
SSRG International Journal of Electronics and Communication Engineering Volume 11 Issue 5, 108-114, May 2024
ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V11I5P111 © 2024 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Impact of Different Thread Block Sizes with

Synchronization and Shared Memory on the Performance

of GPGPU

Sonal John1, Saurabh Jain2

1,2Shri Vaishnav Institute of Computer Applications, Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore,

Madhya Pradesh, India.

1Corresponding Author : sonaljohn@svvv.edu.in

Received: 15 March 2024 Revised: 18 April 2024 Accepted: 12 May 2024 Published: 31 May 2024

Abstract - The Graphics Processing Units (GPUs) have many cores, and so give an improved execution level throughput. GPUs

are intended for use in parallel computing. The size of a thread block plays a crucial role in determining the kernel's occupancy

since thread-level parallelism is necessary to maximize overall performance. During the kernel launch, information on the

number of threads per block and the number of blocks in a grid was provided. The variance in thread block sizes and the number

of thread blocks within a grid greatly influence CUDA application performance. The impact of different thread block sizes with

shared memory and synchronization on the total execution time of a few CUDA programs has been noted in this proposed work,

along with a speed optimization. Additionally, implementing Shared Memory along with Synchronized Thread Blocks improves

CUDA applications' overall performance in a GPGPU measurably.

Keywords - GPGPU, Synchronization, Shared Memory, Thread Block, Parallelism.

1. Introduction
Multicore CPUs and many core GPUs have appeared and

gradually established state-of-the-art high-performance

computing. While CPUs consist of multiple cores and are

utilized for high-performance parallel processing, GPUs

contain hundreds of cores for dedicated tasks. Although the
semiconductor technology used to make modern CPUs and

GPUs is the same, GPU computational performance is

increasing faster than CPU computational performance. Since

each processing element has more transistors dedicated to

control logic like branch prediction and out-of-order

execution, CPUs are intended for high-performance, task-

parallel workloads. In arithmetic, logics like floating-point

require more transistors, and GPUs are more suitable for

performing parallel tasks [1].

Advances in programming and economical architectural
designs have made GPU’s deployment more global. Created

for graphics-related jobs in the early 2000s, GPUs were later

enhanced to produce more efficiently, opening up new

opportunities for developers. This led to the development of

NVIDIA's Compute Unified Device Architecture (CUDA), a

more flexible computing platform and programming

language. The scientific research community soon adopted

CUDA because it allowed high-level programming languages

like C to be used to program NVIDIA GPUs. A GPU program

can be written by programmers using the CUDA

programming model as a kernel function that defines a 1D–

3D array of thread blocks known as Cooperative Thread

Arrays (CTAs), where each thread runs the identical code.

Scheduled and performed on GPU compute units known as

Streaming Multiprocessors (SM) are thread blocks [2, 3].

The host code used to launch kernels can manage thread-

level parallelism through the execution configuration

specifications. The number of thread blocks and the number

of threads per block in the kernel launch are specified in the
execution configurations. An important aspect, which a

variety of reasons may constrain, is the maximum number of

thread blocks that a multiprocessor can support for a given

kernel. No matter how big the thread block is or how many

resources are used, the number of thread blocks that can be

used on a multiprocessor is limited. So, the GPU thread blocks

play an important role in parallelizing an application and

CUDA kernel launch. The objective of the proposed study is

to:

 Observe the effect of different GPU Thread Block sizes on

the CUDA applications [4, 5].

 Implement and analyze the efficiency of CUDA

applications using the combination of shared memory with

thread synchronization.

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sonal John & Saurabh Jain / IJECE, 11(5), 108-114, 2024

109

Fig. 1 Architecture of blocks, grids, and threads [6]

Accessibility to shared memory is significantly faster

than that of global memory since it is an on chip memory.

Shared memory, which is shared by every thread in a thread
block, gives a way for thread cooperation. Every thread in the

block gets access to the same amount of shared memory

because it is allocated per thread block.

The data shared by a thread into the shared memory from

global memory can be accessed by any other thread inside the

same thread block. When thread synchronization is combined

with the shared memory concept, it can be applied to several

tasks, such as high-performance cooperative parallel

algorithms, user-managed data caches, and enabling global

memory coalescing in scenarios where it was not feasible [7].

2. Review of Literature
Improved floating point performance has been a major

emphasis of GPU development. A massively parallel

architecture known as CUDA, which NVIDIA introduced in
2006–2007, changed the world of GPU programming.

Applications can be executed with greater efficiency because

of the use of CUDA's multiple cores to handle data sets.

Ghorpade et al. [8] address common assumptions regarding

CUDA and its future aspects along with its architecture and

also compare it with other parallel programming languages

like OpenCL and DirectCompute.

The GPUs provide the synchronization in two different

levels: warp level and thread block level. However, thread
level synchronization is becoming necessary due to the

increasing number of parallel applications running in a

multithreading environment.

A thread level synchronization method termed lock

stealing was proposed by Gao et al. [9] to prevent the threads

in a warp from circular locking. The suggested method is
utilized for reader-writer locking and mutual exclusion

locking in order to enhance the overall throughput of the SIMT

architectures.

Memory Access optimization is also a bigger challenge in

parallel programming. In order to map the threads, Ohno et

al. [10] suggested a memory access optimization approach in
which first, the logical mapping is created. Then, it is further

converted to physical mapping through the compiler in an

optimized way. It is based on the static analysis of array index

expressions and also improves the usage of physical resources.

To obtain Thread Level Parallelism (TLP), Li and Liang

[11] presented an optimization system in this work that

controls GPU concurrent kernel execution. The framework

uses two essential methods. To modify the TLP for the kernel

that is running concurrently, a TLP modulation method is

created and also a cache bypassing method is designed to
adaptively reduce the amount of thread blocks using the cache

in order to reduce cache contention. The mentioned methods

helped to improve the performance in the concurrent kernel

execution environment.

Hong and Kim [12] implemented an analytical model that

determines the memory operation cost, which is essential in

determining how well parallel GPU applications perform. The

estimation of a number of parallel memory requests, termed

also as Memory Warp Parallelism (MWP) can be executed

concurrently based on the number of threads that are executing

concurrently and the memory bandwidth consumption.

As the appropriate thread block size to gain performance

optimization in terms of GPU occupancy is challenging, and

so Connors and Qasem [13] proposed a machine-learning

technique to identify the profitable block sizes automatically.

Furthermore, the study also demonstrated how the

combination of performance counters and machine learning

algorithms can reveal the fundamental causes of performance

variance between various configurations.

To facilitate the dynamic launching of lightweight thread
blocks, Wang and Rubin [14] proposed a new technique

Sonal John & Saurabh Jain / IJECE, 11(5), 108-114, 2024

110

termed DTBL (Dynamic Thread Block Launch),

which supports the GPU execution model. This approach

allows dynamically arriving parallel tasks to be executed by

multiple thread blocks instead of kernels. The DTBL

execution paradigm, device-runtime support, and

microarchitecture enhancements for monitoring and executing
dynamically created thread blocks.

Aguilera et al. [15] proposed various approaches to define

the term fairness for GPGPU spatial multitasking by

measuring the performance of each application. The study

suggested a number of resource distribution schemes and also

provided a run-time algorithm that predicts and modifies the

SM allocation to satisfy the required fair share specifications.

In this study, the problem of fair computing resource

distribution among apps running on spatially multitasked

GPUs is investigated.

Hijma et al. [16] analyzed the different optimization

techniques and also gave an overview of these techniques to

improve the overall performance of the system. Also the

impact of the evolution of architectures on the performance of

different applications is discussed in the study.

Table 1. Analysis of different studies

References Finding Limitations

[8]

A comparison of the CUDA programming model
with other languages like OpenCL and

DirectCompute has been done. Also the future

aspect of CUDA in terms of performance

improvement of GPGPU applications is done.

Authors have focused on only
NVidia’s architecture, but Nvidia

still has many difficulties to meet

to make CUDA stick, since while

technologically it is undeniably a

success.

[9]

The authors have provided the synchronization in

two different levels which are Thread level and wrap

level. Authors have suggested to utilize for reader-

writer locking and mutual exclusion locking in order

to enhance the overall throughput of the SIMT

architectures, which is one of the major parameters.

The author has focused on

developing techniques to avoid

live-locks, but a try-lock scheme is

not used, and that is a major

limitation.

[10]

A memory access optimization technique is

suggested in which an optimized mapping of logical

memory to physical memory is done through the

compiler.

The study is done for a few small

benchmarks only and so for more

fair estimation, more improvisation

in the current scheme is required.

[11]

The major finding provided by the author is to

improve the performance in the concurrent kernel

execution environment using two TLP methods.

The authors do not optimize the
Thread Level Parallelism (TLP)

and model the resource contention

for the concurrently executing

kernels.

[12]

Implementation of a model for estimating the overall

time taken by parallel memory operations in parallel

which is known as Memory Warp Parallelism

(MWP).

The work is focused only on

memory intensive GPU

applications.

[13]

The authors proposed a machine learning technique

to identify the profitable block sizes

automatically. The author also finds that a

combination of performance counter and machine

learning algorithms is the fundamental cause.

ML models have specific

algorithms which support hardware

support, so that some issues may

occur in future.

[15]
The authors have presented the fairness of computer

resource allocations for multitasking GPUs.

The main limitation of the

proposed study is to demonstrate

how to divide the computing

resources among the concurrent

executing applications.

Sonal John & Saurabh Jain / IJECE, 11(5), 108-114, 2024

111

3. Problem Description
The performance of a GPU’s Streaming Multiprocessors

(SM) depends on the Thread Level Parallelism (TLP), i.e. the

number of threads present in a thread block and the number of

thread blocks in an SM. However, the amount of shared

memory and registers that each thread block uses determines

how many thread blocks can be launched on an SM. Also, the

size of a thread block is an important factor in the kernel

launch and the performance improvement, so when the size of

a thread block is changed, there is a change in the overall

performance of an application executing on a GPU.

However, a significant amount of increase in the size of a

thread block should be made because when the size is too
short, more thread blocks will be there, and so synchronization

with a large number of thread blocks will be difficult in terms

of processing and time. If the size is too large, the

parallelization will be reduced. The shared memory is faster

as it is an on chip memory and is allocated per thread block.

So the total amount of elapsed time during the kernel

execution has a significant improvement while using the

shared memory as compared to global memory. Also, thread

synchronization is an important aspect when the increasing

number of threads is used. So, in the present study, the

combination of thread synchronization using shared memory

has been implemented [7, 12].

3.1. Effect of Thread Block Size

At the time of a kernel launch (_kernel<<<numBlocks,
threadsPerBlock>>>(input, output)), the Thread Level

Parallelism can be achieved by varying the size of a thread

block and seeing the effect of different thread block sizes over

the kernel execution time, some combinations of block sizes

(8 x 8, 16 x 16 and 32 x 32) have been taken. This is one of

the key factors for kernel occupancy and GPU utilization [6].

3.2. Effect of Shared Memory

The effect of using shared memory as compared to global

memory is to get optimized results as it is allocated to every

thread block separately, and all the threads of a thread block

share the same address space so that thread cooperation can be

seen. In CUDA programming using _shared_ identifier, a
speed up in the overall performance of the application can be

found [7].

Fig. 2 Thread block architecture with shared memory (self-made)

Shared Memory

TB (0,0) TB (0,1) TB (n,n)

Shared Memory Shared Memory

Grid 0

Global Memory

Host

GPU Device

Sonal John & Saurabh Jain / IJECE, 11(5), 108-114, 2024

112

3.3. Effect of Thread Synchronization

In a CUDA application, the synchronization of threads

can be obtained through the _syncthreads() method. It is a

barrier that makes sure that no thread in the block can execute

until every thread has passed through the barrier. Additionally,

it is ensured that all writes to memory done by threads in the
block before and after the barrier will be available to these

threads [12].

4. Proposed Work
In this paper, the performance of GPGPU has been

analyzed by using different thread block sizes in various

CUDA applications and found the most significant thread

block size that can be used depending on the type and data size
of the application. Also, the combination of thread

synchronization using shared memory has been implemented

to get more optimized results.

5. Experimental Setup
A device named GeForce GTX 1050 Ti with a computing

capacity of 6.1, a maximum of 2048 threads per SM and a
maximum of 1024 threads per block is used for the

experiment. It has the Pascal architecture. CUDA 10.1 is used

for the hardware programming.

To analyze the impact of using shared memory on the

performance of the system in terms of total elapsed time of

kernel execution, two different matrix based applications,

Matrix Multiplication (MM) and Matrix Transpose (MT),

with different thread block sizes, have been taken into

consideration. For the experiment, three different sizes of

thread blocks (8 x 8 = 64), (16 x 16 = 256) and (32 x 32 =
1024) are taken. On the other hand one more experiment has

been done on the same applications in CUDA using Global

and Shared memories.

The impact of varying sizes of thread blocks can be seen

in the following graphs:

Fig. 3 Matrix size 1024 x 1024 for MM

Fig. 4 Matrix size 5120 x 5120 for MM

Fig. 5 Matrix size 8192 x 8192 for MM

Fig. 6 Matrix size 1024 x 1024 for MT

Fig. 7 Matrix size 5120 x 5120 for MT

Sonal John & Saurabh Jain / IJECE, 11(5), 108-114, 2024

113

Fig. 8 Matrix size 8192 x 8192 for MT

6. Results and Discussion

The graphs obtained from the three datasets on both

applications depict some interesting and significant

observations. For the matrix multiplication application, all

three graphs (4.1, 4.2 and 4.3) show the same pattern for both

the cases of global and shared memory. While considering the

block size of 8 x 8, the total elapsed time is higher.

When block size 16 x 16 is considered for all three

datasets, it has been observed that the total elapsed time has

drastically decreased, particularly with shared memory.
However, with the block size of 32 x 32, the total elapsed time

is showing some slight decline but this can also be seen while

executing the application repeatedly. Therefore, block size 32

x 32 does not have any significant effect on the total elapsed

time.

With the application of matrix transpose, almost the same

pattern can be observed through the graphs, especially in the

case of shared memory. Interestingly, in all three datasets, it is

observed that the total elapsed time using shared memory has

increased with the increase in block size from 8 x 8 to 16 x 16,

and almost the same effect can be observed with block size 32
x 32. Therefore, there is no sense in increasing the block sizes.

When the shared memory is used, it can be seen that with all

three datasets, the block size of 16 x 16 shows the optimized

results.

With the help of different matrix sizes from 1024 X 1024

to 8192 X 8192, the performance of the CUDA applications in

terms of global and shared memory is compared and also

observed the impact of change in the size of a thread block.

7. Conclusion

This research paper has been undertaken to analyze the

impact of using shared and global memory and also variations

in the size of thread blocks. Here, two applications are taken

into consideration with Thread Level Parallelism, and their

effect on the overall kernel execution time has been observed

on a GPU device. It can be significantly seen that the use of

shared memory along with global memory provides better
results. Both the applications also show the same impact that

moderate block size gives optimized results in terms of the

total elapsed time of kernel execution. Further, this paper can

be useful for researchers and even for operating system

designers so that when the thread block size is moderate, more

elements can be processed in parallel. If a large number of

threads will be accommodated in a single thread block, the

parallelization will be reduced.

References
[1] Liang Hu, Xilong Che, and Si-Qing Zheng, “A Closer Look at GPGPU”, ACM Computing Surveys, vol. 48, no. 4, pp. 1-20, 2016.

[CrossRef] [Google Scholar] [Publisher Link]

[2] Richard Vuduc, and Jee Choi, A Brief History and Introduction to GPGPU, Modern Accelerator Technologies for Geographic Information

Science, Springer, New York, pp. 9-23, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[3] John Nickolls, and William J. Dally, “The GPU Computing Era”, IEEE Micro, vol. 30, no. 2, pp. 56-69, 2010. [CrossRef] [Google Scholar]

[Publisher Link]

[4] Massimiliano Fatica, and Gregory Ruetsch, CUDA Fortran for Scientists and Engineers, Best Practices for Efficient CUDA Fortran

Programming, pp. 43–114, 2014. [CrossRef] [Google Scholar] [Publisher Link]

[5] Vishwesh Jathala, “Hardware and Software Optimizations for GPU Resource Management”, Ph.D Thesis, Kanpur, India, 2018. [Google

Scholar] [Publisher Link]

[6] H. Harmanani, “Parallel Programming for Multi-Core and Cluster Systems CUDA Thread Scheduling, 2018. [Online]. Available:

https://harmanani.github.io/classes/csc447/Notes/Lecture15.pdf

[7] Mark Harris, “Using Shared Memory in CUDA C/C++”, 2013. [Online]. Available: https://developer.nvidia.com/blog/using-shared-

memory-cuda-cc/

[8] Jayshree Ghorpade et al., “GPGPU Processing in CUDA Architecture”, Advanced Computing: An International Journal, vol. 3, no. 1, pp.

105-120, 2012. [CrossRef] [Google Scholar] [Publisher Link]

[9] Lan Gao et al., “Thread-Level Locking for SIMT Architectures”, IEEE Transactions on Parallel and Distributed Systems, vol. 31, no. 5,

pp. 1121-1136, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[10] Kazuhiko Ohno et al., “Automatic Optimization of Thread Mapping for a GPGPU Programming Framework”, 2014 Second International

Symposium on Computing and Networking, Shizuoka, Japan, pp. 198-204, 2014. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1145/2873053
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Closer+Look+at+GPGPU&btnG=
https://dl.acm.org/doi/abs/10.1145/2873053
https://doi.org/10.1007/978-1-4614-8745-6_2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Brief+History+and+Introduction+to+GPGPU&btnG=
https://link.springer.com/chapter/10.1007/978-1-4614-8745-6_2
https://doi.org/10.1109/MM.2010.41
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+GPU+Computing+Era&btnG=
https://ieeexplore.ieee.org/abstract/document/5446251
https://doi.org/10.1016/C2013-0-00006-0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=CUDA+Fortran+for+Scientists+and+Engineers&btnG=
https://www.sciencedirect.com/book/9780124169708/cuda-fortran-for-scientists-and-engineers
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Jatala%2C+V.+Hardware+and+Software+Optimizations+for+GPU+Resource+Management+%28Doctoral+dissertation%2C+INDIAN+INSTITUTE+OF+TECHNOLOGY+KANPUR%2C+INDIA%29.&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Jatala%2C+V.+Hardware+and+Software+Optimizations+for+GPU+Resource+Management+%28Doctoral+dissertation%2C+INDIAN+INSTITUTE+OF+TECHNOLOGY+KANPUR%2C+INDIA%29.&btnG=
https://www.cse.iitk.ac.in/users/karkare/PhD/vishwesh2018gpu.pdf
https://harmanani.github.io/classes/csc447/Notes/Lecture15.pdf
https://developer.nvidia.com/blog/using-shared-memory-cuda-cc/
https://developer.nvidia.com/blog/using-shared-memory-cuda-cc/
https://doi.org/10.48550/arXiv.1202.4347
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=GPGPU+Processing+in+CUDA+Architecture&btnG=
https://arxiv.org/abs/1202.4347
https://doi.org/10.1109/TPDS.2019.2955705
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Thread-Level+Locking+for+SIMT+Architectures&btnG=
https://ieeexplore.ieee.org/abstract/document/8911260
https://doi.org/10.1109/CANDAR.2014.104
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Automatic+Optimization+of+Thread+Mapping+for+a+GPGPU+Programming+Framework&btnG=
https://ieeexplore.ieee.org/abstract/document/7052182

Sonal John & Saurabh Jain / IJECE, 11(5), 108-114, 2024

114

[11] Xiuhong Li, and Yun Liang, “Efficient Kernel Management on GPUs”, IEEE 2016 Design, Automation & Test in Europe Conference &

Exhibition (DATE), Dresden, Germany, pp. 85-90, 2016. [Google Scholar] [Publisher Link]

[12] Sunpyo Hong, and Hyesoon Kim, “An Analytical Model for a GPU Architecture with Memory-Level and Thread-Level Parallelism

Awareness”, ISCA '09: Proceedings of the 36th Annual International Symposium on Computer Architecture, pp. 152–163, 2009.

[CrossRef] [Google Scholar] [Publisher Link]

[13] Tiffany A. Connors, and Apan Qasem, “Automatically Selecting Profitable Thread Block Sizes for Accelerated Kernels”, IEEE 19th

International Conference on High Performance Computing and Communications; IEEE 15th International Conference on Smart City;

IEEE 3rd International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Bangkok, Thailand, pp. 442-449, 2017.

[CrossRef] [Google Scholar] [Publisher Link]

[14] Jin Wang et al., “Dynamic Thread Block Launch: A Lightweight Execution Mechanism to Support Irregular Applications on GPUs”,

ACM SIGARCH Computer Architecture News, vol. 43, no. 3S, pp 528-540, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[15] Paula Aguilera, ,Katherine Morrow, and Nam Sung Kim, “Fair Share: Allocation of GPU Resources for both Performance and Fairness”,

IEEE 32nd International Conference on Computer Design (ICCD), Seoul, Korea (South), pp. 440-447, 2014. [CrossRef] [Google Scholar]

[Publisher Link]

[16] Pieter Hijma et al., “Optimization Techniques for GPU Programming”, ACM Computing Survey, vol. 55, no. 11, pp. 1-81, 2023.

[CrossRef] [Google Scholar] [Publisher Link]

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Efficient+Kernel+Management+on+GPUs&btnG=
https://ieeexplore.ieee.org/abstract/document/7459285
https://dl.acm.org/doi/10.1145/1555754.1555775
https://scholar.google.com/citations?user=MSShwvkAAAAJ&hl=en&oi=ao
https://dl.acm.org/doi/10.1145/1555754.1555775
https://doi.org/10.1109/HPCC-SmartCity-DSS.2017.58
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Automatically+Selecting+Profitable+Thread+Block+Sizes+for+Accelerated+Kernels&btnG=
https://ieeexplore.ieee.org/abstract/document/8291961
https://doi.org/10.1145/2872887.2750393
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dynamic+Thread+Block+Launch%3A+A+Lightweight+Execution+Mechanism+to+Support+Irregular+Applications+on+GPUs&btnG=
https://dl.acm.org/doi/abs/10.1145/2872887.2750393
https://doi.org/10.1109/ICCD.2014.6974717
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fair+share%3A+Allocation+of+GPU+Resources+for+both+Performance+and+Fairness&btnG=
https://ieeexplore.ieee.org/abstract/document/6974717
https://doi.org/10.1145/3570638
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimization+Techniques+for+GPU+Programming&btnG=
https://dl.acm.org/doi/full/10.1145/3570638

