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Abstract - Strong meteorological events Tropical Cyclones (TCs) pose serious risks to coastal ecosystems and communities. 

Their strength is usually categorized using a variety of metrics, including wind speed, pressure, and rainfall since it directly 

corresponds with the possibility of damage and fatalities. An accurate classification of TC severity is essential for disaster 

preparedness, response plans, and mitigation initiatives. Support vector machines (SVM) {function category}, K-Nearest 

Neighbors (KNN) {lazy category}, Bayesian networks {Bayes category}, Random forests {Ensemble category}, and decision 

trees {Tree Category} are among the machine learning classifiers whose performances are compared in this study in binary 

and multi-class configurations by using Gaussian image processing technique. Performance measures, including time 

complexity, ROC, PRC, accuracy, precision, recall, and F-measure, were examined. The results indicate that Multi-class with 

SVM and Multi-class with Random Forest classifiers consistently outperform other models across most metrics, achieving the 

highest accuracy (0.88) and superior ROC (0.97) and PRC (0.94-0.95) scores. However, SVM models exhibited significantly 

higher time complexity, particularly in the multi-class with SVM. 

 

Keywords - Typhoon images, Random forest, KNN, Binary classification, Multi-class classification 

1. Introduction  
Tropical cyclones (TCs) are among the most damaging 

weather systems, with impacts on coastal areas and the 

environment nearly always catastrophic. Correct 

identification of the TC intensity is indispensable in disaster 

preparedness and response situations and in developing 

relevant control measures to help alleviate such disasters' 

impacts. Conventional approaches to classifying the intensity 

involve interpreting atmospheric variables, including wind 

speed, pressure, and rainfall. However, these methods are 

highly time-consuming, error-prone, and inappropriate for 

large-scale analysis – which might be necessary during a 

high-stakes incident. 

 

The literature shows that current developments in 

Machine Learning (ML) and image processing can enhance 

TC intensity classification and reduce dependency on human 

input. Authors have also used methods like CNN and other 

forms of deep learning hybrid models, where intensity 

predictions are made based on views of satellite imagery and 

numerical model data. For instance, Juhyun Lee et al. 

demonstrated a better outlook for forecasting TC intensity by 

applying deep learning in physical models at equal intervals. 

Mawatwal et al. obtained a high binary classification 

accuracy by applying CNN based hybrid systems. 

Nevertheless, further prospects and problems are observed in 

the further optimization and systematic evaluation of the 

yielded ML algorithms, especially within the framework of 

other preprocessing approaches such as Gaussian filtering. 

1.1. Research Gap and Problem Definition 

Although prior research proves the usefulness of the ML 

approach in cyclone intensity prediction, previous findings 

mostly feature a single classification algorithm or deep 

learning approach with no comprehensive investigation of 

their combinations with image preprocessing techniques such 

as Gaussian filters. These filters are important in improving 

the quality of the image by removing noises, while the 

specific details are very important for feature extraction on 

satellite images. Moreover, relatively limited studies have 

compared binary classification to the multi-class 

classification approaches. This was done without considering 

the type of ML algorithms used. 

This research fills these voids by analysing the 

compounded effects of Gaussian filters on different ML 

algorithms, including SVM, KNN, Naïve Bayes, Random 

Forest and Decision Trees within binary and multi-class 

classification problems. The problem addressed is twofold: 

implementation of the optimized classification concerning 

precision and speed and the key evaluation of the trade-off 

between binary and multidimensional classification. 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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1.2. Novelty and Contributions 

Therefore, the present study is unique because it blends 

Gaussian filtering and ML algorithms to enhance TC 

intensity classification. In contrast to previous papers that 

compare primarily existing approaches based on deep 

learning, the present research considers a wider range of 

popular ML algorithms to systematically compare their 

performance in the contexts of binary and multi-class 

classification tasks. Key contributions include: 

➢ Innovative Integration: This work utilizes Gaussian 

filtering to preprocess images as an added feature that 

enhances ordinary ML classification techniques by 

providing clearer features by eliminating noise. 

➢ Comprehensive Comparison: An analysis of all the 

models is done by observing the accuracy, precision, 

recall and time taken to learn and predict some data sets. 

This kind of systematic comparison is lacking in the 

current research and hence fills this gap in determining 

these models' suitability for cyclone intensity 

classification. 

➢ Practical Impact: The research results have direct 

practical implications for improving the efficiency of 

disaster management by providing more accurate and 

faster intensity estimates of TCs. It can help to upgrade 

the systems of early warnings, organize the resources 

more effectively, and eventually save lives and property. 

 

1.3. Comparison with Existing Research 

This study differs from other works in using the 

following approaches and objectives. Hybrid CNNs that 

targeted the enhancement of the forecasting accuracy were 

suggested by Juhyun Lee et al., but the integration of the 

preprocessing technique is not well explained. Of equal 

importance, the binary classification in Mawatwal et al.’s 

hybrid models gave a desirable accuracy but modest 

information on class disparity in a multi-class scenario. 

However, in this research, Gaussian filters are compared with 

the classification performance of a wide range of 

classification algorithms and offer a general overview of a 

wide classification range, including binary and multi-class. 

Moreover, most of the above-mentioned researchers aim 

to enhance the accuracy of the data, while most do not take 

an adequate account of the computational time to which 

much emphasis is placed, especially when traffic occurs in 

the real-time environment. This is advantageous since it is 

more than just on checking the effectiveness of the results 

with respect to the classification accuracy; the time and the 

resources are also taken into consideration, which is real-

world oriented. 

1.4. Scope and Limitations 

Because of this, this study concentrates on classifying 

the intensity of the tropical cyclone with the help of satellite 

imagery. The given results are quite encouraging, though 

some peculiarities should be mentioned. The data is obtained 

only for the region around the Indian Ocean, and thus, the 

results may not apply to other meteorological events or 

geographical locations. Furthermore, the methods are 

restricted to cases where information on infrared imagery is 

unavailable. Further research may generalise these 

observations by including other data types and testing the 

applicability of the approaches described in the present study 

across different climatic conditions. 

The primary objectives of this study are: 

➢ As part of assessing how Gaussian filtering has 

promoted the efficacy of ML algorithms in cyclone 

intensity classification. 

➢ To provide a structured view of the performance of 

different binary and multi-class classification methods 

using various ML models. 

➢ The decision complexity was compared by observing 

the classification precision with the run time and the 

model complexity. 

 

In meeting these objectives, this study benefits from 

enhancing theoretical and empirical knowledge and 

deploying ML in meteorology and disaster response. This 

work is organized as follows: Section 2 presents a review of 

related research, Section 3 describes materials and 

techniques, Section 4 displays results and analysis, and 

Section 5 concludes the work. 

2. Literature Survey  

This current section features newspapers, journals, and 

articles pertinent to this research project. To forecast the 

severity of the tropical cyclone, Juhyun Lee and his team 

built a new model by mixing satellite images with the rest of 

the numerical model. The models improved the accuracy of 

the official forecasts, achieving skill score gains of up to 

22%, 110%, and 7% for predictions in the 24, 48, and 72 

time zones, respectively. These applications showed 62%, 

87%, and 50% improvements for the various types of 

strengthening. This demonstrates that deep learning 

approaches can greatly increase TC intensity accuracy for 

both rapid intensification categories.[1] To be more precise, 

Mawatwal et al. developed a CNN-based hybrid model for 

computerized cyclone strength prediction. Its primary 

components are the regression module, the YOLOv3-based 

cyclone detector, and the binary and multi-class classifiers. 

The results showed that it performed well in binary 

classification (0.984; ±0.003), multi-class classification 

(0.6383, ±1.3), and intensity estimation (RMSE = 16.2; ±0.9) 

knots. The hybrid approach shows promise in carrying out 

cyclone assessments, from identification to intensity 

estimation.[2]  

 

Wang et al. proposed a deep CNN that incorporates 

physics to control the climates of weak typhoons in satellite 

infrared photos. Compared to the waves model, the mean 

distance errors of tropical depression and tropical storm 
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levels have improved to 20.1 km and 19.1 km, respectively, 

indicating 63.0% and 54.6% improvements. As mentioned, 

this demonstrates how crucial it is to transform physics-

based learning and temporal data into deep learning models 

to analyze TCs. [3]  

 

So, Nguyen and Kieu proposed that further investigation 

should be conducted based on many environmental 

characteristics for the ResNet and UNet model for tropical 

storm generation. These results indicated that the models 

performed best when projected lead durations were 12-18 h 

and were largest, covering more than 50% of the Pacific 

region despite the absence of exact numbers. This indicates 

that CNNs might enhance early warning systems by 

including the appropriate spatial patterns for TC formation. 

[4]  

 

Therefore, Mu et al. proposed the TC3R model for 

tropical cyclone rainfall data using a C-band Sentinel-1 SAR 

image. It is observed that the model has a high level of 

approximation when looking at the HRR for heavy rain with 

a bias of -0.69 m/s, an RMSE of 4.08 m/s and R = 0.91 when 

compared to the actual SFMR values. It calculated the root 

mean square error between the assessed wind speed and the 

SMAP measured wind speed as 3.78 m/s. As stated above, 

these findings demonstrate that deep learning can extract 

rainfall attributes, including areas affected by TCs, from 

SAR data.[5]  TCIP-Net Cameron Tian et al. provided TC 

intensity prediction where TCIP-Net seeks specific 

convective structure information from the infrared satellite 

data. While the model specifies the Hovmöller diagrams for 

spatiotemporal dynamics and a subnetwork for acquiring 

information regarding asymmetric TC construction to predict 

TC intensity, both these features can be argued to remain 

relatively innovative. [6] Kitamoto et al. collected the Digital 

Typhoon dataset of over 40 years of satellite images to 

validate machine learning benchmarks of consistent 

spatiotemporal data for tropical cyclones. This dataset is 

fairly helpful for comparing the performance ratings of the 

TC analysis models presented in this paper, even though the 

authors did not give exact quantitative values.[7]  Fu et al. 

have developed an ST Synthesis CNN to estimate the 

intensity of Typhoons using remote sensing pictures from 

different sources. Compared to the progressive Dvorak 

technique, in which RMSE amounted to 12.59 kt, the 

prognosticating model performed better with an RMSE of 

8.89 kt and changed by 29.7%. This significant improvement 

illustrates how deep learning can enhance traditional 

approaches towards predicting TC intensity.[8] 

 

Griffin et al. developed two machine learning 

approaches, D-MINT and D-PRINT, to forecast current and 

short-term changes in typhoon intensity worldwide. Even 

when no specific quantification was attempted, the models 

fared higher in certain aspects of operational instructions for 

rapid intensification prediction. [9] 

Roy et al. used a physical process model to predict the 

typhoon intensity in the BoB for both 12 and 24 forecast 

hours. Finally, the system demonstrated the potential of the 

introduced biologically inspired algorithms in predicting TC 

intensity by achieving over 90 % accuracy on the held-out 

data. Zhang et al. introduced SiamTCNet, a typhoon tracking 

model using DL blended with infrared data. As for TC 

tracking, even though we did not quantify the longitudinal 

evolution of the tracking-storm features, this is the first time 

tracking has incorporated spatiotemporal evolution features. 

Song et al. proposed MTCIE, a kind of CNN for the typhoon 

strength probabilistic estimation, using a range of source 

pictures. [12] Zhao and his colleagues proposed a multi-task 

learning framework to recognize and estimate typhoon 

intensity from the pictures of the newly launched FY-4A 

geostationary satellite. Using the above-defined metrics, the 

Multi-task learning model demonstrated the possibility of 

adopting TC analysis by having an overall deviation of 

9.50knots as well as an F1 score of 0.64. [13]. Based on the 

existing Xception network, Ma et al. have developed a 

typhoon intensity estimation method by applying different 

advanced methodologies.  

 

The improvements in the TC intensity estimation were 

best presented by the model’s extreme cyclone wind speed 

estimation deviations, which were 0.08 and 0.11 less than the 

models in three different datasets. [14] Raynaud et al. 

proposed a U-Net-based model to identify the TC wind 

structure in AROME model outputs. Thus, obtaining a 

normal intersection-over-union measure of about 8%, the 

model demonstrated that semantic segmentation techniques 

could be helpful in TC wind field analysis. According to 

Jung et al., a DL-based approach to estimating typhoon 

intensity was proposed, and the Swin Transformer model 

was utilized to classify typhoon images. The method 

presented how transfer learning can be effectively used when 

adjusting to new satellite missions. It cut down the RMSE by 

20 per cent more efficiently than relying solely on the latest 

satellite data and 5.5 per cent for the scientific, operational 

model. [16]  

 

Cui et al. characterized an understandable machine 

learning procedure to predict and understand spatial 

structures of amplitude of typhoon induced sea surface 

temperature cooling. They, however, did not give specific 

metrics for their experiments. However, the model that uses 

XGBoost with SHAP values for interpretation holds much 

potential towards understanding interactions between TC and 

the ocean. [17] 

 

To this end, Tian et al. proposed to develop an effective 

approach known as AWL-Net, which integrates 3D 

convolutional architectures with adaptive weights learning. 

Short-term intensity prediction was relatively sound, with the 

model’s average error of 10.62 kt in a 24-hour typhoon 

intensity forecast. [18]  
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Pal et al. proposed Small Skip Net (SSN), a lightweight 

CNN architecture for classifying TC satellite images. The 

architectures can also do well in TC classification tasks, from 

which, based on the final testing, the classification rate of our 

model reaches 92.35%.  

 

Sharoni et al. developed an artificial neural network 

technique for determining wind speed from the microwave 

altimeter data in TC conditions. The simultaneous retrieval 

of surface properties in the GPR approach showed how 

machine learning could improve remote sensing data for 

severe weather conditions and how the method delivered the 

most precise wind speed estimations up to 35 m/s. [20]   

 

Another paper by Bharathi et al. described using another 

discriminative model, Support Vector Machines, for typhoon 

prediction and other kernels, which are polynomial, linear, 

and radial basis functions. Despite the lack of quantitative 

metrics, the use of the method shows the sustained 

importance of traditional machine learning approaches in TC 

prediction. 

 

He et al. developed deep learning models, and U-Net 

versions were used. Conditional on the model type, threat 

scores increased by 12.8% to 22.9% as outcomes confirmed 

the models’ enhancements compared to the GFS model. 

Using deep learning to improve the numerical prediction of 

rain related to TC, as expounded in this, demonstrates how it 

can complement existing results. [22] To improve the 

efficiency, Tian et al. introduced Easy-RP-R-CNN, which is 

a convolutional-based cyclone detection method.  

 

Of course, it is not easy to accurately quantify various 

ROI subgroups that could not have been categorized in such 

a way through any other method, and that makes an 

important part of the model’s approach to cyclone detection a 

creative solution to identification. [23] Typhoon strength was 

predicted using the enhanced cross CNN-Bi-LSTM model 

designed by Alijoyo et al. As mentioned before, operating 

settings should assess such high accuracies well, and it was 

excellent that the overall accuracy of the system was 99.4%. 

 

Liu et al. proposed TCRainNet, a rainfall nowcasting 

model for TCs. The deviations of the model’s nowcasts were 

below 2.6 mm, and relative measures were about 0.27 for the 

probability of detection and 0.20 for the critical success 

index. These have demonstrated that the model can estimate 

short-term rainfall for TCs with modest accuracy. [25]  

 

In that study, Rahman et al. attached three deep learning 

systems, namely the GRU, LSTM and RNN, to a cyclone 

path prediction experiment. LSTM did the best of the three, 

even if they had no specific measures, making it clear how 

valuable long-term memory is when studying how TCs 

evolve over time. [26] 

 

3. Materials and Methods  
3.1. Dataset Description 

The satellite images utilized in this study were obtained 

from the Kaggle database using the INSAT3D Infrared 

Cyclone Imagery (2012-2021) data set[27]. In this study, we 

have 136 infrared images and 140 raw images of TCs that 

took place over the Indian Ocean between 2012 and 2021.  

 

3.2. Image Preprocessing 

To ensure consistency and usability for machine learning 

models, the following preprocessing steps were applied: 

➢ Image Resizing: All the images were then scaled to 224 x 

224 pixels to ensure uniformity in inputs over the dataset. 

➢ Grayscale Conversion: Some images were then 

transformed to a gray scale to minimize the effects of 

intensity variation unimportant to cyclone classification 

and to minimize the computational load. 

➢ Normalization: Pixel values were scaled to the range of 

[0 – 1], and the images were made uniformly to facilitate 

optimal model convergence during training. 

➢ Gaussian Filtering: A Gaussian filter was then used for 

image smoothing with less effect on image noise and 

edges, which are important in classification. The 2D 

Gaussian function: G(x1,y1) = (1/(2πσ²)) * exp(-

(x1²+y1²)/(2σ²)), where (x1,y1) is the pixel position and σ 

is the standard deviation. 

➢ Data Augmentation: Thus, using the flipping, rotation 

(90∘, 180∘, 270∘) and cropping techniques, the dataset 

was enlarged to about 3,000 new images. This was made 

to reduce overfitting and increase the model’s 

generalizability. 

 

Akin to feature extraction, these preprocessing steps 

guaranteed high input data quality in the next classification 

stages. 

 

3.3. Criteria for Choosing Machine Learning Classifiers 

Five machine learning classifiers were chosen for this 

study: 

SVM, KNN, Naive Bayes, Random Forest, and Dec 

Training Set: The Training set is used in the training analysis 

to determine the condition to deliver for each input data. The 

selection was based on the following criteria: 

 

Model Diversity: The highlighted algorithms cover 

different ML categories: 

➢ SVM: Performs well on high-dimensional data and is 

relatively immune from over-fitting when the right 

kernel is chosen. 

➢ KNN: An easy-to-understand and applicable method 

that is effective for low-dimensional problems and 

delivers results without parameter estimation. 

➢ Naive Bayes: Its applicability can, therefore, be 

analyzed as effective for data calibrated in binary or 

categorical terms according to probabilistic notions. 
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➢ Random Forest: An ensemble method used for accurate 

modeling and suitable for non-linear data. 

➢ Decision Tree: An easily interpretable model with 

intuitive derivatives that can perform fast for small data 

sets. 

 
Comparative Analysis: These classifiers were chosen to 

facilitate a comparison of their performance on binary and 

multi-class problems. 

 
Computational Efficiency: KNN and Naive Bayes were 

incorporated since they have less computational requirements 

when compared to other algorithms, such as Naive Bayes, 

with basic Random Forest and SVM computational 

complexity and enhanced accuracy. 

 
3.4. Evaluation Metrics and Cross-Validation 

The dataset was split into 80% training and 20% testing 

sets to ensure robust evaluation. A 5-fold cross-validation 

was performed to minimize the risk of overfitting and 

validate the models' generalizability. The following metrics 

were used for evaluation: 

➢ Classification Metrics: Accuracy, Precision, Recall, F1-

score, Receiver Operating Characteristic (ROC) curve, 

and Precision-Recall Curve (PRC). 

➢ Regression Metrics: Mean Absolute Error (MAE), Root 

Mean Square Error (RMSE), Relative Absolute Error 

(RAE), and Root Relative Squared Error (RRSE). 

➢ Computational Metrics: Training and prediction times 

were measured to assess computational efficiency. 

 
3.5. Statistical Analyses and Visual Representations 

To support the classification results: 

➢ Cross-Validation Results: Average metrics from cross-

validation were reported, including standard deviations 

to quantify variability. 

➢ Statistical Significance: Paired t-tests were conducted to 

compare model performance across different classifiers 

and preprocessing techniques. 

➢ Visual Representations: ROC and PRC curves were 

generated to illustrate the trade-offs between sensitivity 

and specificity. Comparative bar charts highlighted 

performance metrics like accuracy, precision, and recall 

for binary and multi-class classification. 

 
The following TICMFE-EML algorithm can 

implemented as a novelty in this research work.  

Algorithm: Typhoon Intensity Classification using Multi-

Feature Extraction and Ensemble ML (TICMFE-EML) 

Input: Set of infrared satellite images IR = {IR₁, IR₂, ..., 

IR₁₃₆}  

Output: Typhoon intensity classification model M 

 
Step 1: Image Preprocessing: For each IR, resize the input 

image IRᵢ to standard 224x224 pixels. The min and max 

functions are applied to the resized image. The normalization 

is performed using these min and max values. 

 

Step 2: Image Augmentation: For each IRᵢⁿ, generate: a. 

Flip: IRᵢᶠ = F(IRᵢⁿ), where F is the flip function b. Rotate: 

IRᵢʳᵒᵗ = Rot(Iᵢⁿ, θ),  

where Rot is the rotation function and θ ∈ {90°, 180°, 270°} 

Augmented set: A = {IRᵢⁿ, IRᵢᶠ, IRᵢʳᵒᵗ} for all i, resulting in 

3000 images  

 

Step 3: Feature Extraction: For each image J ∈ A, compute:  

a. Mean: μ = (1/N) ∑ᵢⱼ J(i,j)  

b. Standard Deviation: σ = √((1/N) ∑ᵢⱼ (J(i,j) - μ)²)  

c. Skewness: γ₁ = E[((X-μ)/σ)³]  

d. Kurtosis: γ₂ = E[((X-μ)/σ)⁴] - 3  

e. Entropy: H = -∑ p(x) log₂(p(x))  

f. Eye Area: A = ∑ᵢⱼ E(i,j), where E is the binary eye region 

 g. Gradient Mean: μ_grad = (1/N) ∑ᵢⱼ |∇J(i,j)|  

h. FFT Mean: μ_fft = (1/N) ∑ᵤᵥ |F(u,v)|, where F is the 

Fourier transform and  

i. FFT STD: σ_fft = √((1/N) ∑ᵤᵥ (|F(u,v)| - μ_fft)²)  

 

Step 4: Feature Vector: For each image J, create feature 

vector: X_J = [μ, σ, γ₁, γ₂, H, A, μ_grad, μ_fft, σ_fft]  

 

Step 5: Class Preparation: a. Binary: Y_binary = {0 if 

low/medium(300 images), 1 if high(300 images)} b. Multi-

class: Y_multi = {0 if low(300 images), 1 if medium(300 

images), 2 if high(300 images)}  

 

Step 6: Filtering: Gabor Filter: g(x1,y1;λ1,θ1,ψ1,σ1,γ1) = 

exp(-(x1'²+γ1²y1'²)/(2σ1²))cos(2πx1'/λ 1+ ψ1)  

where x1' = x1cosθ + y1sinθ, y1' = -x1sinθ + y1cosθ J_Gab 

= J * g  

 

Step 7: Machine Learning Models:  

a. SVM: f(x1) = sign(w1^T1 x1 + b1)  

b. KNN: y = mode(y_i) for k nearest neighbors  

c. Bayes Net : P(ai|bi) = P(bi|ai)P(ai) / P(bi)  

d. Random Forest: y = mode(tree_i(x)) for i=1 to n_trees  

e. Decision Tree: y = leaf_value(x)  

 

Step 8: Model Evaluation: For each model, m:  

classification, regression metrics, etc. 

 

Step 9: Model Selection and Fitting: M = argmax_m (F1_m) 

Train M on the entire dataset.  
 
3.6. Experimental Setup 

The dataset was split into 80% training and 20% testing 

sets. SVM, KNN, and Naive Bayes were used for binary 

classification with Gabor filter features. Random Forest and 

Decision Tree were used with Gaussian filter features for 

multi-class classification. The models were implemented 

using a scikit-learn library in Python. Training time was 

measured for each model. 
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Fig. 1 Schema of the proposed system 

 

Figure 1 shows that using the ML models has the following methods to predict an optimal outcome. 

136 Infrared Image acquisition from Kaggle data repository 

Preprocessing technique (Resize, Normalization, Augmentation) 

Image feature extraction and selections: {Mean, Std, etc} 

Problem Statement: Typhoons intensity prediction by Gabor Filter  

Binary Class: {low/Medium, High} Multi Class: {Low, Medium, High} 

Result? 

Fit a Model 

Gaussian Filter 

SVM KNN                                                             Bayes Net Random Forest  Bayes Net 

Yes 

No 
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4. Results and Discussion  
This section focuses on the results and discussions of the 

binary class and multi-class classification with Gaussian 

filters by SVM, KNN, Bayes Net, Decision Tree, and 

Random Tree for predicting tropical cyclone intensity. Table 

1 presents the classification metrics of various classifications 

for both binary and multi-class with a Gaussian filter.  
 

The SVM and Random Forest had the highest accuracy 

in the binary class, at 0.88. Bayes Net came in second with 

0.81 accuracy, followed by Decision Tree and K-Nearest 

Neighbors (KNN) with 0.72 accuracy each. When it came to 

multi-class classification, the best accuracy was maintained 

by SVM and Random Forest at 0.88, followed by Decision 

Tree at 0.76, KNN at 0.69, and Bayes Net at 0.68.  
 

The SVM scored 0.88 in the binary class, with Random 

Forest coming in second with 0.87 precision. K-Nearest 

Neighbors (KNN) earned 0.8 precision, Decision Tree 

displayed the lowest precision at 0.72, and Bayes Net 

achieved 0.81 precision. SVM led the field in multi-class 

classification with 0.89 precision, Random Forest came in 

second with 0.88 precision, and KNN came in third with 0.77 

precision. With 0.7 and 0.76 precision, respectively, Bayes 

Net and Decision Tree performed less precisely.  
 

High recall scores of 0.88 and 0.87 were obtained for 

binary classification using SVM and Random Forest, 

respectively, while 0.81 was obtained for Bayes Net, 0.73 for 

KNN, and 0.72 for Decision Tree. SVM and Random Forest 

kept up their top results in the multi-class classification task, 

with a recall of 0.88.  
 

Bayes Net and Decision Tree scored 0.68 and 0.76, 

respectively, while KNN earned 0.69. This shows that while 

KNN and Bayes Net showed slightly lower recall values, 

especially in the multi-class classification setting, SVM and 

Random Forest performed consistently well across both 

classification types in terms of recall.  
 

SVM and Random Forest produced high ROC values of 

0.92 and 0.93 in binary classification, respectively, while 

KNN, Bayes Net, and Decision Tree produced values of 

0.87, 0.82, and 0.72, respectively. With even higher ROC 

values of 0.97 apiece, SVM and Random Forest 

outperformed in the multi-class classification, whereas KNN 

only managed 0.9, Bayes Net 0.8, and Decision Tree 0.82.  
 

Random Forest has the highest PRC value in binary 

classification (0.92), closely followed by SVM (0.87) and 

KNN (0.83). Decision Tree and Bayes Net had lower scores, 

at 0.64 and 0.74, respectively. With a PRC value of 0.95, 

Random Forest is again in the lead for multi-class 

classification. SVM is next with a PRC value of 0.94, and 

KNN lasts at 0.8. The PRC values of 0.59 and 0.65 for Bayes 

Net and Decision Tree, respectively, indicate moderate 

performance.  

In binary classification, SVM and Random Forest show 

high MCC scores of 0.75 and 0.73, respectively, indicating 

good predictive performance. Bayes Net follows with a 

moderate score of 0.62, while KNN and Decision Tree 

exhibit lower MCC values of 0.52 and 0.43, respectively.  

 

In multi-class classification, SVM and Random Forest 

lead with high MCC scores of 0.83 and 0.82, demonstrating 

their strong ability to handle multi-class problems.  

 

Decision Tree achieves a significantly better MCC in the 

multi-class setting (0.63) than binary classification. Bayes 

Net and KNN exhibit moderate MCC values in the multi-

class context, with scores of 0.54 MCC and 0.58 MCC, 

respectively.  

 

In binary classification, SVM and Random Forest 

demonstrate strong agreement, with 0.75 kappa and 0.73 

kappa, respectively, indicating highly reliable classification 

performance. Bayes Net also performs moderately well, with 

a Kappa value of 0.62. KNN and Decision Tree show lower 

reliability in binary classification, with 0.44 kappa and 0.43 

kappa, respectively.  

 

For multi-class classification, SVM and Random Forest 

again stand out with high Kappa values of 0.82, indicating 

excellent consistency across multiple classes.  

 

Decision Tree exhibits a significantly improved Kappa 

of 0.63 in the multi-class scenario compared to its binary 

performance. KNN and Bayes Net show moderate 

improvements in multi-class settings, achieving Kappa 

values of 0.53.  

 

 Table 1 presents the regression metrics and time 

complexity for binary and multi-class classifiers with a 

Gaussian filter on tropical cyclone infrared images.  

 In binary classification, SVM and Random Forest show 

minimal prediction error with MAE values of 0.13, 

indicating highly accurate models. Bayes Net performs 

moderately well with an MAE of 0.19, while KNN and 

Decision Tree exhibit higher errors at 0.28.  

 In multi-class classification, the MAE increases slightly 

across all classifiers. SVM maintains a low error of 0.13, 

while Random Forest experiences a small rise to 0.14, 

remaining among the most accurate classifiers.  

 KNN and Decision Tree show significant increases in 

error in the multi-class setting, with MAE values of 0.44 and 

0.29, respectively, suggesting challenges in multi-class 

prediction for these algorithms. Bayes Net also sees an 

increased error in multi-class classification, with an MAE of 

0.38. 
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Fig. 2 Gaussian filter with binary & Multi class model vs. Performance
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Fig. 3 Gaussian filter with Binary & Multi class model  vs. Regression metrics
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Fig 4 Graphical representation of existing model Vs Proposed model  

 

Table 2. Classification metrics 

S.No Classifier Accuracy Precision Recall ROC PRC Kappa 
F1-

Score 
MCC MAE RRSE RAE RRSE Time 

1 

Binary 

Class + 

SVM 
0.88 0.88 0.88 0.92 0.87 0.75 0.88 0.75 0.13 0.35 0.25 0.71 18.16 

2 
Multi-class 

+ SVM 0.88 0.89 0.88 0.97 0.94 0.82 0.88 0.83 0.13 0.43 0.22 0.54 330.66 

3 
Binary 

Class + 

KNN 

0.72 0.8 0.73 0.87 0.83 0.44 0.7 0.52 0.28 0.52 0.55 1.05 0 

4 
Multi-class 

+ KNN 0.69 0.77 0.69 0.9 0.8 0.53 0.68 0.58 0.44 0.83 0.69 1.05 0 

5 
Binary 

Class + 

Bayes Net 

0.81 0.81 0.81 0.82 0.74 0.62 0.81 0.62 0.19 0.44 0.38 0.88 0.2 

6 
Multi-class 

+ Bayes Net 0.68 0.7 0.68 0.8 0.59 0.53 0.67 0.54 0.38 0.7 0.59 0.89 0.4 

7 

Binary 

Class + 

Random 

Forest 

0.87 0.87 0.87 0.93 0.92 0.73 0.87 0.73 0.13 0.37 0.27 0.73 3.49 

8 
Multi-class 

+ Random 

Forest 

0.88 0.88 0.88 0.97 0.95 0.82 0.88 0.82 0.14 0.43 0.23 0.55 7.68 

9 

Binary 

Class + 

Decision 

Tree 

0.72 0.72 0.72 0.72 0.64 0.43 0.72 0.43 0.28 0.53 0.57 1.07 11.74 

10 

Multi-class 

+ Decision 

Tree 
0.76 0.76 0.76 0.82 0.65 0.63 0.75 0.63 0.29 0.63 0.46 0.79 26.38 
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 In binary classification, the SVM classifier demonstrates 

the lowest RMSE at 0.35, indicating high predictive 

accuracy. Random Forest follows closely with an RMSE of 

0.37, reflecting effective performance. KNN and Decision 

Tree exhibit higher RMSE values at 0.52 and 0.53, 

respectively, suggesting less reliable predictions. In the 

multi-class scenario, the RMSE increases across all 

classifiers. Multi-Class SVM shows an RMSE of 0.43, while 

Multi-Class Random Forest matches this figure. KNN sees a 

significant rise to 0.83, indicating a considerable challenge in 

accurately predicting multiple classes. Multi-Class BayesNet 

and Multi-Class Decision Tree also display increased RMSE 

values of 0.70 and 0.63, respectively, suggesting that these 

models may struggle more with multi-class classification.  

 

 In binary classification, the SVM classifier has the 

lowest RAE at 0.25, indicating a strong predictive 

performance. The Random Forest classifier also performs 

well, with an RAE of 0.27. In contrast, the KNN and 

Decision Tree classifiers exhibit higher RAE values at 0.55 

and 0.57, respectively, reflecting less reliability in their 

predictions. In the multi-class classification scenario, the 

RAE for Multi-Class SVM improves to 0.22, showing 

enhanced accuracy compared to its binary counterpart. Multi-

Class Random Forest also demonstrates good performance 

with an RAE of 0.23. However, Multi-Class with KNN 

experiences a significant increase to 0.69, indicating 

challenges in managing multiple classes. Similarly, Multi-

Class with Bayes Net shows a notable rise to 0.59, while 

Multi-Class Decision Tree performs better than its binary 

version at 0.46.  

 

 In binary classification, the SVM classifier demonstrates 

a moderate RRSE of 0.71, indicating relatively reliable 

performance. The Bayes Net classifier follows closely with 

an RRSE of 0.88, suggesting a reasonable prediction 

capability. However, both the KNN and Decision Tree 

classifiers exhibit significantly higher RRSE values of 1.05 

and 1.07, respectively, indicating poorer performance and a 

higher degree of error in their predictions for the binary 

class. In the multi-class classification scenario, the Multi-

Class with SVM shows an improved RRSE of 0.54, 

highlighting its effectiveness in handling multiple classes. 

The Multi-Class Random Forest classifier also performs well 

with an RRSE of 0.55, suggesting robust predictive power. 

On the other hand, Multi-Class Bayes Net and Decision Tree 

classifiers have RRSE values of 0.89 and 0.79, respectively, 

indicating that they perform adequately but still exhibit 

notable prediction errors compared to the SVM and Random 

Forest classifiers.  

 The Binary Class with SVM has a time complexity of 

18.16 seconds, while the Multi-Class with SVM significantly 

increases to 330.66 seconds, indicating a high computational 

burden for multi-class classification. In contrast, both the 

Binary and Multi-Class with KNN classifiers exhibit a time 

complexity of 0 seconds, highlighting their efficiency due to 

the instance-based nature of the algorithm. The Binary Class 

with Bayes Net shows a time complexity of 0.2 seconds, 

with the Multi-class with Bayes Net slightly increasing to 0.4 

seconds, indicating computational efficiency for both 

classification types. The Binary Class with Random Forest 

takes 3.49 seconds, and the Multi-Class Random Forest takes 

7.68 seconds, demonstrating reasonable efficiency but 

increased time for multi-class tasks. Decision Trees require a 

moderate amount of time, with the Binary Class taking 11.74 

seconds and the Multi-class 26.38 seconds.  

4.1. Gaussian Filtering Impact 

 Models processed with Gaussian filters consistently 

outperformed those without, achieving higher accuracy and 

reduced noise-induced errors. 

4.2. Classifier Performance 

➢ SVM and Random Forest achieved the highest accuracy 

(88%) across binary and multi-class classifications, but 

SVM exhibited higher computational complexity. 

➢ KNN and Naive Bayes provided faster computation but 

at the cost of reduced accuracy. 

➢ Decision Tree offered an interpretable solution but 

struggled with noise in multi-class classification. 

 

4.3. Cross-Validation Findings 

Cross-validation confirmed the robustness of SVM and 

Random Forest, with less than 5% variation in accuracy 

across folds. Models like KNN exhibited higher variability, 

indicating sensitivity to data splits. 

5. Conclusion  
 This work postulates a high accuracy precision recall 

and excellent ROC/PRC score in the Multi-class with SVM 

and the Multi-class with Random Forest classifiers. These 

models and their corresponding binary models yield the best 

accuracy of 0.88 at all levels of evaluation. Therefore, the 

accuracy improves to 94% when the multi-class versions are 

complemented by a higher ROC of 0.97 and PRC of 0.94-

0.95, implying that the model has better discrimination 

ability. However, it should also be said that the time testing 

of both sets of models proved the fact that among all the 

studied models, the time complexity of the Multi-class with 

SVM is significantly higher than that of other types for large 

datasets or for usage in real time projects, it may be critical.  

 On the other hand, KNN models have the least time 

complexity but come with the highest level of inefficiency. A 

general trend observed in this paper is that SVM and 

Random Forest models perform relatively better regarding 

different error measures. Interestingly, the classifiers are 

much better with multi-class data sets. Most multi-class 

versions have slightly better ROC and PRC scores than the 

binary data set classifiers. While considering the KNN and 
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Decision Tree models, the performance ranking is commonly 

lower than that of the SVM and Random forest algorithms 

across most evaluation measures. Therefore, whenever 

computation time is not a main issue, it is advisable to use 

Multi-class with SVM or Multi-class with Random Forest 

since they involve powerful algorithms and perform best in 

the test current. However, the Binary Class with Random 

Forest gives an equal measure of time space for applications 

where time operates as a constraint. Therefore, the last 

choice between these models would be decided by certain 

application characteristics, such as the need for speed over 

that of getting the right class. 

Limitations and Future Work 
This work has been achieved using infrared imagery of 

the Indian Ocean region. Therefore, the results cannot be 

generalized to other meteorological phenomena or to other 

regions of the world. More research can be done on 

multispectral data or analyze the applicability of these 

processes in other cyclone affected areas. 
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