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Abstract - Neural Machine Translation (NMT) systems and the availability of a wide variety of linguistic resources have 

greatly improved Cross-Lingual Information Retrieval (CLIR) capabilities. When translating English queries into Indian 

languages, the NMT approach performs well. The NMT will employ a parallel corpus for translations. The translation of 

English queries into Telugu is the main emphasis of this study. A lack of Telugu-language content makes it challenging to have 

a sizable parallel corpus. Consequently, NMT encounters issues with Out-Of-Vocabulary (OOV) and Named Entity 

Recognition (NER). Byte Pair Encoding (BPE) attempts to translate unusual words by breaking them down into subwords in 

order to overcome the OOV problem. Problems such as NER still have an effect. The system may be trained in both forward 

and reverse directions to recognize NER effectively. The system is trained to recognize named entities in both directions 

through bidirectional encoding. Consequently, NER issues can be solved with Bidirectional Long Short-Term Memory 

(BiLSTM) encoding. Random sampling and beam search decoding with unidirectional LSTM are used to improve the 

translation output sequence. The approach using BPE and BiLSTM encoding, along with random sampling and beam search 
decoding with unidirectional LSTM, will help to resolve the OOV and NER problems and improve the output sequence of the 

translations generated by the NMT system. This approach is evaluated by using the Bilingual Evaluation Understudy (BLEU) 

score and other metrics like accuracy, perplexity, and cross-entropy, demonstrating that the translation quality of NMT with 

bidirectional encoding and unidirectional decoding using random sampling and beam search surpasses that of regular 

encoding and decoding models using LSTM. 

Keywords - Cross lingual information retrieval, Machine translation, BiLSTM, Random sampling, Beam search. 

1. Introduction 
CLIR brings data from a database apart from the user's 

query language. CLIR allows users to retrieve information in 

languages they do understand. Language barriers are 

eliminated, and consumers may now access a far wider range 

of information. A researcher might utilize CLIR, for 

instance, to locate studies written in a language they are not 

familiar with. When users need data in different languages, it 

helps them find relevant content in other languages. This 

method translates English questions into Telugu queries. 

These translations are generated using Machine Translation 

(MT) techniques. Studies on native content are gaining 
popularity in countries such as India, where a substantial 

section of the population still struggles with English. Thus, 

the CLIR is critical for people who rely on regional content. 

A 2017 KPMG analysis [1] expects an 18% annual increase 

in the number of Indians utilizing the internet in their native 

language. 

One of the better translation methods is machine 

translation, which excels in terms of both speed and volume. 

It is affordable for basic tasks and translates a ton of 

information quickly. The majority of MT is done using 

corpus-based translation. When compared to more 
conventional Statistical Machine Translation (SMT) 

techniques, NMT is regarded as the greatest machine 

translation technology because of its capacity to comprehend 

complex linguistic patterns and context, producing 

translations that are more accurate and fluent. NMT is the 

most often used category in corpus-based translation. This 

model requires a parallel corpus [2] to be trained. Neural 

network models and machine learning are both used by the 

NMT. NMT models are very efficient for a variety of 

translation jobs since they can handle different language 

pairs and domains with ease and still produce translations 

that appear natural. 
 

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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There are generally multiple stages involved in Neural 

Machine Translation (NMT). During the data collection 

phase, parallel corpora are gathered. The NMT model is 

trained using these corpora. For example, there are a few 

parallel corpora for Telugu and English. Telugu's rich 

morphology explains the prevalence of noise and 
discrepancies in these kinds of data sets. The gathered data is 

cleaned up during the preprocessing phase.  The main stage 

of NMT, known as encoding, is word-by-word processing 

while training a neural network model.  

 

An encoder network receives each word after it has been 

translated into a numerical representation. The encoded 

representation is obtained by the decoder phase from the 

encoder. Next, using the source representation and the 

previously created words in the target language, it predicts 

the target sentence word-by-word. This process keeps going 

until a unique "end of sentence" token is produced. The 
model's performance is assessed on a different validation set 

following decoding in the evaluation phase in order to check 

the quality of the translation and pinpoint areas that require 

improvement. Metrics like BLEU are frequently employed in 

assessment. 

 

In NMT, OOV problems arise when the model comes 

across tokens during inference that were absent from the 

training set. This may make it difficult to translate these 

OOV tokens precisely. This is how OOV problems appear in 

NMT. Rare terms, proper nouns, or domain-specific 
terminology that was sporadically encountered in the training 

set of data may prove difficult for NMT models to translate. 

As a result, the output may contain incorrect or untranslated 

tokens. One way to address OOV concerns [3] is to 

supplement the training data with extra parallel corpora that 

contain specialist terminology or a wider vocabulary. As an 

alternative, methods like word segmentation can divide 

uncommon or unknown words into more manageable 

subword units for the model. OOV issues [4, 5] are more 

noticeable in language pairs with less training data or low-

resource languages, where the model might have trouble 

making meaningful generalizations. The English-Telugu 
parallel corpus is also resource-poor so the system will face 

issues with OOV words. These OOV issues can be addressed 

by using word segmentation like BPE. 

 

Numerous obstacles may lead to NER problems in 

NMT. Insufficient context in NMT models can make it 

difficult for them to identify named items correctly, 

particularly if they use the context that the source language 

sentence provides. This may result in mistranslated or 

incorrectly preserved named entities. Named entities 

frequently display ambiguity, in which a single word or 
phrase can refer to several different entities or represent 

different things depending on the situation. It may be 

difficult for NMT models to distinguish named entities 

accurately.  Errors or omissions in NER [6, 7] may result 

from NMT models encountering named entities during 

inference that were absent or inadequately represented in the 

training data. Accurately maintaining NER annotations 

between source and target languages presents extra hurdles 

for NMT models when translating text containing named 

entities between languages. So, BiLSTM will be helpful in 
recognizing the named entities. 

 

To translate a sentence from the source language into the 

target language, NMT employs decoding, an essential step. 

Word by word, the desired sentence is constructed. The next 

word is predicted by considering the encoded source text and 

previously generated target words. A decoder [8, 9] should 

consider the wider context of the sentence being constructed, 

guaranteeing that the translated sentence is grammatically 

accurate, flows naturally, and expresses the meaning that was 

intended. The quality of the decoding process determines the 

quality of the final translation because poor choices can 
make the entire sentence awkward. So, the decoder also 

plays a vital role in generating better translation accuracy. 

 

2. Related Work 
NER to recognize and categorize significant items 

referenced in the text. These things fall into a number of 

categories, such as names of people, establishments, 

locations, and so on. NER essentially assists computers in 

understanding the actual objects described in the text. In 

language processing, OOV refers to words or phrases that a 

system has not encountered in its training. 

 

NER technology has developed and is now widely used 
using models customized to domain-specific difficulties and 

entity types in chemistry, food safety, and healthcare, among 

other disciplines. The advancement of named entity 

recognition technology is discussed in this study by Xing Liu 

et al. [10], along with its significance for information 

extraction and its uses in the future. To improve chemical 

information extraction operations, Taketomo Isazawa et al. 

[11] propose a single model that works for both organic and 

inorganic chemical named entity identification tasks. The 

difficulty of inaccurately segmenting entity boundaries 

resulting from the lack of separators between Chinese 
characters is addressed by Cheng-Yen Lee et al. [12], which 

focuses on named entity recognition in the Chinese medical 

sector. 

 

To improve entity name representations, Yi Zhou et al. 

[13] suggest a Chinese NER model called LEMON, which 

integrates word and character-level information. Prefix and 

suffix, two position-dependent features, are incorporated into 

the model to improve entity name classification. These 

qualities are produced by lexicon-based memory, which also 

handles words that are not in the vocabulary. The efficacy of 

the model was demonstrated by a rise in the F1 score on four 
popular NER datasets. 
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Growing accessibility to textual information is fuelling 

the development of NER systems. Restrictions have been 

ignored by conventional approaches in favour of changing 

NER models. F. Zhao et al. [14] restructure popular systems 

under unconstrained tagging schemes and suggest a dynamic 

entity-based NER solution. An independent word and entity 
tagging method and a consistent word and entity labelling 

system are the two new, unrestricted schemes that are put 

forth.  

 

The models dynamically handle inputs to ensure that 

entity-level attributes are incorporated. Tests conducted on 

datasets in English, German, Dutch, and Spanish 

demonstrate that the approaches work effectively in 

linguistic boundaries. An open definition of multilingual 

named entity definition is made possible by Y. Luo et al. [15] 

on named entity distribution in a wide word embedding 

space.  
 

In contrast to earlier, closed, and restricted definitions, 

this model makes use of a particular geometric structure 

known as the named entity hypersphere. Mapping the model 

offers a novel technique to construct a named entity dataset 

in situations when language resources are scarce; for 

scenarios involving only one language, the model offers an 

open description of several named entity types and 

languages. In general, the suggested paradigm can be used to 

improve the most advanced named entity recognition 

systems. 
 

The OOV terms are also frequently used in languages 

with limited resources, and managing them will improve the 

quality of translation produced by NMT systems. When 

working with OOV words, word embeddings can only be 

used to a limited extent in natural language processing tasks. 

Methods for interpreting their meaning based on context and 

morphological structure have been proposed by Zhongyu 

Zhuang et al. [4]. On the other hand, learning is challenging 

due to the low frequency of OOV words, and context scarcity 

is an issue. In order to tackle this issue, the notion of "similar 

contexts" is presented, drawing from the "distributed 
hypothesis" found in linguistics and human mechanisms 

involved in reading comprehension. According to the 

experimental data, the similar contexts model achieves 

higher relative scores in both intrinsic and extrinsic 

assessment tasks, which enhances OOV word embedding 

learning. 

 

Decoding is a critical stage in machine translation, 

where the system converts the source text into the destination 

language using the parameters it has learned from the model. 

The NER will be recognized with the help of the BiLSTM in 
encoding. However, conventional unidirectional source-to-

target architectures struggle to produce a language-

independent representation of text since they rely on specific 

language pairs. Boyuan Pan et al. [16] propose a Bi-Decoder 

Augmented Network (BiDAN) for NMT applications. In 

order to generate the source language sequence during 

training, BiDAN has an additional decoder. Language-

independent semantic space can be produced using this 

shared encoder. Experiments on multiple NMT benchmark 

datasets illustrate the usefulness of the proposed method. 
Therefore, for better translations of the source text, a method 

that takes into account OOV, NER, and decoding is needed. 

Analogous research has been conducted on these types of 

challenges. 

 

3. BPE and Bidirectional Encoding  
The NMT approach proposed has preprocessing for 

cleaning the data set, BPE for handling the OOV words in 

the data set, BiLSTM encoding to train the system in both 

directions for recognizing the NER, and unidirectional 

LSTM with random sampling and beam search to generate a 

better translation and output sequence. Figure 1 illustrates the 

architecture for this approach. 

 
 

Fig. 1 Architecture for BPE and BiLSTM 

 

3.1. Preprocessing 

Preprocessing in NMT is the action taken to get the 

input data ready before feeding it into the neural network 

model. For the model to train well and generate correct 

translations, effective preprocessing is essential. Several 

data-cleaning procedures may be used during preprocessing 

to eliminate noise, mistakes, or unnecessary information 

from the incoming text. This could entail eliminating special 

characters or uncommon or unnecessary tokens. Cleaning the 

data increases the model's capacity for generalization and 
helps it concentrate on discovering significant patterns. 

3.2. BPE to Address OOV Words 

To address the issues caused by OOV [17, 18], the BPE 

mechanism is used. NMT uses BPE [19] as a subword 

tokenization approach. Managing OOV words that the model 

has not encountered during training is one of the main 

challenges it addresses in NMT. 

 

BPE Mechanism:  

Step 1: Input is the collection of strings is S and the target 

vocabulary size is n. 

Step 2: C is the set of unique characters, and C ϵ S 

Preprocessing 

Byte-Pair Encoding  Encoder (BiLSTM) 

Decoder (LSTM + Random 

Sampling + Beam Search) 

Input Output 



B N V Narasimha Raju et al. / IJECE, 11(5), 170-178, 2024 
 

173 

Step 3: Repeat step 3 when |C| < n. 

a. l and m are the most frequent consecutive 

bigrams, and l, m ϵ S 

b. Replace l and m by using z. 

c. Now update C by adding the z. 

d. In S, replace each l, m instance by z. 
Step 4: Return C. 
 

One effective method for addressing the OOV issue in 

NMT is byte-pair encoding. BPE divides words into smaller 

pieces called subwords, as opposed to standard vocabulary, 
which employs complete words as tokens. If they occur 

frequently enough, these subwords may consist of single 

characters, character combinations, or even entire words. The 

training data's preexisting vocabulary serves as the basis for 

BPE. The most frequent pair of characters or subwords that 

follow one another in the text is then determined iteratively. 

Then, a new single unit is created by combining these 

frequent pairs. This merging procedure keeps going until the 

target vocabulary size is reached or for a predetermined 

number of iterations. In BPE, a word can be represented by a 

combination of the learned subwords, so the NMT system 
can still translate it even if the entire term is not in the 

vocabulary. Consider the scenario where "highest" is OOV. 

BPE can translate "highest" as the combination of the 

subwords "high" and "est" if it has acquired these subwords 

during training. 
 

3.3. Bidirectional Encoder 

The process of transforming a sentence in the source 

language into a fixed-length vector representation that 

conveys its semantic meaning is called encoding. Because it 

reduces all the information from the source text into a format 

that the neural network can use effectively, this encoding is 

essential. 
 

Bidirectional encoding [20] is significant in NMT; it 

enables the model to consider both leftward and rightward 

contexts while generating translations. When encoding a 

specific token, the encoder can only access information from 

previous tokens in the sequence since traditional 

unidirectional encoding processes input text sequentially. 

Bidirectional encoding, on the other hand, enables the 

encoder to obtain context from both sides, resulting in a more 

comprehensive representation of the input sentence. It allows 

the model to encode a token by capturing both the words that 
come before and after it. This aids in the model's improved 

context understanding. By giving the model a broader 

perspective of the input sentence, it enables it to pick up 

richer and more detailed representations. Natural language is 

frequently ambiguous, with words and sentences having 

several context-dependent meanings. By considering context 

from both directions, bidirectional encoding lessens the 

possibility of mistranslations and aids in the model's ability 

to disambiguate such occurrences. For instance, consider the 

following two sentences: 

 I like Paris very much because it is my favourite 

tourist place.  

 I like Paris very much because he is my best friend. 

There is a token known as Paris in both phrases. The 

leftward context in a unidirectional LSTM model specifies 

the token that appears next. Accordingly, it might not be 
possible to tell if the term Paris is the name of the individual 

or the location. Using both the leftward and rightward 

contexts, a BiLSTM is able to recognize the tokens in a 

sentence correctly. Two unidirectional LSTM layers coupled 

in opposite directions serve as the encoder in BiLSTM. The 

input values for the forward LSTM are a1, a2,..., an while an, 

an-1,..., a1 is the input for the backward LSTM. Two LSTM 

model outputs can be combined to create the desired result. 

Figure 2 displays the architectural layout of the BiLTSM. 

  
Fig. 2 Architectural design of BiLTSM 

 

3.3.1. Bidirectional Encoding 

Step 1: Input to the encoder - In encoding, the forward 

LSTM takes the input sentence and passes through the 

following gates, which control the flow of information within 

the cell and generate the hidden state ht at each time step t. 

These hidden states capture the semantics of the input. 
 

a. The input gate n𝑡 decides how much of the new input 

should be permitted into the cell state, as in equation (1). 

 

N𝑡 = σ(Wxnxt + Whnht−1+Wsnst−1+bn) (1) 

 

b. The forget gate r𝑡 decides how much of the prior cell 
state should be kept, as in equation (2). 

 

R𝑡 = σ(Wxrxt + Whrht−1+Wsrst−1+br) (2) 

 

c. The output gate mt determines how much of the cell state 

should be disclosed as output, as in equation (3). 

𝐿𝑆𝑇𝑀 

I am 𝑎𝑡 School 

𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀 

𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀 

+ + + + 

yt-1 y
t
 y

t+1
 y

t+2
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M𝑡 = σ(Wxmxt + Whmht−1+Wsmst−1+bm) (3) 

 

d. The new candidate values that could be added to the cell 

state are represented by the candidate cell state. 𝑠𝑡̃ , as in 

equation (4).  

𝑠𝑡̃  = tanh(Wxsxt + Whsht−1+bs) (4) 

 

e. The cell state update s𝑡 mixes the new candidate values 

scaled by the input gate and forget gate with the old cell 

states𝑡−1, as in equation (5)  

 

s𝑡 = (rt ⊙ st−1) + (𝑖𝑡 ⊙ 𝑠𝑡̃). (5) 

 

f. The candidate cell state h𝑡 is the hidden or output state at 

the time step t, as in equation (6). 

 

H𝑡 = mt ⊙ tanh(st) (6) 

Step 2: The backward LSTM – The equations are like 

the forward pass but operate in the reverse direction, 

processing the input sequence from right to left. 

Step 3: The output of the BiLSTM – is often expressed 

as ht = [ht
⃗⃗  ⃗, ht

⃖⃗ ⃗⃗ ], which is a concatenation of the forward and 
backward hidden states. A BiLSTM encoder stops when it 

has processed the entire input sequence. 

Step 4: Output generation by the decoder – During 

decoding, the decoder LSTM generates one output token at a 

time. The previous output token, the previous hidden state, 

and maybe some context data are sent by the encoder to the 

decoder. Until an end-of-sequence token is generated or the 
maximum length is achieved, these steps are repeated. 

In this way, bidirectional encoding and corresponding 

decoding are performed for the source text. In this way, the 

encoding is performed to recognize the NER effectively. 

3.4. Unidirectional Decoding with Random Sampling and 

Beam Search 

The standard method in NMT for producing the target 

language sentence is unidirectional decoding [21]. One by 

one, the target words are predicted by the decoder. It only 

takes into account the already-created target words and the 

encoded representation of the entire source text.  

Unidirectional Decoding: 

Step 1: First, the entire input sentence in the source 

language is processed by an encoder to create a series of 

hidden states and a final context vector that captures the 

semantic essence of the input sentence. 

Step 2: The decoder is initialized with the context vector 

from the encoder. This vector often serves to initialize the 

decoder’s hidden state. The decoder generates words one at a 

time, beginning with a unique start-of-sequence token. For 

each step 𝑡, the decoder updates its state based on the 

previous state and the last generated word, as in equation (7). 
 

H𝑡 = DecoderRNN(yt−1, ht−1) (7) 

Step 3: Based on the current state ℎ𝑡, the decoder 

determines the next word 𝑦𝑡 at each time step, as shown in 
equation 8. 
 

P(yt | y1,…,yt-1) = softmax(Wht+b) (8) 
 

Where 𝑊 and 𝑏 are weights and bias of the output layer. 

Step 4: This process repeats until the decoder produces 

an end-of-sequence token, signalling the completion of the 

sentence. 

In this case, the unidirectional decoder will perform the 

translation of the source text. Now, for better output 

sequence and translation quality, the Random Sampling (RS) 

and Beam Search (BS) mechanisms are utilized. NMT uses 

decoding techniques like BS [22] and RS [23] to choose the 

word sequence that is output. These methods aim to provide 

translations of the highest quality by navigating a language 
model in a complex probability environment. By selecting 

words based on their probability distribution, RS adds 

stochasticity to the word selection process. A heuristic search 

strategy called BS expands the most promising nodes in a 

small collection called the beam to examine a graph. 

Random Sampling for Top k 

Inputs: The encoded source sentence, vocabulary, and the 

number of top k probabilities to consider for random 

sampling. 

Outputs: A decoded sentence in the target language. 

Steps: 

Step 1: Model Prediction - Based on the present context, 
the NMT model provides a probability distribution across the 

complete vocabulary for the next word in the translation. 

Step 2: Top-k Selection - All words in the vocabulary 

are not taken into consideration; just the top k words with the 

highest probabilities are kept. A portion of the total 

vocabulary is made up of these top k terms. 

Step 3: Random Sampling - Based on their probabilities, 

one word is randomly selected from this subset of the top k 

words. This adds randomness to the decoding process. 

Step 4: Sequence Generation - The translated sequence 

is supplemented with the sampled word. The chosen term 
updates the context of the model. Steps 1-3 are performed 

until an end-of-sentence token is generated or the maximum 

sequence length is reached. 
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Beam Search: 

Go through steps 1 through 4 repeatedly, even when the 

initial state I is not equal to empty. 

Step 1 - The most optimal node is removed from I and it 

is denoted as o. 

Step 2 - If the desired state is represented by o, go 
backwards until it is reached, then transmit the path. 

Step 3 - Create and assess o successors, add them to I, 

and provide a parent list. 

Step 4 - When the value of | I | exceeds w, which is the 

beam's width, the best w nodes are chosen, and the other 

nodes are excluded from I. 

In this way, both the random sampling for top-k and 

beam search algorithms will work. The NMT system 

combines BS and RS to maximize the advantages of both 

strategies and generate a wide range of effective translations. 

RS adds diversity by considering a larger set of word options 

at each stage, and BS makes sure that the translated text is 
coherent and fluid. In addition to RS, BS concentrates on 

identifying high-quality translations by evaluating several 

theories concurrently and choosing the most likely ones. 

Combining BS with RS allows you to design a decoding 

method that produces a wide range of effective translations 

that are appropriate for different NMT systems. 

Metrics, including the BLEU score and other 

parameters, are used to assess the approach. Accuracy 

measures the degree of accurate classifications. Conversely, 

the level of ambiguity signifies the certainty with which the 

probability model forecasts a sample. Finding the loss 
function is the goal of cross-entropy. The BLEU score is 

employed to evaluate the prediction accuracy. 

4. Results and Discussion 
In the English-Telugu parallel dataset, noise and 

replications are eliminated during the preprocessing stage. 

The system might become confused while learning new 

features from the replicated corpus, which could lead to 
overfitting of the model with less translation performance. If 

all these problems have been resolved in the parallel datasets, 

the parallel corpus will yield translations of higher quality. 

Therefore, by preprocessing the corpus, the NMT system 

may produce accurate translations of the original sentence.  

Duplicate, noisy, and inconsistent data are removed from 

the parallel corpus by preprocessing. A comparison is made 

between the NMT approaches like Unidirectional encoding 

with RS and BS Decoding (LSTM+RS+BS), Bidirectional 

encoding with RS and BS Decoding (BiLSTM+RS+BS), 

Unidirectional encoding along BPE with RS and BS 

decoding (BPE+LSTM+RS+BS), Bidirectional encoding 

along BPE with RS and BS decoding 

(BPE+BiLSTM+RS+BS). The parallel corpus in Telugu and 

English serves as the input for all models. Unlike the dual-
layer architecture seen in bidirectional encoding, the 

unidirectional encoding model has only one layer. BiLSTM 

will continue to have a one-layer decoding mechanism and a 

two-layer encoding method. In both encoding and decoding, 

LSTM units are utilized. The models will feature an LSTM 

layer with a 500-size, a 0.01 learning rate, and Adam as the 

optimizer. With the model decay and dropout rates set at 0.5 

and 0.3, respectively, 25000 training steps will be performed. 

Metrics like accuracy, perplexity, and cross-entropy are used 

to evaluate the training and validation performance of all the 

models. Table 1 displays the values for these parameters. 

Bidirectional encoding along the BPE with RS and BS 
decoding improves the NMT's performance. 

Table 1. Evaluation of the performance of various NMT systems 

Parameters 

LSTM 

+ RS 

+ BS 

BiLSTM

+ RS 

+ BS 

BPE+ 

LSTM 

+ RS 

+ BS 

BPE+ 

BiLSTM 

+ RS 

+ BS 

Training 

Accuracy 
97.69 97.41 97.47 98.11 

Training 

Perplexity 
1.08 1.09 1.09 1.06 

Training 

Cross-Entropy 
0.08 0.09 0.09 0.06 

Validation 

Accuracy 
54.81 55.59 54.60 55.41 

Validation 

Perplexity 
204.54 190.51 204.73 190.41 

Validation 

Cross-Entropy 
5.32 5.25 5.32 5.24 

The training graphs for all the NMT systems are shown 

in Figure 3. The graph in Figures 3(a), 3(b), and 3(c) show 

how training accuracy is compared, perplexity is shown and 

cross-entropy comparisons between various NMT systems. 
The training accuracy of bidirectional encoding along BPE 

with RS and BS decoding is 98.11, which is higher. It is 

preferred that the accuracy rates show higher values. The 

training perplexity of bidirectional encoding along BPE with 

RS and BS decoding is 1.06, which is lower. The model that 

has a lower perplexity score is deemed to be superior. The 

training cross-entropy score of bidirectional encoding along 

BPE with RS and BS decoding is 0.065, which is lower. It is 

thought that the model with the lower cross-entropy score is 

better. 
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Fig. 3 The training graphs regarding (a) Accuracy, (b) Perplexity, and (c) Cross-entropy. 

 

Fig. 4 The validation graphs regarding (a) Accuracy, (b) Perplexity, and (c) Cross-entropy.
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The validation graphs for all the NMT systems are 

shown in Figure 4. The graphs in Figures 4(a), 4(b), and 4(c) 

show how validation accuracy is compared, perplexity is 

shown, and cross-entropy comparisons are made between 

various NMT systems. The validation accuracy of 

bidirectional encoding along BPE with RS and BS decoding 
is 55.41, which is higher. It is preferred that the accuracy 

rates show higher values. The training perplexity of 

bidirectional encoding along BPE with RS and BS decoding 

is 190.41, which is lower. It is thought that the model with 

the lower perplexity score is better. The training cross-

entropy score of bidirectional encoding along BPE with RS 

and BS decoding is 5.24, which is lower. The model that has 

a low cross-entropy score is considered to be superior. These 

findings imply that bidirectional encoding along the BPE 

with RS and BS decoding performs better. 

 

One measure used to evaluate the model's efficacy is the 
BLEU score. BLEU values are shown in Table 2. It is shown 

that the use of bidirectional encoding along BPE with RS and 

BS decoding in NMT yields translations with greater 

accuracy levels, as indicated by the BLEU score. 

Preprocessing, BPE, and BiLSTM models help the NMT 

system generate translations that are more accurate by 

removing noisy content in a parallel corpus and resolving 

OOV and NER issues.  

Table 2. BLEU scores of NMT approaches 

NMT Approaches BLEU Score 

LSTM + RS + BS 16.41 

BiLSTM+ RS + BS 17.57 

BPE + LSTM + RS + BS 16.64 

BPE+ BiLSTM + RS + BS 18.13 

 
Fig. 5 BLEU score 

Figure 5 compares the BLEU scores of all the NMT 

approaches. The bidirectional encoding along BPE with RS 

and BS decoding has a value of 18.13, which is the highest 

among all the NMT approaches. BLEU scores exist for all 

models. The better model is the one with a higher BLEU 

score. These results suggest that bidirectional encoding along 
BPE with RS and BS decoding performs better.  

5. Conclusion 
The NMT is essential to CLIR because it translates 

English queries into Indian languages like Telugu. If the 

translations can be generated by eliminating repetitions, 

noisy data, and inconsistencies in the corpus, then NMT will 

function more effectively. These problems are resolved when 
the parallel corpus is preprocessed. The English-Telugu 

corpus in the NMT system lacks resources, which contributes 

to OOV problems like unfamiliar terms in the corpus. BPE is 

used to tackle these OOV problems by breaking the words 

down into subword units and attempting a translation. 

Compared to the use of unidirectional LSTMs, the BiLSTM 

in the NMT has helped to alleviate some of the NER 

recognition difficulties. While unidirectional LSTM only 

uses leftward context, bidirectional LSTM uses both leftward 

and rightward context in the sentence to identify NER. 

BiLSTM thus outperforms unidirectional LSTM in terms of 
translation accuracy.  

 

The preprocessing stage makes use of the English-

Telugu parallel corpus, while the encoding stage uses the 

output as input. Metrics like the BLEU score and other 

parameters are used to evaluate the quality of translations. 

The BiLSTM encoding and BPE with unidirectional 

decoding along RS and BS have performed better when 

compared with different techniques for MT quality and 

accuracy. Thus, by adding BPE to the model, some OOV 

issues have been handled.  When OOV problems are 

resolved, translations in languages with limited resources 
perform better. Rather than using unidirectional LSTM, the 

BiLSTM in the NMT has helped to alleviate some of the 

NER recognition problems.  

During the decoding process, RS and BS will generate a 

translation of superior quality. So, for the parallel corpus of 

English and Telugu, the NMT that uses BiLSTM encoding 

and BPE with unidirectional decoding along RS and BS 

yields better translations. Therefore, it is advised to use this 

NMT system technique for the parallel Telugu and English 

corpus. Thus, the CLIR with BiLSTM encoding and BPE 

with unidirectional decoding along RS and BS are helpful in 
increasing translation accuracy. 
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