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Abstract - Bones are the very important part of the human body, which provides body structure and protection for the internal 

organs. A bone fracture is a widespread scenario for the human body, which can lead to serious complications. Misdiagnosis 

of fractures is the most common mistake, resulting in treatment delays and permanent impairment. So, timely and accurate 

fracture detection is critical for proper treatment planning and medical diagnosis. X-ray imaging is a widely used diagnostic 

tool since manual interpretation is prone to errors. This study proposes an AI enhanced bone detection framework utilizing a 

bone fracture dataset consisting of 9463 X-ray images of fractured and non-fractured cases. Different preprocessing and data 

augmentation techniques played a major role in improving the dataset diversity and generalizability. The proposed methodology 

employs ResNet 50 for the feature extraction, enhancing it with the Bottleneck Attention Module (BAM) with dual attention 

strategies to refine critical features for effective fracture detection. With an accuracy of 97%, 96.12% precision, recall of 

96.70%, and 96.38% F1 score, the suggested model outperformed other models like YOLOv8, Ensemble Model, ResNet50-

DenseNet 121, and CNN. The results demonstrated that with improved feature representation and accuracy in bone fracture 

detection, the proposed model exhibits a valuable tool for enhanced patient care through early intervention and accurate 

fracture diagnosis. 

Keywords - Bone fracture, X-ray images, Medical diagnosis, Deep learning, Attention mechanism.  

 

1. Introduction 
The skeletal system is the dynamic organ that shapes the 

human body, allows motor function and locomotion, creates 

marrow-derived cells, enables respiration, cares for vital 

organs, and plays a key role in homeostasis [1]. The bones 

undergo constant changes in the human body that remodel 

according to the ever-changing atmosphere. Normally, the 

human body consists of 206 bones. These bones are classified 

according to their shapes as short bones, long bones, irregular 

bones, flat bones, and sesamoid bones [2]. The skeletal 

system’s structural support is provided by the long bones, like 

the femur and thigh bones.  

 

Tarsal in the foot, carpals in the hand, and ankle and wrist 

bones are short bones that are wider but not so long. The flat 

bones, like ribs, provide a flat surface for the muscle to attach. 

Vertebrae from our spinal column and bones that make up our 

faces are oddly shaped and are examples of irregular bones. 

Next, the sesamoid bones are rooted with the ligament where 

two bones connect. These bones increase joint efficiency, and 

the patella or kneecap is a suitable example of the sesamoid 

bones [3]. 

Fracture, the discontinuity of a bone, is classified into five 

main categories. The first category is the fracture that can be 

identified based on the relationship with the external 

environment [4]. Normal bones can withstand some 

considerable amount of force, and when a fracture is sustained 

due to excessive force, such as a fall, road accident, or fight, 

that causes trauma and can be called a traumatic fracture. 

Pathological fractures occur due to some underlying medical 

conditions.  

A stress fracture represents a fracture sustained due to 

serious repetitive injury or stress that causes breakage of the 

trabecular bone [5]. The second category depends on the 

displacements, which refer to an abnormal positioning of the 

bone. The displacement fracture was composed of displaced, 

angulated, and rotated types. The third category, a fracture 

with a break in the overlying skin and soft tissues, depends on 

the external environment, known as an external fracture or an 

open fracture. The fourth category is based on the complexity 

of treatment, such as simple or compound fracture. Finally, the 

fractures are categorized based on the patterns such as 

transverse, spiral, oblique, segmental, and comminuted. 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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The simplest and fastest method for diagnosing fractures 

is examination and X-ray imaging. A Magnetic Resonance 

Imaging (MRI), Computed Tomography (CT) scan, or bone 

scan can be done in special scenarios. If the fractures are not 

properly diagnosed, they can seriously affect the human body. 

The misdiagnosed fractures cause internal bleeding due to the 

damage in the blood vessels and sometimes lead to fat 

embolism that causes blood vessel blockage and loss of 

functions [6]. To overcome the misdiagnosis of fractures, 

integrating Artificial Intelligence (AI) can identify hidden or 

complex features, assist radiologists in diagnosing fractures 

accurately and quickly, and represent significant 

advancements in medical imaging technology. Thus, a Deep 

Learning (DL)-based model is suggested to detect bone 

fractures from X-ray images effectively. The main 

contributions of the study are given below: 

• To propose an effective deep learning-based model with 

an attention mechanism for detecting bone fractures from 

X-ray images.  

• To compare the effectiveness of the suggested model with 

existing models. 

• The efficiency can be evaluated using accuracy, 

precision, recall, and F1-score metrics. 

The remaining part of the paper is structured as follows: 

Section 2 provides a comprehensive literature review 

emphasizing the need for the current research. Section 3 

details the methodology and deep learning model architecture 

for effectively detecting fractures. Section 4 offers the results 

and discussion, highlighting the potential of the suggested 

model. Finally, Section 5 concludes the paper by analyzing the 

major contributions. 

2. Related Works 
Alshahrani and Alsairafi [7] investigated the YOLOv8 

model with its real-time object detection and image 

segmentation capabilities. The FracAtlas dataset, which had 

fractured and non-fractured bone images, was utilized. The 

classification capabilities of the YOLOv8 and VGG-16 

models were evaluated, and the YOLOv8 model achieved an 

accuracy of 81%. Tahir et al. [8] proposed an ensemble model 

utilizing MobileNetV2, InceptionV3, VGG16, and ResNet50. 

The model employed the Mura-v1.1 dataset with Histogram 

Equalization (HE) and global average pooling for feature 

extraction. The proposed ensemble model outperformed 

others with an accuracy of 92% and possessed challenges for 

the hyperparameter tuning.  

Thaarakaraam et al. [9] employed the ResNet 50 model 

for bone fracture detection with real-time prediction feedback. 

The model integrated object detection techniques such as R-

CNN and RetinaNet to make decision boundaries for the 

fractured regions. The suggested model surpassed AlexNet 

and VGGNet with an accuracy of 78%, but the dataset lacked 

various anatomical variations and clinical conditions. Ma and 

Luo et al. [10] proposed a two-stage system integrating crack 

sensitive convolutional neural networks (CrackNet) by 

localizing the bone regions using the Faster R-CNN and 

identifying fracture regions within the contour. The system 

achieved 90.11% accuracy by analyzing 1052 X-ray images. 

The model sensitivity towards fracture lines resulted in more 

accurate fracture identification, with limitations in the higher 

computational complexity and longer processing time.  

Wang et al. [11] proposed a dual-stage R-CNN network 

named ParallelNet, where the main network concentrates on 

minor fractures utilizing normal convolution. In contrast, the 

second network adopted dilated convolution for detecting 

large fractures. This framework achieved 87.8% accuracy and 

outperformed other existing deep learning models. The main 

limitations included the complexity of different dilated 

convolution rates and multiple backbone pathways. Parvin 

and Rahman [12] utilized a multi-modal bone fracture dataset 

containing 641 images to detect fractures from multimodal 

images, including MRI, X-ray, and CT scans. The authors 

implemented real-time detection and classification of bone 

fractures using the YOLOv8 model with a data augmentation 

step. The model attained precision of 95%, recall of 93%, and 

mean average precision (mAP) of 92%. However, a major 

limitation of the model is the relatively small dataset, which 

limits the model’s generalizability. Using CNN, Saad et al. 

[13] automatically detected fractures from X-ray images. The 

complex patterns and features were extracted from a dataset 

of 9103 images. The outcomes demonstrated that the model 

achieved 91% accuracy. The study possessed limitations in the 

potential of overfitting.  

Dey et al. [14] introduced a hybrid model combining 

ResNet50 and DenseNet121 architectures to detect and 

classify the humerus fractures utilizing the publicly available 

MURA dataset of 1266 X-ray images. The study employed 

Contrast Limited Adaptive HE (CLAHE) in preprocessing for 

enhanced performance. The hybrid model achieved 93.41% 

accuracy and demonstrated superior performance over other 

pretrained transfer learning models. Moreover, the study had 

limitations in the dependency on the quality and diversity of 

the dataset. Karanam et al. [15] employed various DNN 

classifiers to classify the bone images between fractured and 

healthy. The InceptionResNetV2 model demonstrated 

superior performance with an accuracy of 94.58%, surpassing 

other classifiers. The study possessed limitations in 

differentiating fractures under their types, such as normal, 

oblique, spiral, etc. Medaramatla et al. [16] proposed a deep 

learning model incorporating YOLO NAS, Efficient Det, and 

a detection transformer. The study utilized a hybrid dataset of 

4736 hand bone X-ray images, further classified into 6 classes. 

The outcomes demonstrated superior accuracy, with 

challenges in customizing the algorithms deeply. Kassem et 

al. [17] employed a computer-aided diagnosing-based DL 

model for detecting pelvic fractures. A dataset comprising 876 

X-ray images was utilized with an explainable AI framework. 
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With high values for evaluation metrics, ResNet50, transfer 

learning, and GoogleNet models were used for classification. 

The suggested ResNet50 and transfer learning model failed to 

predict the pelvic fracture into three classes (normal, fractures, 

dislocated).  

The existing studies on bone fracture detection provide 

several techniques with significant gaps. There are challenges 

in pinpointing the exact location of the fracture. The 

widespread use of CT is limited due to its availability, medical 

costs, and radiation exposure considerations, as it is not 

classically utilized as the primary tool in most parts of the 

world. The amount of data utilized for CT images is larger 

than that for chest X-rays. These algorithms are not globally 

applicable due to their complex calculations, high 

computational power requirements, and challenging 

integration into the medical examination process. Also, there 

are no inter-rater reliability assessments, and it suffers from 

varying inter-observer reliability. 

3. Materials and Methods  
Accurate and appropriate bone fracture detection is 

crucial for efficient patient care, potentially minimizes related 

complications, and enhances recovery times. DL can be 

integrated to detect bone fractures, reducing the medical staff 

workload and maximizing resource efficiency. So, this study 

proposes a DL model for efficient bone fracture detection on 

X-ray images by processing massive image data. A 

comprehensive dataset with X-ray images undergoes 

preprocessing and data augmentation with efficient feature 

extraction. The deep learning architecture with an attention 

mechanism is designed for real-time bone fracture detection, 

integrating different layers. Figure 1 illustrates the schematic 

block diagram of the suggested model. 

3.1. Dataset 

The study utilized data from the Kaggle Repository [18] 

consisting of fractured and non-fractured X-ray images of 

several joints in the upper extremities. The dataset comprises 

9463 X-ray images, and this study utilized 500 images in each 

category, resulting in a balanced dataset. The fractured and 

non-fractured X-ray images are labeled as ‘0’ and ‘1’, 

respectively, for classification. Figure 2 illustrates the sample 

images in the dataset. 

3.2. Data Preprocessing and Augmentation 

Preprocessing prepares the raw data suitable for the 

model training [19]. This study’s collected X-ray images 

undergo preprocessing steps, including standardization, 

resizing, and orientation adjustments. Resizing is done in the 

preprocessing step to ensure uniformity across the dataset’s 

images. All the X-ray images are resized into 224 x 224 pixels. 

Data augmentation is crucial since it enlarges the dataset by 

applying various transformations. In this study, 

transformations such as rotation, flip, rescale, zoom, and shear 

are implemented to get the augmented data to increase the 

diversity and generalizability of the dataset and avoid the risk 

of overfitting. Both testing and training data undergo 

preprocessing and data augmentation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Block illustration of the proposed model 
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Fig. 2 Sample images in the dataset 

 

 

 

 

 

 

Fig. 3 Basic architecture of ResNet 50 

 

3.3. Proposed Methodology 

The study proposes a DL model with an attention 

mechanism for detecting bone fractures from X-ray images. 

ResNet 50 is employed for the feature extraction by excluding 

the top layers, augmented with a Bottleneck Attention Module 

(BAM).  

This base model processes the input image of 224 x 224 

x 3, and the feature map output is then fed to the BAM block. 

This combination enhances the model performance by 

focusing on important features with the addition of channel 

and spatial attention mechanisms. 

3.3.1. Feature Extraction Using ResNet 50  

ResNet 50, a CNN architecture, is a residual network 

(ResNet) family. This residual network is known for 

addressing the vanishing gradient problem [20]. The model 

learns the residual function to the input layers by introducing 

residual learning through skip connections. The basic 

architecture of ResNet 50 is illustrated in Figure 3. ResNet 50 

comprises 50 layers, including convolution, batch 

normalization, ReLU activation, and fully connected layers. 

The main architecture is divided into four stages, each 

consisting of several residual blocks, and each block 

comprises two convolution layers followed by batch 

normalization and ReLU. 
 

In the convolution block, with the convolution layer, a 

skip connection (identity connections) is matched with the 

input and output dimensions using a 1 x 1 convolution. 

Similarly, identity blocks directly add the input to the output 

without the dimension-matching convolution by preserving 

the information from earlier layers.  

 

A max-pooling layer that follows downsamples the 

convolutional layer output. The convolution operation is 

mathematically expressed as in Equation 1.  

𝑦𝑖,𝑗,𝑘 = ∑ ∑ ∑ 𝑥𝑖+𝑥−1,𝑗+𝑦−1,𝑧 ∙ 𝑊𝑥,𝑦,𝑧,𝑘 + 𝑏𝑘
𝑍
𝑧=1

𝑌
𝑦=1

𝑋
𝑥=1       (1) 

Where,  is the output at position (i, j) for output channel 

k.  is the input at position for the input channel l.  is the weight 

of the filter at position (m, n) between the input channel l and 

the output channel k.  represents the bias factor for output 

channel k and, M is the height, and N denotes the filter’s width 

with L number of input channels.  

Z
er

o
 P

ad
d

in
g

 

B
at

ch
 N

o
rm

 

R
eL

u
 

M
ax

 P
o

o
l 

C
o

n
v

 B
lo

ck
 

ID
 B

lo
ck

 

C
o

n
v

 B
lo

ck
 

C
o

n
v

 B
lo

ck
 

ID
 B

lo
ck

 

ID
 B

lo
ck

 

A
v

g
 P

o
o

l 

F
la

tt
en

in
g

 

F
C

 

Input Output 

C
O

N
V

 

C
o

n
v

 B
lo

ck
 

ID
 B

lo
ck

 
Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 



A. M. Linchu & B. Ben Sujitha / IJECE, 11(12), 219-229, 2024 

 

223 

 

 

 

 

 

 

 

 

Fig. 4 Residual block in ResNet 50 model 

The max-pooling layer output is then passed through a 

sequence of residual blocks. Figure 4 represents the residual 

block in ResNet 50. 

The residual function is expressed by Equation 2.  

          𝑦 = ℱ(𝑥, {𝑊𝑖}) + 𝑥                             (2) 

Where y represents the block’s output and x its input. is 

the residual function in connection with the stacked 

convolution layers, batch normalization, and ReLU activation. 

If the input and residual function have different dimensions, a 

1 x 1 convolution is applied to the x to match the dimension 

as in Equation 3.  

             𝑦 = ℱ(𝑥, {𝑊𝑖}) + 𝑊𝑠𝑥                            (3) 

Where is the weight matrix of 1 x 1 convolution for 

matching dimensions. Inputs to each layer are normalized to 

stabilize and accelerate the training process. For an input X 

having mini batch mean and variance, the batch normalized 

output is given by Equation 4. 

                     𝑥̂ =
𝑥−𝜇𝐵

√𝜎𝐵
2+𝜖

                            (4) 

 

Where ϵ is a constant to avoid zero division, and the 

learnable parameters are given by Equation 5. 

    𝑌 = 𝛾𝑥̂ + 𝛽                            (5) 
 

Where γ and β are learnable parameters that allow the 

model to scale and shift the normalized output. The input of 

the residual block is summed with the output of the second 

convolutional layer to be fed through another ReLU activation 

function, as expressed in Equation 6. 
 

     𝑅𝑒𝐿𝑈(𝑧) = 𝑚𝑎𝑥(0, 𝑧)                           (6) 
 

Where z is the input to the activation function. The last 

residual block output is connected to a fully connected layer, 

the final layer of the network, to map the output classes. The 

number of neurons is the same for fully connected layer and 

output classes. The mathematical expression of the fully 

connected layer for lowering the feature map to a single value 

is given by Equation 7. 

   𝑦𝑘 =
1

𝐻×𝑊
∑ ∑ 𝑥𝑖,𝑗,𝑘

𝑊
𝑗=1

𝐻
𝑖=1                           (7) 

Where  𝑦𝑘  is the pooled output for channel k. 

3.3.2. Bottleneck Attention Mechanism  

The bottleneck attention mechanism operates through a 

dual attention strategy composed of channel and spatial 

attention with a bottleneck architecture, as illustrated in Figure 

5, resulting in improved feature representation without 

significant computational overhead [21]. The channel 

attention mechanism emphasizes informative channels 

(features) by utilizing global information across the entire 

spatial dimension. In contrast, the spatial attention mechanism 

focuses on important spatial regions within the feature map. 

Consider the input feature map where W, H, and C 

symbolize the width, height, and number of channels. The 

output feature map is generated by input processing using the 

attention module. The input feature F is initially subjected to 

global average pooling, resulting in a channel vector with 

reduced spatial dimensions, as given by Equation 8.

 

 
Fig. 5 Bottleneck attention module architecture
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          𝑧𝑐 =
1

𝐻×𝑊
∑ ∑ 𝐹𝑖,𝑗,𝑐

𝑊
𝑗=1

𝐻
𝑖=1                                (8) 

Where denotes the average activation for each channel c, 

by effectively concluding the global information for that 

channel. This channel descriptor is then passed through a 

bottleneck structure, designed with one hidden layer as a 

Multi-Layer Perceptron (MLP) to reduce the dimensionality. 

The MLP with two fully connected layers is denoted by 

Equation 9, where BN is the batch normalization layer to 

match the scale of the spatial attention output. 

𝑀𝑐(𝐹) = 𝐵𝑁(𝐹𝐶2𝑅𝐸𝐿𝑈(𝐹𝐶1(𝑧))))                      (9) 

Where 𝐹𝐶1 reduces the channel dimension to C/r, with r 

being the reduction ratio and restores the channel dimension 

to C. Channel attention is computed using Equation 10. 

𝑀𝑐(𝐹) = 𝐵𝑁 (𝑀𝐿𝑃(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹))) 

= 𝐵𝑁(𝑊1(𝑊0𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹) + 𝑏0) + 𝑏1)                 (10) 

Where 𝑊0 ∈ ℝ𝐶/𝑟×𝐶 , 𝑊1 ∈ ℝ𝐶/𝑟×𝐶 , 𝑏0 ∈ ℝ𝐶/𝑟 , 𝑏1 ∈ ℝ𝐶  

and 𝑀𝑐(𝐹) having shape 𝐶 × 1 × 1.  

Algorithm 1: AI Enhanced Bone Fracture Detection 

Input: Xray images (fractured and non-fractured) 

Output: Efficient bone fracture detection and classification Model. 

Begin: 

Load and preprocess data: 

1. Collect dataset: 𝐷= {(), where is an X-ray image and ∈ {0,1} i∈ {0,1} (1: Non-fractured, 0: Fractured). 

2. Preprocess: 

• Resize: →∈ 

• Normalize:  

• Data Augmentation: (Rotate, Shear, Zoom, Flip, Rescaling) 

Define Base Models: 

Load Models: ResNet 50 model architecture with bottleneck attention mechanism 

     1.ResNet 50: 

•    Input image  →∈ to ResNet 50. 

•   Feature map output:  

2. Bottle Attention Mechanism: 

• Channel attention: Global average pooling by Equation 8, Multi-layer perceptron by Equation 9. 

• Final channel attention: 

 

•  Spatial attention: Convolution layers with varying kernel sizes: 

                                     

• Combine Channel and Spatial Attention: 

• Attention map: +         

• Refined Feature Map:                                

 

3. Global Average Pooling: GlobalAvgPooling2D () 

4. Fully Connected Layers: 

• Dense (1024, activation='relu') (x) 

5. Output layer 

• predictions = Dense (1, activation='sigmoid') (x) 

Model Compilation and Training: 

1. Compile each model M: 

                loss=binary_crossentropy 

               optimizer=Adam () 

              metrics=[accuracy] 

2. Train: M.fit ( ,  ,validation_data= (, )) 

Model Evaluation and Comparison: 

1. Evaluate:  

           metrics=M.evaluate( , ), where metrics include accuracy, precision, recall.  

Save the Model:  

End  
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The spatial attention mechanism, on the other hand, 

applies a convolutional layer having a large kernel size and a 

specified dilation rate to capture spatial dependencies in the 

feature map as Equation 11. 

𝑀𝑠(𝐹) = 𝐵𝑁 (𝑓3
1×1 (𝑓2

3×3 (𝑓1
3×3(𝑓0

1×1(𝐹)))))       (11) 

Where, 𝑓3
1×1, 𝑓2

3×3, 𝑓1
3×3, 𝑓0

1×1 are the convolution layers 

with varying kernel size. The output is a spatial attention map 

𝑀𝑠(𝐹) of size H× W, emphasizing or suppressing features in 

different spatial locations. 

Thus, for a given input, BAM provides a 3D attention 

map 𝑀(𝐹) ∈ ℝ𝐶×𝐻×𝑊. The refined feature map is computed 

as in Equation 12. 

    𝐹′ = 𝐹 + 𝐹⨂𝑀(𝐹)                              (12) 

Where ⨂ denotes the element wise multiplication. The 

computed 𝑀𝑐(𝐹) ∈ ℝ𝐶 and 𝑀𝑠(𝐹) ∈ ℝ𝐻×𝑊 from two 

separate modules are combined to evaluate the attention map 

𝑀(𝐹) as in Equation 13. Since the two attention maps have 

different shapes, the attention maps are expanded to the size 

of 𝐶 × 𝐻 × 𝑊 before combining them. 

     𝑀(𝐹) = 𝜎(𝑀𝑐(𝐹)+ 𝑀𝑠(𝐹))                 (13) 

Where 𝜎 is the sigmoid activation function. Thus, BAM 

can highlight or suppress features in both spatial and channel 

dimensions and enlighten the representational power. After 

refining the feature map, the BAM block is fed through a 

global average pooling layer to reduce the spatial dimensions, 

effectively summarizing the information from the refined 

feature map into a 1D vector.  

This vector is then processed through a dense layer with 

1024 units and ReLU activation, followed by batch 

normalization to stabilize and accelerate training. Finally, a 

dense layer makes the output layer, which is developed for a 

binary classification task, including the ‘Fractured’ and ‘Non-

Fractured’ classes. The algorithm for the proposed model is 

illustrated above. 

3.4. Hardware and Software Setup 

The study utilized a comprehensive setup consisting of a 

NVIDIA GeForce GTX 1080Ti GPU, an Intel Core i7 

processor, 32GB of RAM, and the Python-based Keras library 

integrated with the TensorFlow framework.  

This intelligent detection framework is trained and tested 

on the Google Collaboratory platform, offering a free and 

cloud-based environment for model development with GPU 

acceleration. Unlike model parameters, hyperparameters are 

set before the training process, which is crucial as they directly 

influence the model’s performance. Proper hyperparameter 

tuning significantly impacts the development of robust and 

effective models. Table 1 illustrates the hyperparameter 

specification used in this study. 

Table 1. Hyperparameter specifications 

Hyperparameters  Values  

Activation function  Sigmoid 

Batch size  16 

Epochs  40 

Loss function Binary cross entropy 

Learning rate  0.001 

 

4. Results and Discussion 
Understanding the performance and learning patterns of 

the suggested model requires comprehending the accuracy and 

loss plots. The accuracy plot graphically represents the 

model’s capacity to consistently predict data labels during 

training iterations on both the training and validation datasets. 

 

The accuracy and loss plot of the suggested model are 

shown in Figure 6. The model’s performance is evaluated 

throughout training by tracking how well its predictions match 

the labels. A loss plot depicts the model’s loss function trend 

across training iterations or epochs.  

 

This declining trend shows that the model improves with 

time in reducing prediction errors. Better alignment of the 

model’s predictions and the real labels in the training data is 

shown by lower loss values. The model’s response to changes 

in the training data and optimization procedure is reflected in 

the loss values that fluctuate throughout epochs, much like 

accuracy. 

 

A confusion matrix is an excellent tool for evaluating the 

accuracy of the proposed model. The matrix compares the 

model’s predictions with the actual labels for several classes 

to provide a methodical overview of the model’s performance. 

It presents the findings in a tabular format, where the predicted 

labels are shown in the columns, and the actual labels are 

shown in the rows. Each cell in the matrix represents the 

instances where the model’s predictions match or deviate from 

the actual labels.  

 

The confusion matrix is divided into four quadrants, with 

those of the diagonal signifying misclassification and items on 

the diagonal representing accurate predictions. The suggested 

model’s confusion matrix with actual and predicted results is 

shown in Figure 7. A high number of FN is more crucial than 

FP, as a missed fracture causes serious complications.  

 

In this case, 144 fractured labels were correctly predicted 

under ‘fractured’, while 143 non-fractured true labels were 

correctly predicted under ‘non-fractured’. 
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Fig. 6 Accuracy and loss plot of the proposed model 

 

 
Fig. 7 Confusion matrix of the suggested model 

 

The confusion matrix’s performance metrics 

comprehensively assess the suggested model’s effectiveness. 

The F1-score, accuracy, precision, and recall are the four main 

metrics used to fully assess the effectiveness and operational 

efficiency of the suggested model. For evaluating the model’s 

performance, these metrics—which are founded on the ideas 

of False Positive (FP), False Negative (FN), True Negative 

(TN), and True Positive (TP)—are crucial. Equations (14), 

(15), (16), and (17) provide mathematical definitions of these 

performance parameters. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                      (14) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                  (15) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                       (16) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                          (17) 

The acquired performance metrics demonstrate the 

developed model’s remarkable effectiveness, as illustrated in 

Figure 8. With an accuracy of 97%, the proposed model 

correctly identified bone fractures, demonstrating the model’s 

strong capability to make correct predictions. 96.12% 

precision denotes that the model predicts positive classes with 

a low false positive rate. This high precision reduces the 

likelihood of falsely diagnosing a fracture. A high recall value 

is crucial because failing to detect a fracture will cause serious 

health complications. The proposed model provides 96.70% 

recall, demonstrating the model’s success in identifying the 

fracture case. The F1-score of 96.38% shows that the 

framework upholds a good balance between precision and 

recall, making precise positive predictions. These high values 

across the metrics suggest the robustness of the model, making 

it reliable for efficient fracture diagnosis.  

 
Fig. 8 Performance metrics 

The Receiver Operating Characteristic (ROC) 

demonstrates the trade-off between the TP and FP rates across 

various threshold conditions. The area under the curve (AUC) 

signifies the model’s overall performance, where an AUC of 

1.0 specifies a perfect model with an FP rate of ‘0’ and a TP 

rate of ‘1’. The ROC-AUC of the proposed model is 0.96, 

indicating better classification, as illustrated in Figure 9. 
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Fig. 9 ROC curve 

Figure 10 illustrates the predicted output showing a 

fractured label using the proposed bone fracture detection 

framework. 

 
Fig. 10 Predicted ‘Fractured’ output 

The proposed model for bone fracture detection is 

compared with existing methods for evaluating its 

effectiveness. Table 2 compares the model, and its graphical 

representation is given in Figure 11.

Table 2. Performance comparison of the suggested model with existing methods 

Methodology Dataset No. of images Accuracy (%) 

YOLOv8 [7] FracAtlas 4083 81.00 

Ensemble Model [8] MURA-v1.1 6542 92.00 

CrackNet [10] Radiopaedia + data collected 

from the hospital 

1052 90.11 

ParallelNet [11] Thigh Fracture dataset 3842 87.80 

CNN [13] Bone Fractures Dataset 9103 91.00 

ResNet50-DenseNet 

121[14] 

MURA dataset 1266 93.41 

Proposed Model Bone Fracture Dataset 9463 97.00 

 

 
Fig. 11 Accuracy comparison 
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Table 2 compares the range of accuracies achieved across 

different methodologies for bone fracture detection. The 

efficiency of the proposed model, with an accuracy of 97%, 

using a bone fracture dataset with 9463, outperformed other 

models like YOLOv8, Ensemble Model, ParallelNet, 

ResNet50-DenseNet 121, and CNN. ResNet50-DenseNet 

121, with an accuracy of 93.41%, used the MURA dataset 

with 1266 images, which closely indicates the strength of the 

hybrid model. The robust performance of an ensemble model 

with the MURA-v1.1 dataset having 92% accuracy highlights 

the effectiveness of multiple models. Other models like CNN, 

YOLOv8 and CrackNet show competitive performances. 

However, the proposed deep learning model with attention 

mechanism underscores its effectiveness in bone fracture 

detection, making it reliable for medical diagnosis. 

 

5. Conclusion 
The timely and accurate detection of bone fractures 

significantly impacts patient outcomes and prevents further 

complications. This study proposed an AI-enhanced 

framework incorporating a deep learning model enhanced by 

an attention mechanism. ResNet 50 architecture enhanced 

with BAM at both spatial and channel levels utilized a bone 

fracture dataset comprising X-ray images of fractured and 

non-fractured cases for bone fracture detection. Different 

preprocessing and data augmentation techniques played a 

major role in improving the dataset diversity. The model’s 

ability to effectively detect bone fractures in real-time 

scenarios by minimizing FP and FN cases is demonstrated 

with an accuracy of 97%, precision of 96.12%, recall of 

96.70%, and F1 score of 96.38%. The ROC-AUC of 0.96 

specifies the superior classification performance of the DL 

model. The suggested model outperformed existing models 

such as YOLOv8, Ensemble Model, ResNet50-DenseNet 121, 

and CNN, making it suitable for medical diagnostics with 

reduced workload on healthcare professionals and better 

patient care. 
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