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Abstract - The Graphics Processing Units (GPUs) have many cores, and so give an improved execution level throughput. GPUs 

are intended for use in parallel computing. The size of a thread block plays a crucial role in determining the kernel's occupancy 

since thread-level parallelism is necessary to maximize overall performance. During the kernel launch, information on the 

number of threads per block and the number of blocks in a grid was provided. The variance in thread block sizes and the number 

of thread blocks within a grid greatly influence CUDA application performance. The impact of different thread block sizes with 

shared memory and synchronization on the total execution time of a few CUDA programs has been noted in this proposed work, 

along with a speed optimization. Additionally, implementing Shared Memory along with Synchronized Thread Blocks improves 

CUDA applications' overall performance in a GPGPU measurably. 
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1. Introduction  
Multicore CPUs and many core GPUs have appeared and 

gradually established state-of-the-art high-performance 

computing. While CPUs consist of multiple cores and are 

utilized for high-performance parallel processing, GPUs 

contain hundreds of cores for dedicated tasks. Although the 
semiconductor technology used to make modern CPUs and 

GPUs is the same, GPU computational performance is 

increasing faster than CPU computational performance. Since 

each processing element has more transistors dedicated to 

control logic like branch prediction and out-of-order 

execution, CPUs are intended for high-performance, task-

parallel workloads. In arithmetic, logics like floating-point 

require more transistors, and GPUs are more suitable for 

performing parallel tasks [1].  

 

Advances in programming and economical architectural 
designs have made GPU’s deployment more global.  Created 

for graphics-related jobs in the early 2000s, GPUs were later 

enhanced to produce more efficiently, opening up new 

opportunities for developers. This led to the development of 

NVIDIA's Compute Unified Device Architecture (CUDA), a 

more flexible computing platform and programming 

language. The scientific research community soon adopted 

CUDA because it allowed high-level programming languages 

like C to be used to program NVIDIA GPUs. A GPU program 

can be written by programmers using the CUDA 

programming model as a kernel function that defines a 1D–

3D array of thread blocks known as Cooperative Thread 

Arrays (CTAs), where each thread runs the identical code. 

Scheduled and performed on GPU compute units known as 

Streaming Multiprocessors (SM) are thread blocks [2, 3].  

 

The host code used to launch kernels can manage thread-

level parallelism through the execution configuration 

specifications. The number of thread blocks and the number 

of threads per block in the kernel launch are specified in the 
execution configurations. An important aspect, which a 

variety of reasons may constrain, is the maximum number of 

thread blocks that a multiprocessor can support for a given 

kernel. No matter how big the thread block is or how many 

resources are used, the number of thread blocks that can be 

used on a multiprocessor is limited. So, the GPU thread blocks 

play an important role in parallelizing an application and 

CUDA kernel launch. The objective of the proposed study is 

to: 
 

 Observe the effect of different GPU Thread Block sizes on 

the CUDA applications [4, 5]. 

 Implement and analyze the efficiency of CUDA 

applications using the combination of shared memory with 

thread synchronization.  

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1 Architecture of blocks, grids, and threads [6] 

Accessibility to shared memory is significantly faster 

than that of global memory since it is an on chip memory. 

Shared memory, which is shared by every thread in a thread 
block, gives a way for thread cooperation. Every thread in the 

block gets access to the same amount of shared memory 

because it is allocated per thread block.  
 

The data shared by a thread into the shared memory from 

global memory can be accessed by any other thread inside the 

same thread block. When thread synchronization is combined 

with the shared memory concept, it can be applied to several 

tasks, such as high-performance cooperative parallel 

algorithms, user-managed data caches, and enabling global 

memory coalescing in scenarios where it was not feasible [7]. 
 

2. Review of Literature  
Improved floating point performance has been a major 

emphasis of GPU development. A massively parallel 

architecture known as CUDA, which NVIDIA introduced in 
2006–2007, changed the world of GPU programming. 

Applications can be executed with greater efficiency because 

of the use of CUDA's multiple cores to handle data sets. 

Ghorpade et al. [8] address common assumptions regarding 

CUDA and its future aspects along with its architecture and 

also compare it with other parallel programming languages 

like OpenCL and DirectCompute. 
 

The GPUs provide the synchronization in two different 

levels: warp level and thread block level. However, thread 
level synchronization is becoming necessary due to the 

increasing number of parallel applications running in a 

multithreading environment.  
 

A thread level synchronization method termed lock 

stealing was proposed by Gao et al. [9] to prevent the threads 

in a warp from circular locking. The suggested method is 
utilized for reader-writer locking and mutual exclusion 

locking in order to enhance the overall throughput of the SIMT 

architectures. 

Memory Access optimization is also a bigger challenge in 

parallel programming.  In order to map the threads, Ohno et 

al. [10] suggested a memory access optimization approach in 
which first, the logical mapping is created. Then, it is further 

converted to physical mapping through the compiler in an 

optimized way. It is based on the static analysis of array index 

expressions and also improves the usage of physical resources. 

 

To obtain Thread Level Parallelism (TLP), Li and Liang 

[11] presented an optimization system in this work that 

controls GPU concurrent kernel execution. The framework 

uses two essential methods. To modify the TLP for the kernel 

that is running concurrently, a TLP modulation method is 

created and also a cache bypassing method is designed to 
adaptively reduce the amount of thread blocks using the cache 

in order to reduce cache contention. The mentioned methods 

helped to improve the performance in the concurrent kernel 

execution environment. 

 

Hong and Kim [12] implemented an analytical model that 

determines the memory operation cost, which is essential in 

determining how well parallel GPU applications perform. The 

estimation of a number of parallel memory requests, termed 

also as Memory Warp Parallelism (MWP) can be executed 

concurrently based on the number of threads that are executing 

concurrently and the memory bandwidth consumption.  
 

As the appropriate thread block size to gain performance 

optimization in terms of GPU occupancy is challenging, and 

so Connors and Qasem [13] proposed a machine-learning 

technique to identify the profitable block sizes automatically. 

Furthermore, the study also demonstrated how the 

combination of performance counters and machine learning 

algorithms can reveal the fundamental causes of performance 

variance between various configurations.  

 

To facilitate the dynamic launching of lightweight thread 
blocks, Wang and Rubin [14] proposed a new technique 
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termed DTBL (Dynamic Thread Block Launch), 

which supports the GPU execution model. This approach 

allows dynamically arriving parallel tasks to be executed by 

multiple thread blocks instead of kernels. The DTBL 

execution paradigm, device-runtime support, and 

microarchitecture enhancements for monitoring and executing 
dynamically created thread blocks.  

 

Aguilera et al. [15] proposed various approaches to define 

the term fairness for GPGPU spatial multitasking by 

measuring the performance of each application. The study 

suggested a number of resource distribution schemes and also 

provided a run-time algorithm that predicts and modifies the 

SM allocation to satisfy the required fair share specifications. 

In this study, the problem of fair computing resource 

distribution among apps running on spatially multitasked 

GPUs is investigated.  
                                               

Hijma et al. [16] analyzed the different optimization 

techniques and also gave an overview of these techniques to 

improve the overall performance of the system. Also the 

impact of the evolution of architectures on the performance of 

different applications is discussed in the study.

 
Table 1. Analysis of different studies 

References Finding Limitations 

[8] 

A comparison of the CUDA programming model 
with other languages like OpenCL and 

DirectCompute has been done. Also the future 

aspect of CUDA in terms of performance 

improvement of GPGPU applications is done. 

Authors have focused on only  
NVidia’s architecture, but  Nvidia 

still has many difficulties to meet 

to make CUDA stick, since while 

technologically it is undeniably a 

success. 

[9] 

The authors have provided the synchronization in 

two different levels which are Thread level and wrap 

level. Authors have suggested to utilize for reader-

writer locking and mutual exclusion locking in order 

to enhance the overall throughput of the SIMT 

architectures, which is one of the major parameters. 

The author has focused on 

developing techniques to avoid 

live-locks, but a try-lock scheme is 

not used, and that is a major 

limitation. 

[10] 

A memory access optimization technique is 

suggested in which an optimized mapping of logical 

memory to physical memory is done through the 

compiler. 

The study is done for a few small 

benchmarks only and so for more 

fair estimation, more improvisation 

in the current scheme is required. 

[11] 

The major finding provided by the author is to 

improve the performance in the concurrent kernel 

execution environment using two TLP methods. 

The authors do not optimize the 
Thread  Level Parallelism (TLP) 

and model the resource contention 

for the concurrently executing 

kernels. 

[12] 

Implementation of a model for estimating the overall 

time taken by parallel memory operations in parallel 

which is known as Memory Warp Parallelism 

(MWP). 

The work is focused only on 

memory intensive GPU 

applications. 

[13] 

The authors proposed a machine learning technique 

to identify the profitable block sizes 

automatically. The author also finds that a 

combination of performance counter and machine 

learning algorithms is the fundamental cause. 

ML models have specific 

algorithms which support hardware 

support, so that some issues may 

occur in future. 

[15] 
The authors have presented the fairness of computer 

resource allocations for multitasking GPUs. 

The main limitation of the 

proposed study is to demonstrate 

how to divide the computing 

resources among the concurrent 

executing applications. 
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3. Problem Description  
The performance of a GPU’s Streaming Multiprocessors 

(SM) depends on the Thread Level Parallelism (TLP), i.e. the 

number of threads present in a thread block and the number of 

thread blocks in an SM. However, the amount of shared 

memory and registers that each thread block uses determines 

how many thread blocks can be launched on an SM. Also, the 

size of a thread block is an important factor in the kernel 

launch and the performance improvement, so when the size of 

a thread block is changed, there is a change in the overall 

performance of an application executing on a GPU. 

However, a significant amount of increase in the size of a 

thread block should be made because when the size is too 
short, more thread blocks will be there, and so synchronization 

with a large number of thread blocks will be difficult in terms 

of processing and time. If the size is too large, the 

parallelization will be reduced. The shared memory is faster 

as it is an on chip memory and is allocated per thread block. 

So the total amount of elapsed time during the kernel 

execution has a significant improvement while using the 

shared memory as compared to global memory. Also, thread 

synchronization is an important aspect when the increasing 

number of threads is used. So, in the present study, the 

combination of thread synchronization using shared memory 

has been implemented [7, 12].  

3.1. Effect of Thread Block Size 

At the time of a kernel launch (_kernel<<<numBlocks, 
threadsPerBlock>>>(input, output)), the Thread Level 

Parallelism can be achieved by varying the size of a thread 

block and seeing the effect of different thread block sizes over 

the kernel execution time, some combinations of block sizes 

( 8 x 8, 16 x 16 and 32 x 32) have been taken. This is one of 

the key factors for kernel occupancy and GPU utilization [6]. 

3.2. Effect of Shared Memory 

The effect of using shared memory as compared to global 

memory is to get optimized results as it is allocated to every 

thread block separately, and all the threads of a thread block 

share the same address space so that thread cooperation can be 

seen. In CUDA programming using _shared_ identifier, a 
speed up in the overall performance of the application can be 

found [7]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Thread block architecture with shared memory (self-made) 
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3.3. Effect of Thread Synchronization 

In a CUDA application, the synchronization of threads 

can be obtained through the _syncthreads() method. It is a 

barrier that makes sure that no thread in the block can execute 

until every thread has passed through the barrier. Additionally, 

it is ensured that all writes to memory done by threads in the 
block before and after the barrier will be available to these 

threads [12]. 

4. Proposed Work  
In this paper, the performance of GPGPU has been 

analyzed by using different thread block sizes in various 

CUDA applications and found the most significant thread 

block size that can be used depending on the type and data size 
of the application. Also, the combination of thread 

synchronization using shared memory has been implemented 

to get more optimized results. 

 

5. Experimental Setup 
A device named GeForce GTX 1050 Ti with a computing 

capacity of 6.1, a maximum of 2048 threads per SM and a 
maximum of 1024 threads per block is used for the 

experiment. It has the Pascal architecture. CUDA 10.1 is used 

for the hardware programming.  

 

To analyze the impact of using shared memory on the 

performance of the system in terms of total elapsed time of 

kernel execution, two different matrix based applications, 

Matrix Multiplication (MM) and Matrix Transpose (MT), 

with different thread block sizes, have been taken into 

consideration. For the experiment, three different sizes of 

thread blocks (8 x 8 = 64), (16 x 16 = 256) and (32 x 32 = 
1024) are taken. On the other hand one more experiment has 

been done on the same applications in CUDA using Global 

and Shared memories.  

 

The impact of varying sizes of thread blocks can be seen 

in the following graphs:  

 

 
Fig. 3 Matrix size 1024 x 1024 for MM 

 
Fig. 4 Matrix size 5120 x 5120 for MM 

 

 
Fig. 5 Matrix size 8192 x 8192 for MM 

 

 
Fig. 6 Matrix size 1024 x 1024 for MT 

 

 
Fig. 7 Matrix size 5120 x 5120 for MT 
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Fig. 8 Matrix size 8192 x 8192 for MT 

 

6. Results and Discussion 

The graphs obtained from the three datasets on both 

applications depict some interesting and significant 

observations. For the matrix multiplication application, all 

three graphs (4.1, 4.2 and 4.3) show the same pattern for both 

the cases of global and shared memory. While considering the 

block size of 8 x 8, the total elapsed time is higher.  

 

When block size 16 x 16 is considered for all three 

datasets, it has been observed that the total elapsed time has 

drastically decreased, particularly with shared memory. 
However, with the block size of 32 x 32, the total elapsed time 

is showing some slight decline but this can also be seen while 

executing the application repeatedly. Therefore, block size 32 

x 32 does not have any significant effect on the total elapsed 

time. 

 

With the application of matrix transpose, almost the same 

pattern can be observed through the graphs, especially in the 

case of shared memory. Interestingly, in all three datasets, it is 

observed that the total elapsed time using shared memory has 

increased with the increase in block size from 8 x 8 to 16 x 16, 

and almost the same effect can be observed with block size 32 
x 32. Therefore, there is no sense in increasing the block sizes. 

When the shared memory is used, it can be seen that with all 

three datasets, the block size of 16 x 16 shows the optimized 

results. 

 

With the help of different matrix sizes from 1024 X 1024 

to 8192 X 8192, the performance of the CUDA applications in 

terms of global and shared memory is compared and also 

observed the impact of change in the size of a thread block.  

 

7. Conclusion 

This research paper has been undertaken to analyze the 

impact of using shared and global memory and also variations 

in the size of thread blocks. Here, two applications are taken 

into consideration with Thread Level Parallelism, and their 

effect on the overall kernel execution time has been observed 

on a GPU device. It can be significantly seen that the use of 

shared memory along with global memory provides better 
results. Both the applications also show the same impact that 

moderate block size gives optimized results in terms of the 

total elapsed time of kernel execution. Further, this paper can 

be useful for researchers and even for operating system 

designers so that when the thread block size is moderate, more 

elements can be processed in parallel. If a large number of 

threads will be accommodated in a single thread block, the 

parallelization will be reduced.
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