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Abstract - The Internet of Things has experienced explosive evolution as a ground-breaking phenomenon since its conception. 

The security sector has witnessed enormous growth in cyberattacks as a consequence of the increasing growth of IoT devices, 

which expanded the attack vector for hackers to carry out significantly more damaging vulnerabilities. A key component of 

assuring the cybersecurity of IoT is the identification of anomalies in network activity using an intrusion detection system. 

Conventional machine learning methods appear vain in the face of inconsistent network expertise and several attack tactics. 

Deep learning methods have proved their capability to recognize irregularities in a wide range of research fields accurately. 

An excellent substitute for conventional methods of anomaly detection and classification is Convolutional Neural Networks 

(CNN). In this research, a novel IDS-based improved CNN model for IoT networks has been developed. To solve the issue of 

overfitting and improve the sophistication of the classifier, various regularization techniques, including L1, L2, Dropout, and 

multi-regularization, have been deployed. The experimental findings demonstrate that, when contrasted to the other CNN2D 

models, the proposed method outperforms with an above 98% accuracy. The Detection Rate and False Discovery Rate of 
individual classes are above 0.9 and below 0.1, respectively.  

Keywords - Internet of Things, Convolutional Neural Networks, Regularization, Overfitting, Intrusion Detection System.   

1. Introduction 
The Internet of Things (IoT), a revolutionary technology 

that allows gadgets equipped with sensors and network 

support to connect to the Internet, has recently developed. IoT 
increases the effectiveness of every device and makes it easier 

and more rational to use limited resources. Users have access 

to the capacity to combine internet-enabled devices, 

information, and applications [1]. Statista projects that by 

2030, there will be about 29 billion IoT devices in use 

worldwide, up from 9.7 billion in 2020 [2].  

The IoT network design has grown proportionately as a 

result of the exponential growth in the number of IoT devices, 

which already stand in the billions. The drawback of this, 

though, is that it raises issues of security and privacy 

concerning the gathering and transfer of information. When 

data is moved from one device to another over a wide area of 
the network, it is frequently endangered in terms of both 

individual and organizational security. 

An Intrusion Detection System (IDS) is frequently 

utilized to track network activity and provides a prompt alert 

signal as a vital countermeasure for IoT/cyber security threats. 

An IDS leverages hybrid, anomalous, and signature-based 

approaches for detection. By comparing known patterns or a 

predetermined set of criteria, signature-based techniques 

identify intrusions, whereas anomaly-based strategies 

concentrate on the actions of the current user to identify 

disruptions [3]. Attacks can be detected using anomaly 

monitoring frameworks, but developing complicated rules for 

larger collections of data can be costly, time-consuming, and 

prone to errors [4].  

In cybersecurity applications, including intrusion 

detection, authentication mechanisms, and privacy protection, 
ML (Machine Learning) and DL (Deep Learning) algorithms 

are being employed progressively more often. With the help 

of these cutting-edge learning techniques, it may be possible 

to examine and draw conclusions from the underpinning IoT 

information to enhance threat analysis and detection systems 

and, ultimately, uncover security holes in the IoT platform. 

ML and DL for cybersecurity are extensible and independent 

because they enable a system to adapt from its expertise as it 

expands and self-tune to grow more effectively and 

efficiently.  

A framework was developed by Sattari et al. [5] that 
utilizes DL techniques to identify IoT security threats. A 

hybrid IDS utilizing Random Forest (RF) and Autoencoder 

(AE) was proposed by Chao Wang et al. [6]. The probability 
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output of the RF classifier is used in the first step to identify 

attack samples, which is particularly helpful for unidentified 

attacks. To lower false positives, an extra AE is included in 

the second phase. Their method showed a high detection rate 

and significantly reduced false positives in studies emulating 

unknown attacks when compared to different baselines.  

Jingyi et al. [7] used the IoTID20 [8] dataset for attack 

classification. The authors utilized Decision-Tree, Gradient-

boosting, and Random-Forest machine algorithms for attack 

classification [7]. The IoTID20 dataset has an imbalanced 

class distribution, but the authors did not consider data 

imbalances. Another drawback of this research is that the 

authors designed a classification model for binary classes, and 

each class of attack uses different feature sets which will 

complicate the IDS deployment process in the IoT 

architecture.  

Peng et al. [9] suggested an information-based virtual 

MAC spoof detector using deep CNN (Convolutional Neural 
Network). The deep CNN model was compared with the SVM 

model for binary classification [9]. R. Aiyshwariya et al. [10] 

suggested a Deep LSTM-based attack detection method that 

has given 95% accuracy. The problem with the model is class 

imbalance. CNN is a DL structure that has attracted 

investigators’ interest primarily for its outstanding capability 

to handle image data in image identification, classification, 

and computer vision. As a result, it has been cast in a range of 

fields, together with networking and diagnostic image 

processing [11]. The success of CNN in resolving several 

challenging classification problems served as the inspiration 
for the proposed signature-based IDS for efficient and prompt 

detection of IoT security vulnerabilities.  

The proposed work employs image data generation and 

regularization techniques to minimize overfitting and offer a 

comprehensive paradigm that can suit properly on unfamiliar 

data. Five types of algorithms are used for the evaluation and 

analysis of results, namely CNN2D, L1 regularized CNN2D, 

L2 regularized CNN2D, CNN2D with dropout, and multi-

regularized CNN2D. 

The work contribution uses two separate datasets, 

UNSW-NB15 [12] and Bot-IoT [13], to thoroughly evaluate 

botnet vulnerabilities for various IoT devices and growing 
cyber-attacks in IoT. The proposed method incorporates the 

CNN2D algorithm with the L1, L2, and dropout regularization 

methods. Analysis of the proposed system using reliable 

evaluation metrics like Recall, Accuracy, F1-Score, and 

Precision. The proposed method resulted in a higher Detection 

Rate (DR). The following are the contributions made by this 

research work: 

 The proposed use of a CNN2D-based deep learning 

scheme for identifying Botnet threats in an IoT scenario 

is an innovative approach. This choice leverages the 

proven success of CNNs in image-related tasks and 

extends their application to the complex domain of IoT 

security.  

 Proposes a powerful CNN2D deep-learning scheme 

designed to reduce overfitting issues, providing 

adaptability to unknown attacks. 

 Utilized five algorithms, including CNN2D, L1 

regularized CNN2D, L2 regularized CNN2D, CNN2D 

with dropout, and multi-regularized CNN2D, ensuring a 

thorough analysis of results. 

 Employed two distinct datasets, UNSW-NB15 and Bot-

IoT, to comprehensively assess botnet vulnerabilities in 

diverse IoT devices amid growing cyber threats. 

 Acknowledged and mitigated class distribution 

imbalances in datasets using SMOTE (Synthetic Minority 

Oversampling Technique), enhancing the reliability of 

the experimental results. 

 Implemented image data generation from the datasets 

using OpenCV, contributing to enhanced model 

interpretability. 

 Innovatively combined images from the datasets Bot-IoT 

and UNSW-NB15 to create a new dataset, further 

validating the proposed method’s effectiveness. 

In comparison to existing research efforts, this work not 

only addresses the limitations of previous IDS solutions but 
also introduces several key innovations. The 

acknowledgement and mitigation of class distribution 

imbalances in datasets, enhancement of model interpretability 

through image data generation, and utilization of multiple 

datasets to comprehensively assess botnet vulnerabilities are 

significant contributions. Through rigorous experimentation 

and analysis, the efficacy of the proposed technique in 

achieving higher detection rates and reducing false positives 

is demonstrated. 

The rest of the article is structured as follows: Section 2 

is brief about the proposed methodology and data 

preprocessing techniques. A comparison of results with 

previous research and results analysis is described in section 

3. At last, section 4 concludes the paper. 

2. Proposed Methodology  
The proposed framework will be trained using image-

based data that includes both benign and diverse types of 

threats. The structure of the proposed IDS technique is 

represented in Figure 1. To assess the functioning of the 

trained model, three cases are considered:  

1. In the first instance, the evaluation of each model is done 

by using the image data produced from the UNSW-NB15 

dataset, which contains 10 classes, including the normal 
type of data. 

2. Bot-IoT dataset with 5 different classes including Normal 

data, is used for the evaluation of models in the second 

case.  
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3. In the last instance of the evaluation phase, a newly 

created composite dataset with 12 different classes has 

been used.  

Result analysis of all the instances was done after 

evaluating the outcomes from different models like CNN2D, 

CNN2D with L1 regularization, CNN2D with L2 
regularization, CNN2D with dropout, and CNN2D with multi 

regularization (Combination of L1, L2, and dropout). 

For training and testing, two well-known datasets of 

network packets, the Bot-IoT and UNSW-NB15, are 

employed. More than 2.5 million network packets are used to 

replicate the dataset UNSW-NB15, which includes nine 

different attacks: exploitation, reconnaissance, denial-of-

service, generic, shellcode, backdoors, fuzzers, worms, and 

analysis, along with normal packets.  

The dataset is severely imbalanced because more than 

87% of the packets are of the Normal type. With a mix of 

virtual and real-time IoT setups, the Bot-IoT dataset has more 
than 72 million records. Although there are four different sorts 

of attacks, DoS and DDoS packet types make up the majority 

of the dataset. Similar to the dataset UNSW-NB15, Bot-IoT is 

also unbalanced. 

Table 1. Class distribution of the UNSW-NB15 dataset before and after 

the SMOTE algorithm 

Class Type 

Percentage of Data 

Before 

SMOTE 

After 

SMOTE 

Normal 87.35 10.00 

Backdoor 0.1 10.00 

Analysis 0.11 10.00 

Fuzzers 0.95 10.00 

Shellcode 0.06 10.00 

Reconnaissance 0.55 10.00 

Exploits 1.75 10.00 

DoS 0.64 10.00 

Worms 0.01 10.00 

Generic 8.48 10.00 

It is essential to preprocess the information prior to 
applying it to the CNN2D model. The function 

“pd.to_numeric()” to transform category data into numeric 

data is used. The features ‘id’ and ‘pkSeqID’ are omitted in 

UNSW-NB15 and Bot-IoT datasets, respectively, because 

they are merely representational numbers from records; they 

have no bearing on network traffic or the nature of attacks. 

After omitting labels and IDs from both datasets, 42 features 

are employed for the attack detection. Every classification 

model must be given enough data, at least during the training 

phase, that includes a respectable count of each class, to 

function successfully.  

On examining the data distribution of the two datasets in 

Tables 1 and 2, it is evident that the distribution of the data 

classes is not balanced before applying it to the SMOTE 
algorithm. The prediction performance for the minor classes 

is substantially impacted by an imbalanced dataset since the 

model is biased towards the category that has a greater record 

count in the training data. The classifier had a better chance of 

learning about the majority class throughout the process of 

learning, however, it was unable to acquire sufficiently about 

the minority class. As a result, the classifier has a tendency to 

classify a given data as belonging to the majority class even 

while it does not.  

In order to increase the minority class records, the feature 

vectors for each member of the minor class are identified and 

plotted as dots in a 2D space in SMOTE [14]. Then, for each 
point, the nearest neighbor is determined, creating a new-

fangled point that depends on the concerning line amid the 

starting point and its adjacent neighbor. To obtain balanced 

data in the proposed work, the SMOTE mechanism is 

employed. Tables 1 and 2 show the data sample distribution 

for the two datasets before and after applying the SMOTE 

algorithm. 

Table 2. Class distribution of the BoT-IoT dataset before and after the 

SMOTE algorithm 

Class Type 

Percentage of Data 

Before 

SMOTE 

After 

SMOTE 

Normal 0.013 20.00 

DDoS 52.50 20.00 

DoS 45.00 20.00 

Reconnaissance 2.48 20.00 

Theft 0.002 20.00 

In order to make the traffic flow suitable for CNN’s input, 

the traffic flow needs to be initially converted into an image. 

The characteristic distribution is transformed into a normal 

distribution using the quantile transformation normalizing 

technique. As a result, most of the variable values are within 

a few standard deviations of the median, effectively handling 

outliers [15]. Quantile transformation distributed each feature 

according to the same desired pattern depending on the 
following: 

𝑌i = 𝑄−1(𝐹(𝑋i)).                       (1) 

Where Q^(-1) is the quantile function of the intended 

output distribution, and F is the feature’s cumulative 

distribution function Q.
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Fig. 1 Framework for proposed Intrusion Detection System 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2 Sample class images from the composite dataset  
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The data records are divided into parts of varying sizes 

throughout the image creation phase, dependent on the 

timestamp and attribute dimensions of the traffic flow 

datasets. Each one of the datasets contains 42 features, which 

are turned into a 3D image with three channels to reflect the 

image’s color. As a result, each color image that is produced 
is converted to a maximum of 42 × 42 x 3 feature values.  

Inferring from the previous sentence, the 42 records of 

every portion were transformed into image matrices of each 

channel, and then all of them were typically translated into the 

RGB channels. The OpenCV package is used to translate the 

information into the image matrix. Each portion of a dataset 

has 42 X 3 = 126 successive data samples. Repeat this process 

until all of the labels in both datasets have undergone the 
necessary transformation.  

The images produced have relied on the timestamps of the 

dataset, therefore the outcomes are guaranteed to be accurate. 

It is worth noting that the time-series association of the initial 

traffic information can be preserved in this particular instance. 

Also, the ability to easily distinguish the various outlines in 

the images via color makes it crucial in this situation to 
transform the information into an image trajectory with three 

color channels. 

The image is then resized into a shape that the CNN2D 

models can use as input. We, therefore, increased the images’ 

size to 224 X 224 X 3. As a result, CNN2D will be able to 

quickly pick up on all of the image’s features and increase 

learning speed. Figure 2 exhibits illustrative examples of the 

various attack samples from the composite datasets. It is 
evident from both datasets that the feature patterns of various 

classes differ significantly from one another. The variations in 

the visual patterns determine the occurrence and tactics of 

every attack plan used by the adversary. The CNN2D 

algorithm can acquire extra features in addition to these 

differences, resulting in greater accuracy for detecting attacks. 

For the first two cases, the image dataset generated by 

datasets [UNSW-NB15 and Bot-IoT] has been used 
correspondingly. The combination of both image datasets is 

used to assess case 3. Normal, Backdoor, Reconnaissance, 

Analysis, Shellcode, Fuzzers, Exploits, DoS, Worm, and 

Generic are among the ten classes in the UNSW-NB-15 

dataset.  

In contrast, there are 5 categories for Bot-IoT data: DDoS, 

DoS, Reconnaissance, Normal, and Theft. The analysis of the 
two datasets was done, and discovered that the common kinds 

of classes were DoS, Reconnaissance, and Normal. Then, 

leaving the other files intact, the images from these three files 

were combined. In this way, a composite image dataset with 

12 classes has been generated at this stage. It can be clinched 

that the intended method is successful at identifying 

vulnerabilities if it performs as well for a combined dataset as 

it does for other individual datasets. 

As a result of their ability to retain the peculiar trends in 

the training sample rather than generalizing to new 

information, complex models like DL models are vulnerable 

to overfitting. Regularization is the term for any change that is 

performed to a learning model that aims to lower its 

generalization error but not its training error. By utilizing 
regularization methods to maintain the model simple enough, 

the network is able to generalize successfully to data points it 

has never encountered before (zero-day attacks).  

Early stopping, dropout, L1 regularization, and L2 

regularization are employed in the proposed work. The early-

stopping technique is utilized to obstruct learning the model 

whenever its performance on the validating dataset worsens-

when it experiences increased loss, declining accuracy, or 

worsening outcomes of the scoring metric. When errors from 

the training and validation datasets are shown simultaneously, 

it can be seen that both errors increase smaller over time till 

the model becomes overfit.  

The training error continues to decrease after such a point 

while the validation error rises. The model will, therefore, be 

able to have minimum variance and higher generalization. The 

Dropout layer proceeds as a veil by eradicating some neurons’ 

influences to the successive layer while upholding the 

integrity of the other neurons. The connections to the neurons’ 

incoming and outgoing signals are likewise cut off when the 

neurons are turned off. It is always prudent to switch off the 

neurons up to 50%. There is a likelihood that the algorithm 

leaning and the estimates would be poor if further after 50% 

of neurons switched off. The main benefit of dropout is that it 
enables a single network to represent a variety of distinct sub-

networks in a straightforward way for both training and testing 

[16]. In the research, a 20% dropout probability is used.  

In CNN, one can define the cost function or loss function 

“F” as the squared error, where the error represents the 

variation between the 𝑦𝑇𝑛
 (actual value) and the 𝑦𝑃𝑛

 (predicted 

value). The cost function can be written as: 

𝐹 =  
1

𝑁
∑ (𝑦𝑃𝑛

−  𝑦𝑇𝑛
 )2𝑁

𝑛=1 .                    (2) 

Ridge Regression is an approach that employs L2 

regularization, whereas Lasso Regression utilizes L1 

regularization. The loss function is modified by the L1 

regularization, which is illustrated below, by adding the 

absolute value of the coefficient weights as a penalty term. 

𝐹𝐿1 =  
1

𝑁
∑ (𝑦𝑃𝑛

−  𝑦𝑇𝑛
 )2𝑁

𝑛=1 +  𝜆 ∑ |𝑊𝑛|𝑁
𝑛=1          (3) 

Where λ is the regularization parameter, the squared 

weights of the coefficients are added as a penalty term to the 

loss function for L2 regularization. 

𝐹𝐿2 =  
1

𝑁
∑ (𝑦𝑃𝑛

−  𝑦𝑇𝑛
 )2𝑁

𝑛=1 +  𝜆 ∑ |𝑊𝑛|2𝑁
𝑛=1          (4) 
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If λ=0, the loss function will revert to the initial stage in 

both the L1 and L2 regularization scenarios. λ, conversely, 

will add too much weight and give rise to underfitting when 

it’s tremendously huge.  

After that, it is important to consider the procedure used 

to choose λ. This approach works well to avoid the over-fitting 
issue. Combining L1, L2, and dropout offers the best of all 

possible worlds, which is a useful advantage. L2 is typically 

more accurate than L1, and it is also simpler to modify. 

Dropout can streamline the network by eliminating the 

presence of particular neurons. However, L1 can function with 

sparse feature spaces and aids in the feature selection process. 

In order to reach the best accuracy, combine L2 and L1 with 

Dropout. To improve model efficiency and identify 

unforeseen attacks, early stopping together with dropout, L1 

regularization, L2 regularization, and a combination of the 

aforementioned techniques have been employed. 

The CNN2D model was fed with a 224 × 224 x 3 RGB 

input image. The proposed IDS has an input layer, seven 

convolution, three pooling, two dense layers, and a dropout 

layer. To ensure the smooth distribution consistent throughout 

the forward propagation and the backpropagation, Glorot 

uniform initialization is utilized. Relu activation is utilized for 
all the CNN2D convolutional layers, along with a (3, 3) kernel 

and the “same” padding parameter. 64 filters are applied at the 

first two convolution layers, and the output is (224, 224, 64).  

The max pooling layer provides a way to create sample 

feature maps by adding up the positions of attributes in 

segments. The result from the initial max pooling layer (112, 

112, 64). The third and fourth convolution layers used the 

same parameters as the first one, except the number of kernels 

is 128. So, the fourth convolution layer output will be (112, 

112, 128). Then max-pooling layer with size (2, 2) is used to 

get the output of shape (56, 56, 128).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3 Case 1 graph for accuracy-loss (a) Train, and (b) Validation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Case 2 graph for accuracy-loss (a) Train, and (b) Validation.  
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Fig. 5 Case 3 graph for accuracy-loss (a) Train, and (b) Validation.
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(c) 

Fig. 6 Confusion matrix of proposed method of (a) Case 1, (b) Case 2, and (c) Case 3. 
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The remaining convolution layers have used 256 kernels 

of size (3,3) with (1,1) strides, which results in (56, 56, 256) 

output shape. The Global average pooling is used instead of 

the FC layer in the proposed algorithm. The benefit of global 

average pooling beyond FC layers is that it enforces 

correlations among feature maps and classes, enabling it to be 
more naturally adapted to the convolution framework.  

As a result, the feature maps are simply classifications of 

confidence maps. A dense layer with both L1 (0.001) and L2 

(0.001) bias regularizations is used after the global average 

pooling. A dropout regularization is inserted here to get much 

simpler and more effective results with a 0.2 dropout rate. 

Again, a dense-layer is used as the output layer of the proposed 

model with a SoftMax activation layer. 

3. Performance Evaluation 
In this section, the analysis of multi-regularized CNN2D 

IDS’s performance is done by using the UNSW-NB15 and 

Bot-IoT datasets. For comparison, CNN2D with L1 

regularization, CNN2D with L2 regularization, and CNN2D 

with dropout have been used.   Each model must be evaluated 

for three separate datasets, including UNSW-NB15, Bot-IoT, 

and composite dataset, to carry out an efficient and precise 

experimental analysis.   

3.1. Analysis Tools 
In this research, the experiment was done by using a 

workstation with the following features: Windows 11 Pro 64-

bit OS, Intel(R) Core (TM) i7-10700 CPU at 2.90GHz speed, 

2904 MHz, 8 Cores, and 16 Logical Processors with 64.0 GB 

of RAM. The libraries utilized in the research work are shown 

in Table 3. Python version 3.9.12 from Anaconda version 

23.1.0 is used. The Python interpreter, several libraries, and 

the Spyder IDE are all included in Anaconda.  

Table 3. Python libraries used for research 

Name of Library Version 

Pandas 1.4.2 

SciKit-learn 1.0.2 

Numpy 1.21.5 

OpenCV 4.7.0 

Tensorflow 2.10.0 

Keras 2.10.0 

3.2. Result and Analysis 
The IDS connected to the defined cases was run to show 

and contrast each one’s performance after the effective 

measurement metrics were defined. For all the models the 

early stopping technique is used to prevent the model from 

overfitting and to reduce the time for training the model. 20 

epochs are used to evaluate each model. Due to the early 

stopping effect, all the models stopped training the model 

before reaching 20 epochs.  

In the first case, the UNSW-NB15 is used for the 

evaluation. In this case, a total of 10 classes have been 

categorized for classification. Figure 3 shows loss and 

accuracy graphs for training and validation sets of the UNSW-
NB15. From Figure 3, It can be noticed that the anticipated 

method stopped at the 13th epoch. From the 4th epoch, all 

models almost reached approximately stable accuracy levels 

except CNN2D with L1 regularization. But CNN2D with L1 

regularization has trained up to 15 epochs which are highest 

in Case 1. Table 4 depicts the evaluation metrics of all Cases, 

which include Accuracy, Precision, Recall, and F1-Score. 

From the metrics, it can be observed that the multi-regularized 

CNN2D model achieved the best scores. At the same time, 

CNN2D with dropout has the lowest scores. The best accuracy 

of 98.16% is achieved by employing the proposed algorithm, 

whereas the lowest accuracy of 94.81% is achieved using 
CNN2D for UNSW-NB15. The confusion matrix of the 

proposed method for Case 1 is represented in Figure 6(a). 

Bot-IoT dataset employed in Case 2 for evaluation. The 

loss and accuracy graphs of the Bot-IoT are represented in 

Figure 4. The proposed model stopped training at the 12th 

epoch because the training accuracy reached 100% accuracy 

at the 10th and 11th epochs, and it reduced to 99.37% at the 

12th epoch. The validation accuracy is 100% at the 11th epoch 

and it reduced to 98.21% at the 12th epoch.  

Upon considering Table 4, the proposed model has an 

effective performance (99.83% accuracy) compared to others. 
The CNN2D with L2 regularization also got good scores 

(99.37%) but was unable to reach the proposed method. Figure 

6(b) depicts the confusion matrix of the proposed technique. 

From Figure 6(b), it can be observed that all classes are 

predicted absolutely except for the ‘Reconnaissance’ class. 

Out of 353 samples, 350 samples were predicted correctly as 

Reconnaissance, and the remaining 3 samples were predicted 

wrong as a ‘Normal’ class in this case. 

The images generated from the aforementioned datasets 

are combined and utilized as composite image datasets in Case 

3. The accuracy and loss scores of train and validation sets for 

the composite dataset are represented in Figure 5. Here, the 
proposed model is trained up to the 11th epoch.  Finally, for 

the composite dataset, the proposed model outperformed the 

competition, which shows the effectiveness of the proposed 

technique. In Case 3, the proposed method reached an 

accuracy level of 99.68%. The confusion matrix of the 

proposed model of Case 3 is mounted in Figure 6(c).  

According to the confusion matrix, 8 out of 12 classes 

predicted exactly as true labels, and in the remaining 4 classes, 

slight misprediction occurred.   
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Table 4. Evaluation metrics of CNN2D with different regularizations 

 
Table 5. Comparison of related work on the Bot-IoT and UNSW-NB15 datasets 

Year Technique Dataset No. of Classes Accuracy Ref. 

2019 
(Improved Conditional Variational AutoEncoder) 

ICVAE-DNN 
UNSW-NB15 10 89.08 [17] 

2019 
AutoEncoder-Support Vector Machine- Artificial 

Bee Colony (AE-SVM-ABC) 
UNSW-NB15 2 97.00 [18] 

2020 RNN-LSTM UNSW-NB15 2 87 [19] 

2020 
ANN-RFE (Artificial Neural Network - 

Recursive Feature Elimination) 
UNSW-NB15 - 90.21 [20] 

2019 Feed Forward Neural Networks (FNN) Bot-IoT 5 95.1 [21] 

2019 
RNN using BPTT (Back Propagation Through 

Time) 
Bot-IoT 11 98.20 [22] 

2020 CNN Bot-IoT 11 97.01 [23] 

2021 LSTM 

Combination of 

UNSW-NB15 & 

Bot-IoT 

3 96.3 [24] 

2022 Lightweight Deep Neural Network (LNN) 
UNSW-NB15 

Bot-IoT 

10 

5 

86.11 

96.15 
[25] 

This 

Work 
Multi-Regularized CNN2D 

UNSW-NB15 

Bot-IoT 

Composite 

Dataset 

10 

5 

12 

98.16 

99.83 

99.68 

- 

 
Fig. 7 Accuracy comparison of CNN2D models with different regularizations 
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Proposed CNN2D(Dropout(0.2)) CNN2D(L2(0.001)) CNN2D(L1(0.001)) CNN2D

 
Case-1 Case-2 Case-3 

A P R F1 A P R F1 A P R F1 

CNN2D 94.81 95.37 94.81 94.72 87.44 92.01 87.44 86.09 96.77 97.8 96.77 96.94 

CNN2D (L1) 95.22 95.64 95.22 95.2 87.61 92.31 87.61 86.18 97.17 95.73 97.17 96.38 

CNN2D (L2) 96.99 97.16 96.99 97 99.37 99.38 99.37 9937 98.89 98.9 98.89 98.89 

CNN2D (Dropout) 96.86 97.13 96.86 96.9 93.03 94.24 93.03 92.95 98.44 98.43 98.44 98.27 

Proposed* 98.16 98.2 98.16 98.17 99.83 99.83 99.83 99.83 99.68 99.7 99.69 99.68 
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Fig. 8 Detection rate and false discovery rate of proposed model for individual classes 

Whereas the lowest accuracies achieved with the CNN2D 

model are 94.81%, 87.44%, and 96.77% for Cases 1, 2, and 3, 

respectively. Figure 8 depicts the False discovery rate and 

detection rate of individual classes. From the graph (Figure 8), 

it is observed that the DR for every class is above 0.9, and 

FDR is below 0.1, which shows the success of the proposed 

model. 

3.3. Comparison with Related Research 

The proposed research findings were contrasted with 

those of other publications that employed the UNSW-NB15 
and/or Bot-IoT datasets. Most research that has already been 

done has only used one of the two datasets for evaluation, 

namely Bot-IoT or UNSW-NB15. In this paper, image data 

for both tabular datasets produced a new composite image 

dataset and proposed an IDS architecture based on a multi-

regularized CNN2D. Table 5 provides an overview of the 

contrast among the existing practices and the proposed one.  

Yang et al. [17] implemented DNN in three datasets 

individually and used the ICAVE method to balance the 

dataset. One of the three datasets, UNSW-NB15, has a 

maximum accuracy score of 89.08% when employing 
ICAVE-DNN. The research proposal made by Q. Tian et al. 

[18] adopts the UNSWNB15 dataset as an object of research. 

An autoencoder from deep learning is utilized to decrease 

features during the data reprocessing stage.  

The ABC algorithm is utilized to discover the optimal 

parameter, while SVM is employed as a decision engine. 

Using the AE-based SVM-ABC approach, an accuracy of 

97% was attained. N. Guizani et al. [19] employed the RNN-
LSTM technique and were successful in classifying binary 

data with an accuracy of 87%. R. A. Khamis et al. [20] used 

CNN, RNN, and ANN for evaluating the UNSW-NB15. For 

feature selection, RFE is employed in the dataset. The ANN 

with the RFE method outperformed here with an accuracy of 

90.21%.  

Ibitoye et al. [21] assessment of the Bot-IoT with 10 

leading features using FNN and Self-normalized Neural 

Network (SNN) yielded an accuracy of 95% with FNN, which 

is superior to 91% with SNN. Ferrag et al. [22] presented a 
method called DeepCoin by using RNN with BPTT and 

yielded an accuracy of 98.2% for the evaluation of Bot-IoT.  

Ferrag et al. [23] used Random Forest, Naïve Bayes, 

SVM, ANN, and CNN for the evaluation of the Bot-IoT 

dataset and scored the highest accuracy of 97.01% with the 

CNN algorithm. Bot-IoT and UNSW-NB15 datasets were 

taken into consideration for the study by Zeeshan et al. [24]. 

The authors analyzed the characteristics of the two datasets 
and found comparable characteristics. A new dataset was 

created using the common features that were found. With the 

new dataset, the LSTM approach was used to classify non-

anomalous, DoS, and DDoS traffic with an accuracy of 96.3%.  

Zhao et al. [25] developed LNN, SNN, and CNN for the 

multi-class classification of both datasets separately. The 

LNN technique yielded the highest accuracy compared to 
others, with 86.11% for UNSW-NB15 and 96.15% for Bot-

IoT. The proposed multi-regularized CNN2D-based IDS used 

the composite image dataset generated from both the 

aforementioned datasets and performed effectively compared 

to existing research. 

4. Conclusion 
In the proposed work, a multi-regularized CNN2D is 

proposed in which two benchmark datasets, Bot-IoT and 

UNSW-NB15, are used. These two datasets are imbalanced 

class records and the issue of imbalance is solved by the 

SMOTE algorithm. Bot-IoT and UNSW-NB15 datasets are 
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used in Cases 1 and 2, respectively. For Case 3, A composite 

dataset generated from both datasets is used.  

In each case, 5 models that include CNN2D, CNN2D with 

L1 regularization, CNN2D with L2 regularization, CNN2D 

with dropout method, and CNN2D with muti regularization 

have been used for evaluation. The multi-regularized CNN2D 

incorporated with L1, L2, and dropout regularization 

combined.  Apart from these regularization techniques, all five 

models used an early stopping technique for minimizing 

model training time and increasing efficiency in detecting 

vulnerabilities. The proposed multi-regularized CNN2D 

model outperformed all other models in all the Cases.  

The maximum accuracies yielded by the proposed 

algorithms are 98.16%, 99.83%, and 99.68% for Cases 1, 2, 

and 3, respectively. The effectiveness of this research can be 

seen in the manner in which the proposed approach was 

performed with both the benchmark datasets and the newly 

formed composite dataset. 
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