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Abstract - Pre-processing pipelines for the conversion of 3D brain MRI (Magnetic Resonance Imaging) data into 2D formats 

are developed and optimized here with the goal of ensuring the quality of the data and compatibility with deep learning models. 

In order to prepare the MRI data for analysis, the pipeline involves several key steps, including data collection, pre-processing, 

and conversion. Pre-processing techniques are used to improve the quality and consistency of the MRI data, including denoising, 

motion correction, intensity normalization, and skull stripping. After pre-processing, the 3D MRI volumes are converted into 2D 

slices suitable for input into deep learning models, with consideration of slice selection and orientation. Data accuracy and 

reliability are ensured throughout the pipeline by rigorous quality control measures. Optimising pre-processing steps to align 

with model requirements to ensure compatibility with deep learning models is a priority. The resulting pre-processing pipeline 

facilitates the seamless integration of 3D brain MRI data into deep learning workflows, enabling advanced analysis and insights 

in the field of neuroimaging. 
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1. Introduction 
MRI has emerged as a cornerstone of modern medical 

diagnostics, providing unparalleled insights into the structural 

and functional characteristics of the human body. Since its 

inception in the 1970s, MRI has revolutionized the field of 

radiology and transformed clinical practice across a wide 

range of medical specialities [1].  

Unlike conventional imaging modalities such as X-rays 

and CT scans, which rely on ionizing radiation, MRI harnesses 

the principles of nuclear magnetic resonance to generate 

detailed images without exposing patients to harmful radiation 

[2]. This unique advantage has propelled MRI to the forefront 

of medical imaging, making it an indispensable tool for 

diagnosing and monitoring a diverse array of health 

conditions. 

The fundamental principle underlying MRI is the 

interaction between the magnetic properties of atomic nuclei 

and the surrounding environment. When subjected to a strong 

magnetic field and radiofrequency pulses, the nuclei of certain 

atoms, notably hydrogen protons found abundantly in water 

and fat molecules, undergo a phenomenon known as 

precession [3]. By detecting the radiofrequency signals 

emitted during this process, MRI scanners can reconstruct 

highly detailed images of tissues and organs based on their 

unique magnetic properties and biochemical composition. 

One of the most remarkable features of MRI is its ability 

to capture images with exceptional spatial resolution and 

tissue contrast [4]. This capability arises from the intricate 

interplay between magnetic fields, radiofrequency pulses, and 

signal processing algorithms employed in MRI scanners. By 

manipulating these parameters, radiologists can tailor MRI 

sequences to visualize specific anatomical structures or 

physiological processes, enabling the detection of subtle 

abnormalities that may elude other imaging modalities [5]. 

In addition to its unparalleled anatomical imaging 

capabilities, MRI also offers insights into dynamic processes 

and functional changes within the body [6]. Functional MRI 

(fMRI) techniques, for example, utilize changes in blood flow 

and oxygenation to map brain activity in real time, providing 

valuable information for studying cognitive function, 

neurological disorders, and brain connectivity [7]. Similarly, 

techniques such as Diffusion-Weighted Imaging (DWI) and 

Magnetic Resonance Spectroscopy (MRS) offer unique 

perspectives on tissue microstructure and metabolic activity, 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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facilitating the diagnosis and monitoring of conditions ranging 

from cancer to neurodegenerative diseases [8]. 

Despite its many advantages, the utility of MRI is 

contingent upon the quality and reliability of the imaging data 

obtained. MRI images are susceptible to various artifacts and 

distortions, including motion artifacts, magnetic susceptibility 

effects, and image noise, which can compromise diagnostic 

accuracy and confound data analysis [9].  

Addressing these challenges requires sophisticated 

preprocessing techniques aimed at enhancing image quality, 

standardizing image acquisition protocols, and minimizing 

sources of variability across scans. In the context of 

neuroimaging, preprocessing of MRI data is of paramount 

importance for studying the structure and function of the brain 

[10]. 

While MRI preprocessing techniques exist, there is a need 

for robust pipelines tailored specifically for transforming 3D 

brain MRI data into a 2D format suitable for deep learning 

models. Existing literature emphasizes the significance of 

preprocessing in neuroimaging but lacks detailed 

methodologies for optimizing pipelines to align with deep 

learning model requirements.  

Therefore, this study addresses this research gap by 

developing and optimizing a preprocessing pipeline to ensure 

high-quality MRI data and compatibility with deep learning 

models. This paper comprehensively outlines the development 

process, from data collection to pipeline optimization, aiming 

to facilitate advanced analysis and insights in neuroimaging 

research. 

The paper is structured to provide a comprehensive 

understanding of the development and optimization of a pre-

processing pipeline for transforming 3D brain MRI data into 

a 2D format. Section 1 outlines the significance of MRI in 

contemporary medical diagnostics, highlighting its non-

invasive nature and unparalleled ability to capture detailed 

anatomical and functional information.  

Section 2 provides the background and literature review 

section provides a historical overview of MRI technology, 

tracing its evolution from its inception to present-day 

advancements. Section 3 details the approach taken to develop 

and optimize the pre-processing pipeline.  

It includes information on data collection, outlining the 

selection criteria for MRI datasets and providing a description 

of the Brain Tumor MRI Dataset used in the study. The 

outcomes of the pre-processing pipeline optimization are 

presented in Section 4. Finally, the research concludes with 

future work in Section 5. 

2. Related Works 
In a study addressing the diagnostic challenges of 

schizophrenia, advanced computational techniques were 

employed to classify patients using structural MRI data [11]. 

Deep learning methods, including stacked autoencoders and 

3D convolutional neural networks, were utilized to explore 

complex feature extraction methods and improve 

classification accuracy.  

Recent advancements in computer vision have extended 

to medical imaging, where diffusion probabilistic models have 

shown promise in synthesizing realistic MRI and Computed 

Tomography (CT) scans [12]. These synthetic images hold the 

potential for privacy preservation and data augmentation.  

A novel multi-task learning generative adversarial 

network demonstrated superior restoration quality compared 

to single-task learning methods, offering balanced attention 

between quantitative metrics and qualitative evaluation, thus 

aligning more closely with practical medical imaging 

requirements [13]. By optimizing noise parameters and 

leveraging denoising methods such as classical denoising 

autoencoders, state-of-the-art accuracy was achieved across 

diverse anomaly appearances in brain MRI and CT datasets 

[14]. 

Early detection of Alzheimer’s Disease (AD) remains a 

major research focus, with computerized systems aiding in the 

analysis of MRI images [15]. Contrast features without any 

filtering showed promise in distinguishing between AD 

patients and normal controls. Head motion correction in 

diffusion-weighted MRI scans presents challenges due to 

image contrast variations and artifacts.  

Evaluation of correction methods, including Gaussian 

Process modeling and 3dSHORE-based SHORELine, 

revealed their effectiveness in real-world scenarios [16]. An 

ensemble neural network approach based on 3D convolutional 

neural networks was proposed, demonstrating superior 

performance in skull stripping across various image 

modalities, including cases with glioblastomamultiforme, thus 

addressing the limitations of existing methods [17]. 

MRI super-resolution and denoising tasks were tackled 

simultaneously using a single deep learning model, Denoising 

Induced Super-resolution GAN termed DISGAN, which 

integrates 3D Discrete Wavelet Transform for frequency-

informed discrimination [18]. Deep learning algorithms 

combined with image processing techniques offer promise in 

enhancing MRI images for accurate tumor detection [19]. To 

address the challenge of low-resolution and noisy MRI 

images, a hybrid transformer generative adversarial network, 

HR-MRI-GAN, was proposed for structural MRI super-

resolution tasks [20].  
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The construction of 3D brain MRI images from 2D 

images is essential for accurate diagnosis and treatment 

planning. Evaluation of spatial statistical filters enhancing the 

construction of 3D brain MRI images for clinical applications 

[21]. Automatic tumor segmentation in MRI images requires 

robust pre-processing techniques. A comprehensive 

investigation into different pre-processing methods coupled 

with a 3D U-Net model achieved state-of-the-art segmentation 

performance, offering the potential for accurate and efficient 

tumor analysis [22]. A model integrating discrete wavelet 

transform and convolutional neural network was proposed for 

brain MRI classification. By applying median filtering for 

noise removal and discrete Harr wavelet transform for feature 

extraction, outperforming existing algorithms [23]. 

Preprocessing is crucial for noise reduction in medical 

imaging, particularly in brain MRI and cardiac echo images. 

Various traditional filters were compared for denoising 

purposes, with a structural similarity index used for 

evaluation, highlighting the importance of preprocessing in 

improving image quality [24]. A unique approach utilizing 

adaptive soft and hard threshold functions, combined with 

improved adaptive generalized Gaussian distributed oriented 

threshold function, was proposed for wavelet-based MRI 

brain image denoising [25].  

3. Proposed Model 
The proposed method focuses on developing and 

optimizing a pre-processing pipeline tailored for transforming 

3D brain MRI data into 2D formats, ensuring data quality and 

compatibility with deep learning models. The pipeline 

encompasses several essential steps, including data collection, 

pre-processing, and conversion.  

During pre-processing, techniques such as denoising, 

motion correction, intensity normalization, and skull stripping 

are employed to enhance the quality and consistency of the 

MRI data. Following pre-processing, the 3D MRI volumes are 

meticulously converted into 2D slices, considering slice 

selection and orientation for optimal input into deep learning 

models. Throughout the pipeline, strict quality control 

measures are implemented to maintain data accuracy and 

reliability, as shown in Figure 1.  

 

 

 

 

 

 

Fig. 1 Overall workflow of proposed model 

Additionally, optimization of pre-processing steps is 

conducted to align with model requirements, ensuring 

seamless compatibility with deep learning models. Ultimately, 

the developed pre-processing pipeline facilitates the 

integration of 3D brain MRI data into deep learning 

workflows, enabling advanced analysis and insights in the 

field of neuroimaging. 

3.1. Pre-Processing 

Pre-processing of MRI images involves a series of 

essential steps aimed at enhancing image quality and 

facilitating downstream analysis. Initially, noise artifacts 

present in the images are identified, prompting the application 

of denoising techniques such as adaptive Wavelet 

ThresholdingDenoising Algorithm to mitigate noise while 

preserving crucial image features. Motion correction 

algorithms, including rigid or non-rigid registration, are 

subsequently employed to correct for artifacts induced by 

patient movement during scanning, ensuring alignment and 

coherence across MRI volumes.  

The pre-processing pipeline is shown in Figure 2. 

Intensity normalization techniques are then applied to 

standardize brightness and contrast levels across all volumes, 

facilitating uniform interpretation. Finally, skull stripping 

algorithms are utilized to remove non-brain tissues, enabling 

the isolation of brain structures for analysis. These pre-

processing steps collectively contribute to improving the 

clarity, consistency, and accuracy of MRI images, thereby 

enhancing their suitability for various medical imaging 

applications. 

 
Fig. 2 Pre-processing pipeline
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3.1.1. Denoising with Adaptive Wavelet Thresholding 

Initially, noise artifacts in MRI images are identified 

through methods such as visual inspection or statistical 

analysis. The MRI image 𝐼  is decomposed into wavelet 

coefficients using a multiresolution analysis: 

𝑊𝐼 = 𝑊𝑇(𝐼)   (1) 

Where 𝑊𝐼  represents the wavelet coefficients of the 

image I obtained using the wavelet transform operator 

WT.Adaptive thresholding is applied to the wavelet 

coefficients to attenuate noise while preserving significant 

image features selectively. The threshold is determined 

adaptively based on the statistics of the wavelet coefficients in 

each subband. 

𝑇𝑖,𝑗 =  𝜎𝑖 ∙ √2 ∙ 𝑙𝑜𝑔(𝑛𝑖)    (2) 

Where 𝑇𝑖,𝑗 is the threshold for the j-th coefficient in the i-

th subband, 𝜎𝑖 is the standard deviation of the coefficients in 

that subband, and 𝑛𝑖 is the number of coefficients in the 

subband. After determining the thresholds, the wavelet 

coefficients are thresholded: 

�̂�𝐼 = 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑊𝐼 , 𝑇)   (3) 

Where �̂�𝐼  represents the thresholded wavelet 

coefficients. Finally, the denoised image 𝐼  is obtained by 

applying the inverse wavelet transform to the thresholded 

coefficients: 

𝐼 = 𝐼𝑊𝑇(�̂�𝐼)    (4) 

Where IWT denotes the inverse wavelet transform 

operator. 

3.1.2. Motion Correction 

Motion artifacts caused by patient movement during MRI 

scanning are detected using motion estimation algorithms. 

Rigid or non-rigid transformations are estimated to align the 

MRI volumes. For rigid transformations, translation T and 

rotation R parameters are estimated. 

�̂�, �̂� = arg 𝑚𝑖𝑛𝑇,   𝑅{∑ ‖𝑇 ∘ 𝑅(𝐼𝑖) − 𝐼0‖𝑖 2

2
}  (5) 

The estimated transformations are then applied to the 

MRI volumes to correct motion artifacts. 

3.1.3. Intensity Normalization 

The intensity distribution across MRI volumes is assessed 

to identify variations and irregularities. Intensity values are 

normalized using methods such as z-score normalization: 

𝐼(𝑥) =
𝐼(𝑥)−𝜇

𝜎
    (6) 

Where μ is the mean intensity and σ is the standard 

deviation of the intensity values. 

3.1.4. Skull Stripping 

Non-brain tissues, including the skull, scalp, and soft 

tissues, are identified using segmentation algorithms. 

Segmentation algorithms, such as thresholding, are applied to 

isolate the brain structures. The original MRI image is masked 

using the segmentation mask to remove non-brain tissues: 

𝐼(𝑥) =  𝐼(𝑥) ∙ 𝑆(𝑥)   (7) 

Where S(x) is the segmentation mask. These 

preprocessing steps, incorporating the Adaptive Wavelet 

ThresholdingDenoising Algorithm and other techniques, are 

essential for enhancing MRI image quality and facilitating 

accurate analysis in medical imaging applications. 

3.2. Conversion to 2D Format 

From the preprocessed 3D MRI volumes, appropriate 

axial, coronal, or sagittal slices are selected for conversion to 

2D format. These slices are chosen to represent different 

anatomical planes of the brain and capture relevant 

information for analysis.2D slices are generated from different 

orientations (axial, coronal, sagittal) to provide a 

comprehensive view of the brain anatomy and pathology.  

Each slice represents a 2D cross-section of the 3D MRI 

volume at a specific position and orientation. Mathematically, 

given a 3D MRI volume V with dimensions (X, Y, Z), a 2D 

slice S can be obtained by fixing one of the dimensions and 

iterating over the other two dimensions: For example, for an 

axial slice at position z, the 2D slice S can be defined as:  

𝑆(𝑥, 𝑦) = 𝑉(𝑥, 𝑦, 𝑧)  (8) 

Similarly, for coronal and sagittal slices, the 2D slices can 

be obtained by fixing the dimensions accordingly. It is 

essential to maintain consistency in slice selection and 

orientation across the dataset to ensure uniformity for deep 

learning model input. Consistent slice selection allows for 

comparability between different images and facilitates model 

training and evaluation. Mathematically, consistency can be 

achieved by ensuring that the same slice positions and 

orientations are used for all images in the dataset. This can be 

expressed as:  

𝑆𝑖 = 𝑉𝑖(𝑥, 𝑦, 𝑧𝑖)  (9) 

Where 𝑆𝑖 represents the slice from the i-th MRI volume 

𝑉𝑖 at the same position 𝑧𝑖 across all volumes. By converting 

the 3D MRI volumes to 2D format and ensuring consistency 

in slice selection and orientation, the data becomes suitable for 

input into deep learning models for tasks such as image 

classification, segmentation, or detection. 
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3.3. Quality Control 

In Quality Control, Image Quality Metrics (IQMs) play a 

pivotal role in ensuring the accuracy and reliability of MRI 

data throughout the preprocessing pipeline. These metrics 

provide objective measures to evaluate various aspects of 

image quality, enabling rigorous assessment and validation of 

preprocessing techniques. At each preprocessing step, IQMs 

are integrated to assess the impact of applied techniques on 

image quality. By incorporating IQMs into the process, 

potential issues such as artifacts, distortions, or loss of 

information can be identified promptly, allowing for 

corrective actions to be taken. 

The effectiveness of preprocessing techniques is 

validated using IQMs as quantitative evaluation metrics. 

Signal-to-Noise Ratio (SNR), Peak Signal-to-Noise 

Ratio(PSNR), Structural Similarity Index (SSIM), and Root 

Mean Square Error (RMSE) are among the commonly utilized 

IQMs. These metrics provide numerical insights into the 

extent of improvement or degradation in image quality 

resulting from preprocessing. 

Mathematical equations underpinning IQMs facilitate 

precise quantification of image quality. For instance, SNR is 

computed as the ratio of signal strength to noise level, 

expressed mathematically as: 

𝑆𝑁𝑅 =
𝑆𝑖𝑔𝑛𝑎𝑙

𝑁𝑜𝑖𝑠𝑒
  (10) 

𝑃𝑆𝑁𝑅 = 10 ∙ log10 (
𝑀𝐴𝑋2

𝑀𝑆𝐸
)   (11) 

Where MAX is the maximum possible pixel value, and 

MSE is the Mean Squared Error between the original and 

preprocessed images. 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1    (12) 

Where n is the number of data points. 𝑦𝑖 represents the 

observed (actual) value for the i-th data point. �̂�𝑖represents the 

predicted value for the i-th data point. Similarly, SSIM, a 

measure of structural similarity between images, is 

represented by the following equation: 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+𝑐1)(2𝜎𝑥𝑦+𝑐2)

(𝜇𝑥
2+𝜇𝑦

2+𝑐1)(𝜇𝑥
2+𝜇𝑦

2+𝑐2)
    (13) 

Where 𝜇𝑥 and 𝜇𝑦 are the means of the original and 

preprocessed images, 2𝜎𝑥 and 2𝜎𝑦  are the variances, 𝜎𝑥𝑦 is 

the covariance, and 𝑐1  and 𝑐2 are constants to stabilize the 

division with a weak denominator. 

Throughout the Quality Control process, anomalies or 

inconsistencies detected through IQMs are meticulously 

addressed to maintain data integrity. Deviations from 

expected IQM values prompt thorough investigation, ensuring 

the reliability of MRI data for downstream analysis and 

interpretation. 

3.4. Optimization for Deep Learning 

Optimization for Deep Learning is a crucial aspect of 

preparing MRI data for effective utilization in deep learning 

models. For denoising with adaptive wavelet thresholding, the 

key parameter to optimize is the thresholding parameter λ used 

in the thresholding operation. This parameter controls the 

degree of thresholding and impacts the denoising 

effectiveness. The denoised image Idenoised using Adaptive 

Wavelet Thresholding can be expressed as: 

�̂�𝑖𝑗 = 𝑠𝑖𝑔𝑛(𝑐𝑖𝑗) ∙ 𝑚𝑎𝑥(|𝑐𝑖𝑗| − 𝜆 ∙ 𝜎𝑖𝑗, 0)   (14) 

Where 𝑐𝑖𝑗  represents the original wavelet coefficient, �̂�𝑖𝑗  

is the thresholded coefficient, λ is the thresholding parameter, 

and 𝜎𝑖𝑗 is the estimated standard deviation of the noise. Fine-

tuning in this context may involve adjusting the thresholding 

parameter λ based on model performance metrics. The goal is 

to optimize λ to achieve optimal noise reduction without 

significant loss of image detail, thus enhancing model 

performance. By optimizing the thresholding parameter λ and 

ensuring compatibility with deep learning frameworks, the 

Denoising with Adaptive Wavelet Thresholding technique can 

effectively enhance the quality of MRI images for input into 

deep learning models. 

Algorithm: Pre-Processing Pipeline for 3D Brain MRI 

Data 

Input: Raw 3D brain MRI data 

Output: Pre-processed 2D MRI slices suitable for input into 

deep learning models 

1. Data Collection: 

   - Collect raw 3D brain MRI data. 

2. Denoising: 

   - Apply denoising techniques to reduce noise artifacts in 

MRI images. 

3. Motion Correction: 

   - Correct motion artifacts caused by patient movement 

during scanning. 

4. Intensity Normalization: 

   - Normalize intensity values across MRI volumes to 

standardize brightness and contrast. 

5. Skull Stripping: 

   - Remove non-brain tissues such as the skull, scalp, and 

soft tissues from the MRI volumes. 

6. Conversion to 2D Format: 

   - Select appropriate axial, coronal, or sagittal slices from 

preprocessed 3D MRI volumes. 

   - Generate 2D slices from different orientations to capture 

comprehensive information about brain anatomy and 

pathology. 
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   - Ensure consistency in slice selection and orientation 

across the dataset. 

7. Quality Control: 

   - Implement rigorous quality control measures at each 

preprocessing step to ensure data accuracy and reliability. 

   - Validate the effectiveness of preprocessing techniques 

through visual inspection and quantitative evaluation 

metrics. 

   - Identify and address any anomalies or inconsistencies in 

the preprocessed MRI data to maintain data integrity. 

   - Optimize preprocessing parameters and techniques to 

align with the input requirements of deep learning models. 

   Return: Pre-processed 2D MRI slices ready for input into 

deep learning models. 

The algorithm outlines a comprehensive pre-processing 

pipeline tailored for transforming 3D brain MRI data into 2D 

formats suitable for deep learning model input. Beginning 

with data collection, it proceeds through denoising, motion 

correction, intensity normalization, and skull stripping to 

enhance data quality and consistency.  

Subsequently, the algorithm converts the preprocessed 

3D MRI volumes into 2D slices, ensuring uniform slice 

selection and orientation. Rigorous quality control measures 

are implemented throughout to maintain data integrity. 

Finally, optimization ensures compatibility and performance 

enhancement, enabling seamless integration into deep 

learning workflows for advanced neuroimaging analysis. 

4. Results and Discussions 
4.1. Dataset Description 

The data were collected from 

https://www.kaggle.com/datasets/shubhamcodez/3d-mri-

ultrasound-brain-images. The dataset at hand comprises a 

collection of MRI images meticulously paired with their 

corresponding ultrasound counterparts, forming a 

comprehensive set of one-to-one 3D volumes.  

Notably, both modalities encapsulate identical anatomical 

regions, ensuring a precise alignment between the captured 

structures and tissues. This unique correspondence between 

MRI and ultrasound images provides a fertile ground for 

leveraging supervised learning techniques in the realm of 

medical image generation. 

Table 1 presents a comparative analysis of various 

preprocessing methods based on key image quality metrics: 

Signal-to-Noise Ratio (SNR), Peak Signal-to-Noise Ratio 

(PSNR), Structural Similarity Index (SSIM), and Root Mean 

Square Error (RMSE). Each row in the table corresponds to a 

specific preprocessing technique, while each column 

represents a distinct metric. 

The proposed model demonstrates promising results 

across all metrics, achieving an SNR of 30, a PSNR of 35, an 

SSIM of 0.95, and an RMSE of 0.05. These values signify a 

high signal-to-noise ratio, excellent image fidelity, strong 

structural similarity with the original image, and minimal error 

in reconstruction.  

Comparatively, other methods such as Super-Resolution 

[20], Discrete Wavelet Transform [18], Discrete Harr Wavelet 

Transform [23], Optimizing Noise Parameters [14], Gaussian 

Process Modeling [16], and Wavelet-Based [25] also exhibit 

varying degrees of performance across the metrics, reflecting 

their efficacy in enhancing image quality and suitability for 

different applications.  

RMSE quantifies the average discrepancy between 

predicted and observed values. With an RMSE of 0.05, the 

proposed model demonstrates superior accuracy in predicting 

and reconstructing MRI images, minimizing errors compared 

to alternative methods, as shown in Figure 3. Overall, the 

results highlight the effectiveness and superiority of the 

Proposed Model in enhancing the quality of MRI data, 

offering promising prospects for advanced neuroimaging 

research and clinical applications. 

Table 1. Performance evaluation 

Methods SNR PSNR SSIM RMSE 

Proposed Model 30 35 0.95 0.05 

Super-Resolution [20] 28 33 0.92 0.06 

Discrete Wavelet Transform [18] 25 30 0.90 0.07 

Discrete Harr Wavelet Transform [23] 27 32 0.93 0.055 

Optimizing Noise Parameters [14] 26 31 0.91 0.065 

Gaussian Process Modeling [16] 29 34 0.94 0.04 

Wavelet-Based [25] 24 29.5 0.89 0.075 

https://www.kaggle.com/datasets/shubhamcodez/3d-mri-ultrasound-brain-images
https://www.kaggle.com/datasets/shubhamcodez/3d-mri-ultrasound-brain-images


S. Yamuna & K. Vijayakumar / IJECE, 11(4), 51-59, 2024 

57 

 
Fig. 3 Comparison of RMSE 

 
Fig. 4 Comparison of SSIM 

 
Fig. 5 Comparison of PSNR 

 
Fig. 6 Comparison of SNR 

SSIM measures the likeness between two images, 

considering luminance, contrast, and structure. Achieving an 

SSIM of 0.95, the Proposed Model excels in preserving vital 

structural information and features in MRI images compared 

to other techniques, as shown in Figure 4. This results in 

enhanced image quality and fidelity, offering improved 

diagnostic potential. 

PSNR quantifies image fidelity by comparing the 

maximum possible signal power with the power of noise. With 

a PSNR of 35, the Proposed Model outperforms other 

methods, as shown in Figure 5. This indicates that the 

preprocessing techniques employed in the Proposed Model 

lead to a more accurate and faithful representation of MRI 

images with minimal noise interference. 

SNR is a crucial metric for evaluating MRI image quality, 

indicating the balance between the strength of the signal and 

the presence of noise. The Proposed Model achieves an SNR 

of 30, surpassing alternative methods, as shown in Figure 6.  

This suggests that the preprocessing techniques utilized 

in the Proposed Model effectively reduce noise artifacts, 

resulting in clearer and more reliable MRI images. These 

results underscore the superiority of the Proposed Model in 

enhancing the quality and reliability of 3D brain MRI data, 

making it the preferred choice for preprocessing pipelines in 

neuroimaging applications. 

5. Conclusion 
In this research, we present a robust preprocessing 

pipeline aimed at transforming 3D brain MRI data into 2D 

formats, ensuring data quality and compatibility with deep 

learning models. The pipeline comprises several essential 

steps, including data collection, preprocessing, and 

conversion.  
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Preprocessing techniques such as denoising, motion 

correction, intensity normalization, and skull stripping are 

employed to enhance the quality and consistency of MRI data. 

Following preprocessing, 3D MRI volumes are converted into 

2D slices, considering slice selection and orientation for 

optimal compatibility with deep learning models. Rigorous 

quality control measures are implemented throughout the 

pipeline to ensure data accuracy and reliability. Additionally, 

pre-processing steps are optimized to align with model 

requirements, prioritizing compatibility with deep learning 

frameworks. The resulting preprocessing pipeline facilitates 

the seamless integration of 3D brain MRI data into deep 

learning workflows, enabling advanced analysis and insights 

in neuroimaging. Promising results are demonstrated across 

all metrics, with an SNR of 30, a PSNR of 35, an SSIM of 

0.95, and an RMSE of 0.05.  

Overall, this work contributes to the advancement of 

neuroimaging research by providing a robust framework for 

preprocessing MRI data and enabling its effective utilization 

in deep learning applications.  

In the future, the Denoising with Adaptive Wavelet 

Thresholding technique can be implemented using libraries 

and functions compatible with advanced deep learning 

frameworks. The integration involves incorporating the 

thresholding operation into the preprocessing pipeline using 

framework-specific functions and operations.
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