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Abstract - Denoising volumetric data is essential for improving data quality and facilitating accurate analysis, interpretation, 
and diagnostic capabilities in various fields, including medical imaging, scientific visualization, and engineering simulations. 

This article proposes a BM4D, an expansion of the BM3D filter designed specifically for volumetric data. This unique approach 

combines grouping and Collaborative Filtering (CF) principles. It entails grouping dimensionally similar patches into a (d + 

1)-dimensional array, then processing them collectively in the transform domain. Unlike BM3D, where basic data patches are 

pixel blocks, BM4D uses voxel cubes combined into a Four-Dimensional (4-D) "Group." This 4-D transformation takes 

advantage of local correlations inside each voxel cube as well as non-local correlations between matching voxels from other 

cubes. This produces a highly sparse spectrum within this group, allowing for effective signal-to-noise distinction via coefficient 

reduction. Estimates for each grouped cube are received after applying the inverse transformation, which is then adaptively 

mixed at their original positions. The proposed algorithm's performance is assessed in the context of denoising volumetric data 

corrupted by Gaussian and Rician noise. Experimental results showcase BM4D's outstanding denoising capabilities, establishing 

its effectiveness in the domain of volumetric data denoising and positioning it as a cutting-edge solution. 
 
Keywords - Collaborative filter, Block matching (BM4D), Diffusion Weighted Images (DWI), Tractography, Orientation Distribution Function 
(ODF), Volumetric data denoising. 
 

1. Introduction 
Magnetic Resonance Imaging (MRI) scans are 

susceptible to various factors that can degrade the image 

quality and introduce unwanted artifacts into the original 
signal. Among these, noise is the most noticeable degrading 

element. Noise in MR scans is generally caused by two 

sources: thermal noise produced by the individual or object 

getting imaged and electrical noise produced during the 

acquisition of signals in the receiver chain. This noise is 

inherently intertwined with the MRI acquisition process and 

is, therefore, an inevitable part of the imaging procedure. 

Certain modern MRI acquisition sequences are particularly 

susceptible to the detrimental effects of noise. For instance, 

sequences in which the signal is attenuated, such as diffusion 

sequences with high b-values, tend to be significantly 
impacted by noise. This is also the case for techniques that 

require a substantial amount of data to be gathered in a shorter 

time frame, leading to a reduction in the Number of 

Excitations (NEX). Consequently, as the NEX decreases, the 

power of noise increases proportionally, following the square 

root of the speedup factor. The impact of noise-induced 

degradation in quality can have adverse consequences on the 

clarity of visual images, potentially impeding the accurate 

interpretation and analysis of data. Noise does not solely 

compromise visual assessment but also hampers various 

routine post-processing tasks such as tissue segmentation, 

image registration, and diffusion tensor estimation, as well as 
the precise acquisition of measurements and quantitative 

biomarkers in imaging. One direct method to mitigate the 

noise's effect on the ultimate image is to employ noise 

reduction techniques, alternatively referred to as denoising or, 

from a statistical viewpoint, signal estimation.  

 

Noise reduction methods in medical imaging have 

historically made use of preexisting statistical models of data, 

with the Gaussian distribution being a common assumption in 

many algorithms. These methods have progressed to 

accommodate the particularities of MRI data as more 
sophisticated noise models for MRI have been developed. 

Numerous examples, such as the Conventional Approach 

(CA), linear estimators, Maximum Likelihood (ML), and 

modified Non-Local Mean (NLM) methods, may be found in 

the current literature [1–18]. Single-coil acquisitions present 

the simplest case, and the complicated spatial MR data is 

usually represented as a complex Gaussian process. It is 
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assumed that the original signal's real and imaginary parts are 

both contaminated by independent Gaussian noise with a 

mean of zero and a uniform variance of σ2. For this reason, a 

Rician distribution [19] holds for the magnitude signal, which 

is produced by computing the envelope of the complex signal. 

For many years, this Rician model has been used as the gold 
standard in MRI modeling, and it has served as the foundation 

for numerous filtering methods and noise estimation 

algorithms [20]. 

 

2. Materials 

Data was gathered from two distinct sources: a brain-

simulated database [26] and the OASIS dataset. The former 
comprises structural MR data, while the latter contains 

nonstructural MRI data [21-24]. The structural MRI data, 

taken from a horizontal view with a slice number of 91, had 

imaging parameters as follows: TR (Repetition Time) of 9.7 

milliseconds, TE (Echo Time) of 4.0 milliseconds, a flip angle 

of 10 degrees, a voxel dimension of 256x256x128, and a 

resolution of 1.0x1.0x1.25 millimeters. The second dataset, 

involving nonstructural MRI, featured specific imaging 

parameters, including 15 diffusion directions with b-values of 

1000s/mm2 and 2000s/mm2, as well as a b-value of 

3000s/mm2. The volume had TR/TE values of 17,000/80 
milliseconds, a resolution of 1.5x1.5x1.5 mm3, a volume size 

of 148x148x90, and a NEX (Number of Excitations) value of 

1.         

    

3. Method 
The BM3D image denoising method [18] exemplifies the 

concept of grouping and CF, which is an important extension 
of the non-local filtering technique. The transform domain 

sparse representation is the foundation of this approach. To 

improve sparsity, related 2-D image pieces are gathered into 

3-D data arrays known as groups. CF is a particular process 

that these communities go through. It consists of three phases. 

The first step is to translate the group into 3-D. The second 

change is a decrease in the size of the modified group's 

coefficients. As a last step, the 3-D transformation is inverted 

to derive the 3-D group estimate. The noise is efficiently 

segregated throughout the shrinking phase because of the 

commonalities between the grouped fragments. This is made 
possible by the 3-D transformation, which, in the transform 

domain, reveals a highly sparse representation of the authentic 

signal. As a result, CF not only brings out the tiniest details 

shared by the collaboratively filtered 2-D fragments but also 

keeps their personalities intact. 

 

The BM3D algorithm, as introduced in reference [18], is 

the leading technique in the realm of 2-D image denoising, 

showcasing markedly better performance compared to all 

earlier approaches. Recent research has explored the near-

optimality of this approach, shedding light on its fundamental 

principles. In this research, BM4D is introduced as a 
refinement of the BM3D method, tailored specifically for 

denoising volumetric data. The suggested BM4D technique 

naturally uses voxel cubes as its core units, whereas BM3D 

works with basic data patches made of pixel blocks. The 

creation of an arrangement by stacking identical cubes on top 

of one another results in the formation of a 4-D orthotope, also 

referred to as a hyperrectangle. In this hyperrectangle, the 
fourth dimension represents the stacking direction of the 

cubes, signifying non-local correlations present within the 

data. 

 

Consequently, CF functions on harnessing both the local 

correlations within each cube's voxels and the non-local 

correlations among corresponding voxels in different cubes. 

Much like the approach employed in BM3D, this group's 

spectral characteristics demonstrate significant sparsity, 

making it highly effective for distinguishing between signal 

and noise through methods such as thresholding or Wiener 

Filter (WF). Following an inverse transformation, estimations 
for each grouped cube are obtained, and these estimations are 

then merged at their original positions with the application of 

adaptive weights. 
 

3.1. Noise Model  

Consider the noisy volumetric observation 𝑧: 𝑋 → 𝑅 

 

𝑧(𝑥)  =  𝑦(𝑥)  +  Ƞ(𝑥), 𝑥 𝜖𝑋  (1)

  

Where Ƞ(𝑥) represents Gaussian noise in the data, which 

has independent and identically distributed features with zero 

mean and an established Standard Deviation (SD), 𝜎. 𝑦 

represents the original, unidentified volumetric signal, and 𝑥 
represents a 3-D coordinate within the domain. 

 

3.2. BM4D Algorithm 

The main objective of the BM4D method being discussed 

is to produce an estimate, represented as y ̂, for the initial 

signal y, using the noisy input z. BM4D operates through a 

two-step procedure, comprising an initial Hard-thresholding 

phase, succeeded by a subsequent WF stage. Each of these 

stages holds three essentials: Grouping, collaborative filtering, 

and aggregation. 

 
3.2.1. Hard-Thresholding Stage 

The 4-D groups form by orienting themselves along an 

extra dimension, similar to how cubes coordinate within a 

reference cube. The photometric distance is employed to 

compare the similarities of the two cubes. 

 

𝑑 ( 𝐶𝑥𝑖
𝑧 , 𝐶𝑥𝑗

𝑧 ) = 
||𝐶𝑥𝑖

𝑧 −𝐶𝑥𝑗
𝑧 ||2

2

𝐿3    (2) 

 

Here, ||. ||2
2 is the total squared dissimilarities between 

pairs of input cubes' intensity values. Extracted from 𝑧 at the 

top-left-front 3D position 𝑥𝑅 ∈  𝑋, 𝐶𝑥𝑅
𝑧  is a cube of 𝐿 × 𝐿 × 𝐿 

voxels, 𝐿 ∈ 𝑁. 𝐿3 is a normalizing denominator, where L is 
the length of a cube. 
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3.2.2. Grouping Step 

The value sets the lowest level of acceptable cube-

similarity 𝜏𝑚𝑎𝑡𝑐ℎ 
ℎ𝑡 , which determines whether or not two cubes 

are considered similar based on the equation above. The 

process commences with the definition of a set. 𝑆𝑥𝑅

�̂�ℎ𝑡

That 

includes the indices of all the cubes that are close to the 

reference cube.  𝐶𝑥𝑅
𝑧 . Using such a set, one may construct the 

4-D group. 𝐺𝑆𝑥𝑅
𝑧

𝑧 . 

 

Set:      𝑆𝑥𝑅

�̂�ℎ𝑡

  = { 𝑥𝑖  𝜖 𝑋 ∶   𝑑 ( 𝐶𝑥𝑅
𝑧 , 𝐶𝑥𝑖

𝑧 ) < 𝜏𝑚𝑎𝑡𝑐ℎ
ℎ𝑡 }  (3) 

 

Group:       𝐺𝑆𝑥𝑅
𝑧

𝑧   =    ∐ 𝐶𝑥𝑖
𝑧

𝑥𝑖  𝜖 𝑆𝑥𝑅
𝑧   (4) 

 

3.2.3. Collaborative Filtering Step 

A combined 4-D transformation, represented as four 

distinct 1-D decor-related linear transformations, denoted as 

Ƭ4𝐷
ℎ𝑡 , is individually applied to each dimension within the 

group. The resulting 4-D group spectrum is subsequently 

subjected to coefficient-by-coefficient reduction using a hard-

thresholding operator denoted as 𝛾ℎ𝑡 , with a threshold value 

defined as  𝛾ℎ𝑡(Ƭ4𝐷
ℎ𝑡 (𝐺𝑆𝑥𝑅

𝑧
𝑧 ). The filtered group is generated by 

performing an inversion of the 4-D transform, as specified in 

the following definition. 
 

Ƭ4𝐷
ℎ𝑡 −1

(𝛾ℎ𝑡(Ƭ4𝐷
ℎ𝑡 (𝐺𝑆𝑥𝑅

𝑧
𝑧 ))) = 𝐺

𝑆𝑥𝑅
𝑧

�̂�
 =∐ 𝐶𝑥𝑖

�̂�
𝑥𝑖  𝜖 𝑆𝑥𝑅

𝑧   (5)                                                  

  

Each 𝐶𝑥𝑖
�̂�  represents a prediction of the original 𝐶𝑥𝑖

𝑦
, which 

is derived from the unknown volumetric data 𝑦. 
 

3.2.4. Aggregation Step 

The CF process leverages the redundancy within it by 

employing an adaptive convex combination, yielding the 

fundamental volumetric prediction. 
 

𝑦ℎ�̂�  =  
∑ (∑ 𝑤𝑥𝑅

ℎ𝑡 𝐶𝑥𝑖
�̂�

𝑥𝑖 𝜖 𝑆𝑥𝑅
𝑧 )𝑥𝑅 𝜖 𝑋

∑ (∑ 𝑤𝑥𝑅
ℎ𝑡 𝜒𝑥�̂�𝑥𝑖 𝜖 𝑆𝑥𝑅

𝑧 )𝑥𝑅 𝜖 𝑋
 (6) 

 

In this case, 𝑤𝑥𝑅
ℎ𝑡   denotes group-specific weights, and 𝜒𝑥�̂�

 

: X →{0, 1} denotes a characteristic (indicator) function for 

the domain of 𝐶𝑥𝑖

�̂�
. This function has a value of one over the 

coordinates of the voxels of 𝐶𝑥𝑖

�̂�
 and a value of zero elsewhere. 

It is vital to note that outside of its domain, every 𝐶𝑥𝑖

�̂�
 is 

presumed to be zero-padded. The weights are defined as 
 

𝑤𝑥𝑅
ℎ𝑡   =  

1

𝜎2𝑁𝑥𝑅
ℎ𝑡                                (7) 

 

Where 𝜎 is the SD of the noise in z and 𝑁𝑥𝑅
ℎ𝑡 the content 

represents the count of non-zero coefficients within the group 

spectrum. Groups that display a strong correlation receive 

increased weighting, while those with significant residual 

noise receive reduced weighting as a penalty. 

 

3.2.5. Wiener Filtering Stage 

The grouping is done inside the fundamental estimate. 

 �̂�ℎ𝑡  produced in the previous phase of hard thresholding. 
Anticipated outcomes include achieving enhanced precision 

and dependability in matching due to the substantially lower 

level of noise in the primary estimate compared to that in "z." 

This improved grouping will, in turn, facilitate a more 
efficient reduction of the group spectrum's complexity, 

ultimately yielding a superior quality of noise reduction. A 

collection of coordinates for similar cubes is assembled for 

each reference cube,  𝐶𝑥𝑅

�̂�ℎ𝑡

, 𝑡ℎ𝑒𝑦 𝑎𝑟𝑒  retrieved from the 

original estimate.  

 

𝑆𝑥𝑅

�̂�ℎ𝑡

  = { 𝑥𝑖 𝜖 𝑋 ∶ 𝑑 (𝐶𝑥𝑅

�̂�ℎ𝑡

, 𝐶𝑥𝑖

�̂�ℎ𝑡

) < 𝜏𝑚𝑎𝑡𝑐ℎ
𝑤𝑖𝑒 } (8)

  

Where 𝑑 (. ) is defined in equation (2) and 𝜏𝑚𝑎𝑡𝑐ℎ
𝑤𝑖𝑒  is the 

predefined threshold value of the WF stage. CF is employed 
in the form of an empirical WF. Initially, a subset is derived 

from the fundamental estimation based on the provided 

coordinates. Subsequently, the coefficients of the empirical 

WF are determined by considering the energy of its spectrum. 

𝑊
𝑆𝑥𝑅

�̂�ℎ𝑡    =  

|Ƭ4𝐷
𝑤𝑖𝑒 (𝐺

𝑆𝑥𝑅
�̂�ℎ𝑡

�̂�ℎ𝑡
)|2

|Ƭ4𝐷
𝑤𝑖𝑒 (𝐺

𝑆𝑥𝑅

�̂�ℎ𝑡
�̂�ℎ𝑡

)|2+ 𝜎2
 (9) 

 

The 4D transform operator, Ƭ4𝐷
𝑤𝑖𝑒, consists of four 1-D 

linear transformations that differ from those found in the hard 

thresholding filter. 𝐺
𝑆𝑥𝑅

�̂�ℎ𝑡
𝑧  is a noisy group created by using the 

set from equation (8). The WF coefficients are multiplied by 

the noisy group's spectral elements to reduce the size of the 

coefficients. The group's estimate is provided by 

 

𝐺
𝑆𝑥𝑅

�̂�ℎ𝑡
�̂�

  = Ƭ4𝐷
𝑤𝑖𝑒 −1

(𝑊
𝑆𝑥𝑅

�̂�ℎ𝑡  .Ƭ4𝐷
𝑤𝑖𝑒(𝐺

𝑆𝑥𝑅

�̂�ℎ𝑡
𝑧 ) )  (10)                                       

 

Where Ƭ4𝐷
𝑤𝑖𝑒 (𝐺

𝑆𝑥𝑅

�̂�ℎ𝑡
𝑧 ) represents the noisy group 

spectrum. The group estimate is generated by performing a 

reverse 4-D transformation on the compressed spectrum. The 

total weights for a particular group estimate (designated as 11) 

are determined based on the WF coefficient's energy. 

 

𝑤𝑥𝑅
𝑤𝑖𝑒  = 𝜎−2||𝑊

𝑆𝑥𝑅

�̂�ℎ𝑡 ||2
−2 (11)                                     

4. Results  
The experiments involve conducting tests with two types 

of noise distributions: Gaussian and Rician. When considering 

the Gaussian distribution, the observations z, which are 

affected by noise, follow the distribution described in 

Equation (1). The noisy observations 𝑧: 𝑋 →  𝑅+, in the case 

of Rician distributed noise, obey the definition. 
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𝑧(𝑥) = √(𝑐𝑟 . 𝑦(𝑥)  +  𝜎𝑟 . Ƞ𝑟(𝑥))2 +  (𝑐𝑖 . 𝑦(𝑥) +  𝜎𝑖 . Ƞ𝑖(𝑥))2  (12) 

 

Here, 𝑥 is a 3-D position within the X domain (a subset 

of 𝑍3), and 𝑐𝑟and 𝑐𝑖  are constants meeting the criteria 0 ≤
𝑐𝑟,𝑐𝑖  ≤ 1 = 𝑐𝑟

2 +  𝑐𝑖
2. Furthermore, Ƞ𝑟(.) and Ƞ𝑖(. ) are 

random vectors with a normal distribution. This arrangement 

yields 𝑧 ~ 𝑅(𝑦, 𝜎), which represents the unprocessed MR data 

as a Rician distribution with parameters 𝑦 and 𝜎. In this case, 

𝑦 denotes the underlying noise-free signal, which is unknown, 

and 𝜎 indicates the Rician noise SD. 

 

To effectively apply the BM4D algorithm to Rician 
noise-affected data, a technique known as Variance 

Stabilization Transformation (VST) is employed, as detailed 

in reference [25]. Before beginning with the denoising 

procedure, the fundamental goal of VST is to break the link 

between noise variance and the underlying signal. 

Furthermore, it attempts to mitigate the effect of bias in the 

resultant filtered estimation. Denoising Rician data with the 

BM4D technique might be expressed in formal terms as 

follows: 

 

�̂� = 𝑉𝑆𝑇−1(BM4D (VST (z,𝜎),𝜎𝑉𝑆𝑇),𝜎) (13)

  

Where 𝜎𝑉𝑆𝑇is the stabilized SD produced by the VST. 

Table 1 lists recommended parameter combinations for 

optimizing the performance of the BM4D algorithm. These 

options are divided into two categories: "normal" and 

"modified." The typical profile strikes a decent balance 

between computational complexity and denoising efficacy. 

The updated profile, on the other hand, prioritizes minimizing 

computational complexity, although at the expense of 

diminished denoising performance. 

 

Several parameters in the updated profile are changed, 

including the similarity threshold (𝜏), cube size (𝐿), group 

size (𝑀), and hard-threshold value (𝜆4𝐷). Τ4𝐷
ℎ𝑡  is a composite 

transformation that combines a 3-D biorthogonal spline 

wavelet and a 1-D Haar Wavelet (1-DHW). Τ4𝐷
𝑤𝑖𝑒 incorporates 

a 3-D Discrete Cosine Transform with a 1-DHW during the 

WF stage. It is critical to note that there is no prefiltering 

before the cube-matching stage, which means that noisy data 

are evaluated for similarity immediately. The denoised signal 

is represented more completely than necessary by the hard 

thresholding groups. This is because cubes from different 

and same groups can overlap, leading to multiple, and often 

conflicting, voxel estimations in the overlapping regions. The 

cubes are grouped according to their coordinates inside a 

three-dimensional window of size 𝑁𝑠 ∗ 𝑁𝑠 ∗ 𝑁𝑠, where 𝑁𝑠 is 

the size of the cube being searched. Nstep separates the 

reference cubes in every spatial dimension. If noise variance 

is high (𝜎> 15%), the revised profile delivers the best PSNR 

efficiency constantly. 

 
Low-frequency elements, a wide variety of related 

patches, and a homogenous background differentiate the Brain 

Web phantom. The new strategy takes advantage of these 

characteristics in two ways: it creates larger groups while 

applying more aggressive smoothing via a higher hard 

threshold value. Non-local cube-matching searches take the 

longest and are mostly governed by variables such as the 3-D 

search window's size (𝑁𝑠) and the step between processed 

cubes (𝑁𝑠𝑡𝑒𝑝). In the current execution, the only rapid 
approach is the 1-D transformation done to the 4-

D (grouping), but the 3-D separable modification for every 

cube will be performed via matrix multiplications. As a result, 

to accelerate BM4D, quick transformation techniques on the 

cube dimensions might be used. Table 2 gives the PSNR and 

execution times for BM4D with various 𝑁𝑠 and 𝑁𝑠𝑡𝑒𝑝 

combinations; however, when 𝑁𝑠 >  3 and 𝑁𝑠𝑡𝑒𝑝 ≤ 𝐿, 

optimal filtering results are obtained to optimize grouping and 

prevent potential missing estimations in the final denoised 

volume. 

Table 1. BM4D algorithm parameter settings for structural and DWI Data 

Parameter 

Stage 

Hard Thresholding WF 

Normal Modified Normal Modified 

Group Size M 16 32 32 

Cube Size L 4 4 5 

Search-Cube Size NS 11 

Step Nstep 3 

Shrinkage Threshold λ4D 2.7 2.8 Does not apply  

Similarity Threshold Γmatch 2.9 24.6 0.4 6.7 

 
The PSNR of the denoising is used to assess its objective 

quality. 

 

PSNR(y,�̂�) = 10 𝑙𝑜𝑔10(
𝐷2|�̂�|

∑ (�̂�(𝑥)−𝑦(𝑥))2
𝑥 𝜖 �̂�

) (14) 
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These experiments are assessed using the y peak, labeled 

as D, and y as a representation of y." Additionally, also 

employed the Structural Similarity Index (SSIM) to evaluate 

the experiments. While originally designed for 2-D data, 

SSIM has been extended to accommodate 3-D data as well. 

SSIM provides greater alignment with the human visual 
system than traditional approaches based on mean squared 

error, such as PSNR. The output of the denoising algorithm 

taking Brain-Web phantom as input and at 𝜎 value of 7% 

Gaussian noise and ricin is given below. In this case, the input 

image is cropped so that a specific portion of the image is 

denoised to reduce time consumption. The following Figure 1 

is the output of the same input without cropping the image (the 

entire image is denoised). The PSNR value and SSIM value 

change from cropped input, but the change is of very little 

value. Table 3 PSNR and SSIM [27] metrics are employed to 

evaluate the denoising performance of the suggested BM4D 

approach. This analysis is based on the Brainweb database 

[26]. Two types of observations are investigated, one of which 
is deliberately contaminated with homogenous Rician noise 

by certain observation models. These observations are 

checked at various SDs, which are reported as a percentage of 

the greatest intensity value in the original data. A VST built 

for Rician-distributed data is used in the evaluation [25]. 

 

 

Table 2. BM4D's denoising performance in terms of execution time with matching parameters 

Parameters SD of Noise (σ) Execution Time 

Ns Nstep 7% 11% 15% 19% (in Seconds) 

1 

5 

4 

3 

28.67 

31.23 

33.99 

26.78 

26.66 

26.55 

24.23 

25.11 

25.22 

22.21 

22.44 

22.77 

5 

8 

10 

3 

5 

4 

3 

35.87 

36.67 

36.56 

34.44 

34.55 

34.67 

32.21 

33.55 

33.66 

31.11 

31.44 

31.55 

50 

90 

150 

5 

5 

4 

3 

36.76 

35.44 

34.78 

34.23 

34.88 

34.86 

33.23 

34.23 

34.55 

31.89 

31.98 

31.97 

250 

310 

450 

7 
5 
4 

3 

37.21 
37.23 

38.00 

35.34 
35.44 

35.33 

34.45 
35.55 

35.66 

33.34 
33.44 

33.55 

455 
345 

125 

9 

5 

4 

3 

38.26 

38.82 

39.09 

37.34 

36.66 

37.35 

36.55 

36.66 

36.88 

35.23 

36.66 

36.88 

145 

234 

444 

11 

5 

4 

3 

40.11 

40.45 

40.55 

38.55 

38.66 

38.77 

37.34 

37.36 

37.66 

36.34 

36.89 

36.91 

312 

245 

234 

13 

5 

4 

3 

41.23 

41.66 

41.22 

39.11 

38.22 

38.33 

38.34 

38.22 

38.55 

37.23 

37.45 

37.55 

566 

255 

666 

15 

5 

4 

3 

42.11 

42.55 

42.77 

40.89 

40.91 

40.98 

39.89 

39.91 

39.93 

38.23 

38.67 

38.68 

435 

255 

899 

 
Table 3. PSNR and SSIM metrics 

Noise Filter 
SD of Noise (σ) 

1% 3% 5% 9% 11% 15% 17% 19% 

 

Rician 

Noise 

Noisy Data 40.00|0.97 35.33|0.86 31.67|0.78 28.66|0.65 25.22|0.55 21.00|0.34 17.54|0.25 12.11|0.15 

NLM 3D 43.22|0.99 41.56|0.97 38.54|0.95 36.78|0.91 35.91|0.89 34.98|0.87 33.34|0.85 31.76|0.77 

LMMSE 3D 44.45|0.99 43.45|0.95 42.21|0.81 39.98|0.79 37.22|0.86 35.23|0.77 31.23|0.69 28.99|0.55 

 
Proposed 

Filter 
45.25|0.99 41.89|0.94 38.22|0.86 36.66|0.77 34.11|0.66 32.21|0.55 30.99|0.45 29.98|0.33 
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(a)      (b)           (c) 

Fig. 1(a) Uncropped phantom denoising output, (b) Uncropped phantom denoising output views, and (c) Output dialogue box. 

4.1. Application to Volumetric Data Denoising in DWI 

Images 

Volumetric Data Denoising in DWI images plays a 

pivotal role in neuroimaging, enabling the visualization of 

microscopic tissue structures and connectivity within the 

brain. However, DWI images are inherently noisy due to 

factors like physiological motion, hardware imperfections, 

and low Signal-to-Noise Ratio (SNR). Denoising these images 
is crucial for accurate analysis and interpretation. Figure 2 

shows the flow chart of the suggested Collaborative BM4D 

technique Applied to DWI Images. 

 

4.2. Comparison Results Using Simulation Data  

A comparative analysis was conducted between the 

proposed BM4D algorithm and a traditional filter using 

simulated DW data corrupted by Rician noise. BM4D was 

configured with a specific set of parameters outlined in Table 

1. In Figure 3, A quantitative assessment of DW data denoised 

by three distinct approaches was presented, considering 
various noise levels ranging from 0.01 to 0.1, with increments 

of 0.01. across all four quantitative parameters, BM4D 

regularly outperforms the other methods. To be more exact, 

the PSNR of BM4D is roughly 14% higher than that of NLM 

and approximately 5% higher than that of LMMSE and Joint 

Local Mean-Mean Squared Error (JLMMSE). Comparison 

with the NLM method, the FA-RMSE, MD-RMSE, and 

Tensor-Fro. dist of BM4D exhibit 40%, 48%, and 37% 

reductions, correspondingly. Figure 4 depicts denoised DWI 

at b=2000 s/mm2 for one representative encoding direction, 

along with fitted and color-coded Fractional Anisotropy (FA) 

maps and its related error mappings under Rician noise with n 
= 0.05. All approaches perfectly decrease image noise. 

However, BM4D beats NLM and JLMMSE in terms of better 

detail preservation. The BM4D image looks similar to the 

actual images without noise, which is comparable with the 

measured PSNR estimate displayed in the figures. FA and 

color-coded FA maps created from BM4D images exhibit the 

strongest correlations with reference maps, surpassing NLM 

and JLMMSE maps. Figure 4 depicts the ODFs calculated 

from the data. ODFs from BM4D images are similar to actual 

images without noise than NLM and LMMSE. Figure 4 also 

shows a visual representation of the FA quantification errors 

for the NLM, LMMSE, and BM4D methods. 

 

In comparison to NLM, the FA errors associated with 

LMMSE and BM4D are concentrated closer to zero, with 

reduced bias (dashed plot) and variance (solid plot). 
Significantly, BM4D denoised images exhibit a marginally 

reduced variance and bias in FA errors compared to LMMSE, 

thereby confirming the effective preservation of diffusion 

tensor anisotropy by BM4D denoised images. Figure 4 

compares three methods that employed the same initial brain 

dataset with different b-values (1000, 2000, and 3000 s/mm2). 

Images having unique b-scores and gradient orientations were 

processed individually in the NLM technique execution, 

whereas images with all b- b-scores and gradient orientations 

were processed parallelly in the BM4D technique design. To 

ensure a fair comparison, the NLM, JLMMSE, and Joint 
Anisotropic Local Mean-Mean Squared Error (JALMMSE) 

techniques were applied to denoise the DWI on a per-coil 

basis, and the outcome was achieved by applying a sum-of-

squares functioning to the denoised coil images.  

 

Figure 4 shows the denoised images and their associated 

image residuals, along with FA and color-coded FA maps. 

Noise significantly degrades the original image's essential 

structures, especially with high b-values. All three methods 

reduced noise successfully; however, BM4D produced images 

with more distinct details and less residual noise than NLM 

and Linear Minimum Mean Squared Error (LMMSE). 
LMMSE and BM4D picture residuals contain anatomical 

information. The BM4D and LMMSE algorithms were 

employed on excellent spatial resolution DWI. The FA maps 

from the LMMSE and BM4D photographs are less noisy and 

closer to the reference images. Furthermore, as seen in Figure 

4 and stated in Table 4, both LMMSE and BM4D restore the 

original ODFs in many locations, whereas NLM causes 

swelling and alters diffusion orientations in various places.  
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Fig. 2 Flow chart of the suggested collaborative BM4D technique 

applied to DWI images 

A comparison with BM3D was undertaken to evaluate the 

BM4D algorithm's utility in improving the quality of 

volumetric DW data obtained from many directions. In terms 

of noise reduction while keeping image information, both the 

BM3D and BM4D approaches performed admirably. Notably, 

when compared to the BM3D-treated images, images 
processed with BM4D showed greater visual appeal, with 

sharper edges, as shown in the regions covered by blue 

squares. Moreover, the fibers traced in the actual noisy data 

looked sparse and chaotic, while those formed from denoised 

data looked richer and more ordered.  

 

4.3. Comparison Results by Employing Vivo Data 

Red squares bordered the indicated region, and the fibers 

detected in the BM4D-processed images appeared marginally 

more precise and finer as compared to the BM3D-processed 

images. The evidence highlights the proposed filter's 

effectiveness in not only lowering noise efficiently but also 
retaining anatomical structures. In the context of denoising 

multi-shell volumetric DWI, it was discovered that 

simultaneously filtering multiple b-value images 

outperformed separately filtering each b-value image. The 

same approach was used to denoise in vivo data recorded with 

b-values of 1000, 2000, and 3000 s/mm2, as shown in Figure 

4. The current BM4D implementation searches photos for 

volumetric cuboids at all b values. Because non-DWI has a 

greater Signal-to-Noise Ratio (SNR) and more identifiable 

features than DW photos, a similar cuboid search can be 

performed using solely non-DWI. In this investigation, upon 
examination of both approaches, it was found that they yielded 

equivalent denoising outcomes. Regarding computational 

efficiency, NLM denoised generated DWI with a 256x256 

matrix size and 44 diffusion directions in around 1.5 minutes, 

while BM4D required 14 minutes. All techniques were run in 

MATLAB 7.12.0 as single-threaded processes on a Windows 

7 PC. Notably, the BM4D stage was the time-consuming 

element of the process, and its efficiency may be improved by 

using parallel computing techniques.  

5. Discussion 
This work introduces a novel strategy for enhancing the 

quality of both structural and DWI data. The proposed 

method's performance is evaluated using both synthetic and 

real clinical data and comparisons with existing state-of-the-

art methodologies. Despite its simple architecture, the 

proposed method outperforms previously proposed methods 

in DWI denoising and estimation of diffusion parameters. 

Using a volumetric collaborative filter paradigm, noise in 
multidirectional DWI data is effectively reduced. This noise 

reduction capability is linked to the significant local profile 

similarity, which enables us to describe diffusion profiles with 

a minimum number of components, allowing for the efficient 

removal of non-signal-related factors such as noise. 

Furthermore, this research shows that the proposed method 

not only minimizes image noise but also mitigates the bias 

imposed by the Rician nature of the noise.  

Noisy Images 

 

VST 

 Grouping by Volumetric Matching 

 4D Transform 

 Hard Thresholding 

Inverse 4D Transform 

Aggregation   

Pre-Filtered Images 

  Grouping by Volumetric Matching 

 4D Transform 

 Weiner Filtering  

Inverse 4D Transform 

 Aggregation   

 Inverse Variance Stabilization Transform 

 Final Denoised Data 
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As a result, the diffusion parameters of the acquired data 

more precisely reflect the tissue features rather than being 

distorted by noise, as indicated by the FA values in Figure 4. 

Notably, the decrease in parameter estimation error is 

consistent across all noise levels examined.

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 3 Results of denoised filters (simulated data) a) Noisy image, b) NLM, c) LMMSE, d) JLMMSE, e) JaLMMSE, and f) Proposed filter. 
 

 
Fig. 4 Comparison between FA and color-coded FA map images derived from noisy DWI 

                                                                                                                           
Table 4. Comparison of PSNR metrics  

Particulars 
Volumetric 

DW01 

Volumetric 

DW02 

Volumetric 

DW03 

Volumetric 

DW04 

Volumetric 

DW05 

Volumetric 

DW06 

Volumetric 

Case 

Average 

Case 1 
46.41 
39.87 

44.41 
37.66 

43.36 
36.88 

41.55 
36.11 

40.48 
38.88 

39.91 
37.66 

39.68 
37.76 

Case 2 
45.45 
40.55 

40.55 
39.56 

39.66 
37.44 

37.22 
36.55 

35.89 
35.44 

31.22 
34.34 

30.49 
37.22 

Volumetric 

Orientation 

Average 

45.93 
40.21 

42.48 
38.61 

41.51 
37.16 

39.385 
36.33 

38.18 
37.16 

35.56 
36.00 

35.085 
37.74 



Anjanappa.C et al. / IJECE, 11(5), 59-68, 2024 

 

67 

Furthermore, this denoised approach improved 

tractography results significantly. This resulted in a significant 

decrease in the uncertainty associated with nerve fiber 

orientation and an increase in the likelihood of connections 

between voxels along a given tract. As a result, tract 

construction became more reliable, examining tissue 
microstructure using tensor-derived metrics more sensitive. 

The quantitative diffusion maps created from simulated 

datasets demonstrated that reducing the influence of Rician 

noise on quantitative diffusion parameter estimation is most 

successful when DWI denoising is performed. Even when 

dealing with inhomogeneous noise, the BM4D technique 

outperformed algorithms such as JLMME and NLM.  

 

The proposed method is easily adaptable to a wide range 

of multidirectional DWI datasets, regardless of the diffusion 

analysis method used, such as DTI, HARDI, q-ball, and 

others. This adaptability has the potential to improve the 
accuracy of quantitative metrics obtained from such datasets, 

providing immediate benefits for researching brain 

connections and tissue microstructure in both healthy and 

diseased brain situations. 

 

6. Conclusion 
In summary, this study illustrates the potential for 

enhancing the clarity of both structural and DW MR images 

through denoising. The results gathered from simulated and 

real-world data demonstrate this algorithm's usefulness in 

preserving precise information in DWI, reducing noise, and 

significantly improving the accuracy of following diffusion 

parameter measures. This approach is anticipated to advance 

the utilization of superior resolution and greater b-value DWI 

in future applications. 
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