoT_A ≥ 2n} 

     Output = ‘1’ 

     for μ = {8j-7 : 8j} 

      if {2n  ≤ Г(μ) ≤ 2n+1 } 

       Output = ‘1’ and sign bit of  

Г(μ) 

       Set δ (μ) = ‘1’ 

      end 

     end 

    end 

    if {Max_SoT_B ≥ 2n} 

     Output = ‘1’ 

     Fix ω (8j-7) =  ‘1’    ;      Fix ω (8j-6) 

= ‘1’ 

     Fix ω (8j-5) =  ‘1’   ;      Fix ω (8j-4) 

= ‘1’ 

     Fix ω (8j-3) =  ‘1’    ;      Fix ω (8j-2) 

= ‘1’ 

.     Fix ω (8j-1) =  ‘1’    ;      Fix ω (8j) = 

‘1’ 

     Fix ω (j) = ‘3’ 

    else 

     Fix ω (j) = ‘2’ 

     elseif { ω (j) = ‘3’} 

      if {Max_SoT_B ≥ 2n} 

       Output = ‘1’ 

       Fix ω (8j-7) =  ‘1’  ;  Fix ω (8j-

6) = ‘1’ 

       Fix ω (8j-5) =  ‘1’  ;  Fix ω (8j-

4) = ‘1’ 

       Fix ω (8j-3) =  ‘1’  ;  Fix ω (8j-

2) = ‘1’ 

       Fix ω (8j-1) =  ‘1’  ;   Fix ω 

(8j) = ‘1’ 

       Fix ω (j) = ‘3’ 
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      end 

     end 

    end 

   end 

  end 

  Refinement Pass 

  for γ = 1: η 

   if {δ(γ) = ‘1’ && Г(γ)  ≥ 2(n+1) } 

    Output = nth bit of the Г(γ) 

   end 

  end 

 n = n-1 

 end 

  

4. Results and Discussion  
In order to show the effectiveness of the 3D-LMZC, its 

performance is compared with the other HSICA 3D-SPECK 

(Compression Algorithm 1) [25], 3D-SPIHT (Compression 

Algorithm 2) [25], 3D-SDB-SPIHT (Compression Algorithm 

3) [26], 3D-FSPIHT (Compression Algorithm 4) [27], 3D-

WBTC (Compression Algorithm 5) [28], 3D-LSK 

(Compression Algorithm 6) [29], 3D-NLS (Compression 

Algorithm 7) [30], 3D-LMBTC (Compression Algorithm 8) 

[31], 3D-LCBTC (Compression Algorithm 9) [32] and 3D-

ZM-SPECK (Compression Algorithm 10) [33] on four 

publicly available HS images named as Washington DC Mall 

(HSI I), Yellowstone Scene 0 (HSI II), Yellowstone Scene 3 

(HSI III), and Yellowstone Scene 18 (HSI IV). The 

Yellowstone dataset has natural HS images of trees, forests, 

water, etc., while the Washington DC Mall HS image has 

man-made structures. Washington DC Mall HS has a spatial 

dimension of 1280 and 307 with 191 frequency frames, 

while Yellowstone dataset images have a spatial dimension 

of 512 and 680 with 224 frequency frames.  For the 

experiments, the HS images are cropped '256 x 256 x 256' 

from the topmost left corner of the HS image. The five-level 

curvelet transform (unequispaced fast fourier transform) 

converts the HS image to the frequency domain. After the 

transform, the HS image is quantized to the nearest integer. 

The linear indexing approach is utilized to transform from 

the 3D matrix to the 1D array. The coding efficiency, coding 

memory and coding complexity are the performance metrics 

used to evaluate the proposed HS image compression 

algorithm with other compression algorithms. The Peak 

Signal to Noise Ratio (PSNR) calculated in decibels (dB) as 

a unitless parameter is used to measure the coding efficiency 

of the compression algorithms. Kilobytes (KB) are used to 

calculate the amount of coding memory, while seconds are 

used to measure the complexity of the coding.  

 

4.1. Coding Efficiency 

The PSNR measures the coding efficiency. The PSNR is 

used to measure the difference between the pixel values of 

the HS images (original and reconstructed) [34]. The HS 

image before the compression process is defined as G (α,β,γ) 

and the HS image after the compression process is defined as 

H (α,β,γ). The dimension of the HS image cube is defined as 

‘λ’. The  Gmax is the maximum numeric value of the original 

HS image. Mathematically, it is defined in Equation 2 as 

𝑃𝑆𝑁𝑅 

=   20 log10 [
𝐺𝑚𝑎𝑥

1
(𝜆 × 𝜆 × 𝜆)

  ∑ ∑ ∑ [𝐺(𝛼, 𝛽, 𝛾)  −   𝐻(𝛼, 𝛽, 𝛾)]2
𝑧𝑦𝑥

] 
(2) 

The compression ratio (CR) is defined in Equation 3 as 

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 (𝐶𝑅) =  
∑ ∑ ∑ [𝐺(𝛼, 𝛽, 𝛾)]𝑧𝑦𝑥

∑ ∑ ∑ [𝐻(𝛼, 𝛽, 𝛾)]𝑧𝑦𝑥

       

(3) 

PSNR (coding efficiency) versus bit rate for different 

hyperspectral compression algorithms with 3D-LMZC is 

tabulated in Table 4. From the table, it is clear that 3D-

LMZC has a higher coding gain than other HSICAs. Due to 

the curvelet transform, the proposed compression algorithm 

has a higher coding gain than other compression algorithms. 

Simulation results show that 3D-LMZC surpasses the 3D-

SPIHT and 3D-NLS at each bit rate. It is observed that the 

variation of PSNR between 3D-LMZC and 3D-SPIHT exists 

in the range of 0.19 dB to 0.38 dB for HSI I, 0.25 dB to 0.53 

dB for HSI II and 0.14 dB to 0.35 dB for HSI III. The 

variation of PSNR between 3D-LMZC and 3D-SDB-SPIHT 

exists in the range of 0.31 dB to 0.56 dB for HSI I, 0.45 dB 

to 0.74 dB for HSI II and 0.29 dB to 0.63 dB for HSI III. The 

variation of PSNR between 3D-LMZC and 3D-FSPIHT 

exists in the range of 0.25 dB to 0.63 dB for HSI I, 0.45 dB 

to 0.68 dB for HSI II and 0.3 dB to 0.6 dB for HSI III. In the 

same way, variation of PSNR between 3D-LMZC & 3D-

NLS exists in the range of 0.33 dB to 0.76 dB for HSI I, 0.34 

dB to 0.74 dB for HSI II and - 0.4 dB to 0.51 dB for HSI III. 

The 3D-LMZC is outperformed in all bit rates except for the 

3D-NLS, as it has more significant coefficients than the 

proposed HSICA 3D-LMZC.  

 

Table 5 details the different compression algorithms 

based on significant bits (Newly Significant Coefficients as 

NSC) and refinement bits (Refinement Coefficients as RC) 

for the different bit rates. It has been clear that the proposed 

3D-LMZC generates a more significant bit than other state of 

art HSICA for almost all bit rates with more refinement bits. 

The results presented in Table 5 make it abundantly evident 

that 3D-LMZC outperforms any other state-of-the-art 

HSICA. The Bjontegaard metric calculation calculated in 

Table 6 is a savings bit calculation using PSNR as the choice 

of objective quality metric across all bit rates under test [35]. 

  

4.2. Coding Memory 

The listless HSICAs require fixed coding memory, 

which depends on the size of the HS image under test while 

list-based HSICAs require dynamic memory depending on 
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the bit rate (bpppb). For extremely low bit rates (0.001 to 

0.1), 3D-SPIHT, 3D-SDB-SPIHT, and 3D-FSPIHT have low 

coding memory requirements because less coefficients are 

present for the processing. However, for the high bit rate, the 

demand for coding memory of these HSICAs increases 

rapidly, making them slow. Listless HSICAs perform well 

with constant coding memory requirements for low to high 

bit rates. The 3D-LMZC uses only two markers, requiring 

only 1.125 bits per coefficient marker, while state of the art 

3D-NLS requires 8 bits per coefficient marker. The SMC 

marker requires a coding memory of one bit per coefficient, 

while the SMZ marker requires an average of 0.125 bits per 

coefficient coding memory. Less coding memory 

requirement reduces the multiple reading/writing operations, 

saving sensor power. Table 7 gives the cumulative coding 

memory requirement for the different HSICAs. 

 
4.3. Coding Complexity  

Due to the listless compression, it has a lower 

complexity than other list based compression algorithms but 

has a greater time requirement than 3D-NLS, as shown in 

Table 8. It is common knowledge that the time required for 

encoding will always be more than the time required for 

decoding. This is because comparison operations are skipped 

during the decoding process in favor of more efficient 

skipping of zerortrees and sub-bands [36, 37]. The proposed 

HSICA has the lowest decoding time in most of the bit rates, 

as shown in Table 9. The listless HSICAs have low coding 

complexity as they cannot perform multiple read or write 

operations (memory access). The proposed HSICA has 

higher coding complexity than 3D-NLS because it has more 

computations in searching for the coefficients and sets, 

which requires more time. 

 

Figure 1 provides a visual representation of the HS 

image (original) as well as the reconstructed HS image that 

was produced following the compression procedure for HSI 

II (frames 50, 100, and 150). 

 

5. Comparative  Analysis 
Table 10 presents a concise comparative analysis of the 

various state-of-the-art HSICAs compared to the suggested 

compression method known as 3D-LMZC. The findings 

make it abundantly evident that the 3D-LMZC method 

performs far better than the most advanced link list 

compression algorithm. 

 

Table 4. Performance evaluation of different HSICAs with proposed 3D-LMZC on coding efficiency (PSNR) 
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 HSI I 

0.001 14000 26.28 26.28 26.34 26.22 26.25 26.14 25.90 26.26 26.41 26.32 27.07 

0.005 2800 28.95 28.95 29.01 28.84 28.93 28.71 28.71 28.70 28.66 28.73 29.84 

0.01 1400 30.08 30.08 30.14 29.87 30.04 29.99 29.83 29.98 30.01 29.99 30.91 

0.05 280 34.23 34.23 34.33 34.27 34.21 34.04 33.81 33.99 34.29 34.06 34.97 

0.1 140 37.22 37.22 37.48 37.11 37.20 36.96 37.00 36.83 37.34 36.87 38.14 

0.25 56 42.17 42.17 42.21 42.27 42.16 41.62 41.69 41.34 42.28 41.37 43.08 

0.5 28 48.02 47.99 48.09 47.91 47.97 47.01 47.79 47.51 48.11 47.55 48.95 

 HSI II 

0.001 16000 27.11 26.75 26.63 26.69 27.09 26.83 26.61 26.75 26.87 26.82 27.89 

0.005 3200 29.45 29.31 29.11 29.17 29.43 29.27 29.25 29.24 29.41 29.25 30.18 

0.01 1600 30.28 30.19 30.01 30 30.27 30.27 30.15 30.31 30.53 30.33 31.11 

0.05 320 33.76 33.61 33.45 33.5 33.73 33.56 33.59 33.51 33.69 33.54 34.52 

0.1 160 35.57 35.44 35.4 35.33 35.56 35.49 35.41 35.45 35.55 35.46 36.21 

0.25 64 39.30 39.19 39.01 38.94 39.29 39.26 39.17 39.22 39.37 39.23 40.02 

0.5 32 43.62 43.65 43.51 43.54 43.51 43.57 43.26 43.55 43.62 43.58 44.53 

 HSI III 
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0.001 16000 27.82 27.49 27.31 27.34 27.8 27.78 27.28 27.88 28.07 27.92 27.97 

0.005 3200 30.24 30.09 29.84 29.91 30.22 30.03 30.03 30.01 30.44 30.02 31.17 

0.01 1600 31.27 31.14 30.8 30.87 31.25 31.17 31.1 31.13 31.42 31.14 32.31 

0.05 320 34.57 34.39 34.27 34.3 34.55 34.58 34.27 34.44 34.67 34.51 35.14 

0.1 160 36.63 36.49 36.29 36.32 36.64 36.42 36.49 36.35 36.74 36.37 37.34 

0.25 64 40.83 40.63 40.47 40.51 40.84 40.46 40.59 40.29 40.81 40.31 41.58 

0.5 32 45.88 45.66 45.41 45.46 45.87 45.39 45.57 45.13 45.58 45.15 46.21 

 HSI IV 

0.001 16000 28.11 27.94 27.77 27.81 28.06 28.08 27.88 28.07 28.14 28.16 28.87 

0.005 3200 30.44 30.32 30.2 30.17 30.43 30.27 30.03 30.26 30.22 30.28 31.03 

0.01 1600 31.41 31.29 31.12 31.09 31.39 31.32 31.1 31.29 31.57 31.43 31.95 

0.05 320 34.46 34.3 34.09 34.04 34.45 34.41 34.27 34.25 34.62 34.28 34.09 

0.1 160 36.43 36.29 36.01 36.04 36.43 36.25 36.49 36.19 36.51 36.2 37.24 

0.25 64 40.08 39.93 39.68 39.64 40.07 39.92 40.59 39.8 40.19 39.84 40.79 

0.5 32 44.51 44.47 44.32 44.29 44.5 44.31 44.46 44.22 44.63 44.22 45.02 

 
Table 5. Performance evaluation of different HSICAs with proposed 3D-LMZC on various HS image datasets for different image quality parameter 
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0.001 26.75 3614 1498 26.61 3219 1488 27.89 3887 1607 

0.005 29.31 17157 7091 29.25 16689 7002 30.18 17995 7257 

0.01 30.19 28877 12287 30.15 28111 12347 31.11 29007 12928 

0.05 33.61 168978 46897 33.59 168842 46888 34.52 170111 47025 

0.1 35.44 311954 140905 35.41 311021 139852 36.21 324569 145958 
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0.001 27.49 4712 924 27.28 4517 908 27.97 4664 1011 

0.005 30.09 8419 5111 30.03 8301 5074 31.17 8357 5419 

0.01 31.14 14218 8491 31.1 14109 8389 32.31 15001 9715 

0.05 34.39 89254 54151 34.27 87452 52814 35.14 89217 54191 

0.1 36.49 112327 74259 36.49 112327 74259 37.34 119251 76021 
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Table 6. Performance evaluation of different HSICAs with proposed 3D-LMZC on various HS image -datasets for Bjøntegaard Delta PSNR 
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HSI I 0.8496 0.8515 0.7550 0.9286 0.8758 1.1216 1.1578 1.1365 0.8654 1.0985 

HSI II 0.7591 0.8976 1.0492 1.0393 0.7820 0.8804 0.9675 0.9060 0.7474 0.8830 

HSI III 0.7630 0.9405 1.1634 1.1146 0.7750 0.9273 1.0136 0.9976 0.6526 0.9709 

HSI IV 0.4672 0.6001 0.7894 0.8080 0.4820 0.5872 0.6173 0.6509 0.4168 0.5973 

 
Table 7. Performance evaluation of different HSICAs with proposed 3D-LMZC on various HS image datasets for coding memory 
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 HSI I 

0.001 26.67 37.33 41.07 43.54 28.08 4096 8192 96 2318 0 2176 

0.005 102.3 99.21 109.2 121.4 89.33 4096 8192 96 2318 0 2176 

0.01 232.2 222.7 249.4 257.1 202.4 4096 8192 96 2318 0 2176 

0.05 1084 1041 1108 1142 991.7 4096 8192 96 2318 0 2176 

0.1 1846 1931 2007 2048 1756 4096 8192 96 2318 0 2176 

0.25 4571 4463 4519 4548 4289 4096 8192 96 2318 0 2176 

0.5 8644 8555 8694 8705 8514 4096 8192 96 2318 0 2176 

 HSI II 

0.001 22.58 21.51 23.17 27.54 22.69 4096 8192 96 2318 0 2176 

0.005 91.12 98.91 111.9 145.7 91.29 4096 8192 96 2318 0 2176 

0.01 265.9 267.8 302.8 322.1 266.4 4096 8192 96 2318 0 2176 

0.05 982.4 1036 1254 1351 985.4 4096 8192 96 2318 0 2176 

0.1 2219 2326 2521 2532 2229 4096 8192 96 2318 0 2176 

0.25 5450 5611 5854 6001 5464 4096 8192 96 2318 0 2176 

0.5 10005 9981 10841 10925 9832 4096 8192 96 2318 0 2176 

 HSI III 

0.001 25.28 24.94 26.31 27.02 25.06 4096 8192 96 2318 0 2176 

0.005 101.2 105.8 112.7 117.1 101.5 4096 8192 96 2318 0 2176 

0.01 205.1 218.9 237.1 255.1 208.6 4096 8192 96 2318 0 2176 

0.05 1108 1149 1224 1307 1136 4096 8192 96 2318 0 2176 

0.1 1855 1808 1984 2078 1854 4096 8192 96 2318 0 2176 

0.25 4401 4449 4617 4891 4412 4096 8192 96 2318 0 2176 

0.5 7918 7805 8007 8191 7935 4096 8192 96 2318 0 2176 

 HSI IV 

0.001 24.67 22.41 27.04 30.21 24.55 4096 8192 96 2318 0 2176 

0.005 100.8 105.5 127.9 137.1 101.1 4096 8192 96 2318 0 2176 

0.01 210.9 229.9 264.1 294.1 214.4 4096 8192 96 2318 0 2176 

0.05 1088 1212 1328 1408 1106 4096 8192 96 2318 0 2176 

0.1 1970 2083 2254 2401 1980 4096 8192 96 2318 0 2176 

0.25 4867 5047 5287 5408 4878 4096 8192 96 2318 0 2176 

0.5 9078 8488 8741 8911 9093 4096 8192 96 2318 0 2176 
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Table 8. Performance evaluation of different HSICAs with proposed 3D-LMZC on various HS image datasets for encoding time 
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 HSI I 

0.001 3.99 4.06 1.71 2.09 5.94 2.67 14.18 5.91 3.17 3.24 26.17 

0.005 9.85 9.73 3.08 5.14 8.2 2.78 61.33 8.35 3.35 4.83 99.47 

0.01 20.45 29.93 9.19 11.25 10.99 3.25 73.64 9.26 4.41 5.97 114.2 

0.05 222.2 303.4 91.3 108.9 94.36 5 90.57 19.45 5.49 12.18 149.2 

0.1 1163 1297 256.9 311.5 762.6 7.31 102.5 34.74 7.94 19.55 164.7 

0.25 6234 6871 6008 6521 4358 13.35 120.8 68.15 14.02 40.25 189.1 

0.5 17995 18742 19124 19952 19551 24.12 151.3 122.5 26.03 74.87 209.3 

 HSI II 

0.001 3.42 4.33 1.89 2.04 5.94 2.35 15.97 5.73 2.47 2.94 22.81 

0.005 9.84 5.85 2.21 2.57 8.5 2.71 75.93 7.36 3.87 6.44 121.9 

0.01 22.53 9.41 4.04 4.57 10.83 2.88 90.43 16.99 4.29 10.28 166.1 

0.05 250.3 134.4 81.5 97.5 131.5 4.14 106.55 27.4 5.02 16.02 181.2 

0.1 966.7 570.8 288.4 301.9 632.6 6.04 125.87 36.27 7.21 18.42 201.7 

0.25 4973 3032 2988 3001 4100 10.24 134.4 96.34 12.21 56.67 217.8 

0.5 12007 10112 9998 9845 12975 17.25 154.41 177.73 18.95 67.74 241.5 

 HSI III 

0.001 4.08 4.03 3.51 3.84 5.85 2.07 15.97 5.68 2.76 3.19 21.81 

0.005 9.12 5.96 4.78 5.09 7.87 2.89 75.93 7.78 3.28 4.74 124.1 

0.01 20.18 9.7 8.15 8.84 11.64 3.34 90.43 8.55 4.01 7.52 147.5 

0.05 204.3 125.2 101.2 111.2 89.77 4.57 106.55 19.48 5.31 22.88 179.2 

0.1 1183 775.8 624.9 694.8 835.9 5.91 125.87 32.46 6.47 30.14 197.8 

0.25 8499 5151 4517 4872 6309 10.41 134.14 70.4 11.91 43.49 211.4 

0.5 29849 18383 15874 16247 23861 16.19 154.41 125.42 17.09 72.62 261.3 

 HSI IV 

0.001 4.56 5.6 4.94 5.31 7.23 2.39 6.03 5.74 2.89 2.82 11.57 

0.005 15.24 6.23 5.54 5.87 8.15 2.81 11.53 7.53 3.34 4.44 20.14 

0.01 21.67 10.2 9.17 9.87 12.64 3.18 18.44 8.93 3.98 5.64 37.18 

0.05 269.6 130.4 109.2 117.2 98.12 4.3 22.64 18.61 4.88 13.02 42.17 

0.1 1336 893.4 767.2 808.1 882.3 6.11 25.53 32.45 6.41 18.18 49.81 

0.25 8435 5133 4581 4851 5501 10.35 34.5 69.66 11.38 36.3 61.74 

0.5 27917 17945 15547 16027 18818 17.43 65.13 125.19 19.01 66.91 127.2 

 
Table 9. Performance evaluation of different HSICAs with proposed 3D-LMZC on various HS image -datasets for decoding time 
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 HSI I 

0.001 1.78 2.92 1.51 1.89 1.59 2.08 12.79 2.48 2.21 3.02 11.19 

0.005 5.18 5.25 2.94 3.51 2.41 2.43 48.29 3.86 2.68 4.65 21.94 

0.01 10.78 14.31 8.07 10.29 4.51 2.68 57.16 4.04 3.08 5.61 32.07 

0.05 172.7 236.2 79.22 94.25 84.75 4.02 69.23 12.01 4.34 11.79 38.34 

0.1 1081 1078 219.5 319.8 762.11 6.24 77.57 21.79 6.71 18.36 41.68 

0.25 6012 6305 5129 5598 4703 11.68 90.45 50.91 12.02 37.86 44.59 

0.5 17597 18534 17459 19049 15400 22.65 100.5 96.84 25.07 69.02 54.24 

 HSI II 

0.001 1.87 1.52 1.71 1.93 1.46 1.4 12.18 2.18 1.61 2.79 3.17 
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0.005 5.4 2.45 1.89 2.21 2.77 2.49 66.24 3.21 3.01 6.05 28.4 

0.01 10.01 4.92 3.74 4.02 3.86 2.71 81.48 6.23 3.27 10.04 32.8 

0.05 207.2 127.8 74.9 81.2 130.1 3.38 94.49 14.94 3.94 11.35 37.1 

0.1 887.6 717.5 249.7 274.7 614.3 5.98 106.8 23.01 6.64 17.81 39.7 

0.25 4796 3129 2791 2548 4140 6.74 113.86 58.62 7.18 47.06 42.8 

0.5 11898 9954 9549 9358 12299 14.7 125.56 120.33 15.34 60.13 48.2 

 HSI III 

0.001 1.74 1.39 3.17 3.42 1.32 1.89 8.43 4.1 2.11 3.02 3.14 

0.005 5.13 2.24 4.31 4.61 2.44 2.47 66.02 6.02 2.74 3.99 18.7 

0.01 12.51 5.18 7.67 8.05 5.14 2.69 84.96 7.06 3.02 6.33 27.9 

0.05 160.3 114.7 91.8 94.8 80.01 4.46 92.68 14.84 5.19 18.56 31.8 

0.1 1474 760.5 588.2 601.8 827.8 5.59 104.98 21.49 6.37 27.82 35.2 

0.25 8587 5832 4291 4481 6549 9.27 115.94 48.95 10.34 39.95 41.7 

0.5 26948 15672 15047 15841 23161 14.97 141.97 114.52 16.68 67.23 48.5 

 HSI IV 

0.001 2.41 1.64 4.47 4.78 1.73 2.02 5.27 2.1 2.24 2.74 2.07 

0.005 9.57 2.33 4.98 5.11 2.55 2.34 8.26 2.88 2.47 4.28 2.67 

0.01 12.68 5.23 8.07 8.34 6.11 2.89 14.44 3.91 3.23 5.41 3.87 

0.05 226.5 120.5 91.9 100.1 89.08 3.74 19.5 11.48 4.29 11.36 5.88 

0.1 1241 829.1 698.5 721.8 866.3 5.96 21.07 21.02 6.57 17.22 6.24 

0.25 9067 4536 4009 4219 5494 6.62 29.65 48.91 7.08 33.79 8.14 

0.5 25042 17677 14854 15274 18136 12.03 55.03 92.97 12.87 62.31 14.8 
 

Table 10. Short comparative analysis between the different HSICAs 

HSICA Ref Major Contribution 

3D-SPIHT [25] HSICA initially generates the embedded output through the utilization of zerotree coding. 

There are three connected lists in it. 

3D-SPECK [24] Being slightly more efficient in terms of coding and has a lower level of complexity than 

3D-SPIHT, as well as having two linked lists. 

3D-FSPIHT [27] It uses a fast search method to fetch the significant zerotree in the transformed HS image. 

3D-SDB-

SPIHT 

[28] Utilizes distinct descendant-based set partitioning across hierarchical trees in order to 

enhance the efficiency of the coding process 

3D-WBTC [28] Uses the best features of zerotree and zero block cube HSICA to obtain high coding 

efficiency at low bit rates  

3D-NLS [30] It makes use of the markers in order to simplify the coding process and necessitates the use 

of a fixed coding memory. 

3D_ZM-

SPECK 

[33] The coefficient tracking did not require any coding memory to be carried out. 

3D-LBCSPC [36] It uses the wavelet transform's pyramid hierarchy property to achieve excellent coding 

efficiency to achieve the desired result. 
 

   
(a) (b) (c) 

 
 

 

(d) (e) (f) 

Fig 1 : HS Image ‘HSI II’ Before compression process (a) Frame 50 (b) Frame 100 (c) Frame 150 

Reconstructed HS Image ‘HSI II’ with CR=32  (Bit Rate = 0.5) (d) Frame 50 (e) Frame 100 (f) Frame 150 



Vinod Kumar Tripathi & Shrish Bajpai / IJECE, 11(12), 71-82, 2024 

 

81 

6. Conclusion  
The 3D-LMZC is a non-list version of 3D-SPIHT and 

3D-FSPIHT, with low coding memory requirements and 

high coding gain. The curvelet transform represents edges 

and other singularities along the curvelet much more 

efficiently than the wavelet transform. The coding memory 

consumption greatly decreases compared to other zerotree 

HSICAs, such as 3D-SPIHT and 3D-NLS. The intricacy of 

the coding just a little bit increased. The low coding memory 

needs of 3D-LMZC more than makeup for the algorithm's 

slightly higher level of complexity. Applying the bandlet, 

contourlet, and ripplet transforms can improve the coding 

gain. By utilizing fewer markers, the load on coding memory 

can be further decreased. In the future, we will explore an 

efficient compression algorithm using the abovementioned 

mathematical transform for high coding efficiency. 
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