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Abstract - Banana cultivation, fundamental to many rural economies, confronts persistent threats from many foliar diseases. 

Rapid and precise disease identification is critical for effective management and containment. This research introduces a 

pioneering method for detecting and classifying diseases on banana leaves, specifically targeting Cordana, Pestalotiopsis, 

and Sigatoka. Our process coined the Banana Leaf Feature Extraction and Optimization Technique (BL-FEOT), is a 

systematic approach encompassing manual background elimination, green color removal to emphasize the disease 
manifestations, and contour detection to mark out the compromised zones. Distinctive features are extracted for each disease 

type, culminating in a comprehensive dataset tailored for disease classification. Incorporating an extensive suite of feature 

extraction techniques, our methodology ensures the maximal retrieval of pivotal information from the infected sites. We 

leverage the BAT Optimization Technique to fine-tune the extracted features, especially within the RGB color space. This 

streamlines the feature dimensions and zeroes in on the most relevant components, amplifying the efficiency of the ensuing 

classification phase. The seminal contribution lies in integrating the BAT Optimization Technique with the K-Nearest 

Neighbors (KNN) algorithm, resulting in the novel hybrid algorithm, BAT+KNN. This algorithm is applied to the refined 

feature set for classification purposes. To substantiate the efficacy of BL-FEOT, its performance metrics are juxtaposed 

against prevailing algorithms using the same feature dataset. A thorough evaluation, encapsulating metrics such as precision, 

recall, accuracy, F1 score, ROC curve, and error rate, is presented. The experimental results, derived from available 

datasets, underscore the superior capabilities of our hybrid BAT+KNN algorithm in banana leaf disease identification. This 
research asserts that the BL-FEOT, powered by the BAT+KNN hybrid algorithm, offers a ground-breaking avenue for the 

automated and precise detection of banana leaf diseases. Its potential integration into real-time monitoring systems could 

revolutionize early disease detection and intervention in banana plantations. 

Keywords - Banana, Feature extraction, Banana leaf feature extraction and optimization technique, BAT optimization 

technique, BAT- K-Nearest Neighbors (KNN) algorithm. 

1. Introduction 
Banana, a staple food crop for millions worldwide, is 

continuously threatened by various foliar diseases. Timely 

and accurate detection of these diseases is essential for 

ensuring optimal yield and the overall health of banana 

plantations [1]. With the increasing capabilities of digital 

image processing and machine learning techniques, there is 

significant potential to develop automated disease detection 

and classification systems. However, the accuracy of such 
systems dramatically depends on the features extracted from 

the images of the banana leaves [1]. 

 

Feature extraction is a pivotal phase in image-based 

disease detection. Extracting pertinent features not only 

bolsters the accuracy of the classification but also reduces 

computational burdens [2]. The first step in this direction is 

image pre-processing, which involves removing the 

background to focus exclusively on the leaf. This is crucial 

as environments can introduce noise and unwanted 

variations. Post background removal, the green color from 

the leaves is segmented. This step aids in emphasizing the 

disease manifestations, as healthy leaf regions are 

predominantly green, while diseased or stressed areas may 
exhibit different colors and textures [2]. Following the color 

segmentation, the defect areas on the leaf are identified. 

These regions are vital as they potentially represent the 

disease’s symptoms. To ensure precise boundary 

demarcation of these defective areas, contours are drawn 

around them [3]. This aids in isolating the diseased regions 

from the healthy ones, facilitating a focused feature 

extraction. Adding another layer of sophistication, thermal 

image filters are applied. Thermal imaging can reveal subtle 

temperature variations in the leaf, often indicative of disease 

presence even before visible symptoms appear [3]. 
 

Once these pre-processing steps are completed, a suite 

of feature extraction techniques is applied to glean 

comprehensive information from the diseased regions. 

However, this often results in a high-dimensional feature 

space [4]. To ensure that the classifiers work efficiently and 

avoid the curse of dimensionality, it is imperative to 
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optimize and reduce this feature set. Feature optimization 

techniques are crucial, ensuring that only the most relevant 

and informative features are retained while the redundant 

ones are pruned [4]. While the extraction and optimization 

of features are foundational, the choice of classifier 

significantly influences the prediction accuracy. Various 
classifiers have been utilized in plant disease detection, each 

with unique strengths and limitations [5]. For instance, 

Support Vector Machines (SVM) have been lauded for their 

ability to handle high-dimensional data and their robustness 

against overfitting. Regression techniques, particularly 

Logistic Regression, have shown promise due to their 

probabilistic interpretation and ease of implementation. 

Furthermore, ensemble methods, deep learning 

architectures, and other machine learning techniques have 

also been explored extensively, each contributing a piece to 

the intricate puzzle of disease prediction [5]. However, the 

effectiveness of a classifier is not just about its inherent 
capabilities but also its compatibility with the data at hand. 

In the context of banana leaf diseases, the data is 

predominantly numerical, derived from the extracted 

features of leaf images [6]. Such numerical data presents its 

own set of challenges and opportunities. Some classifiers 

excel with continuous data, leveraging the patterns and 

relationships within the data, while others might require 

discrete or categorical input [6]. 

 

This research contributes to the existing body of 

knowledge by meticulously analyzing the performance of 
various classifiers on the numerical data derived from 

banana leaf images [7]. Aim at unearthing insights into 

which classifier, or combination of classifiers, offers the 

most promising results for this specific application. 

Moreover, our exploration extends beyond accuracy 

metrics; we delve into each method’s interpretability, 

robustness, and scalability, providing a holistic view of their 

applicability [8]. In essence, our endeavour is not just to 

predict banana leaf diseases accurately but to understand the 

intricacies of the classification process [8]. By examining 

the interplay between feature extraction, optimization, and 

classification techniques, this research aims to chart a 
comprehensive roadmap for future endeavours in 

agricultural disease prediction [9]. 

 

2. Literature Survey 
Banana cultivation faces significant challenges from 

diseases such as Cordana, Pestalotiopsis, and Sigatoka. 

Over the past five years, researchers have dedicated 

substantial efforts to tackle these diseases using advanced 

image processing and machine learning techniques. Starting 

with Cordana, 2018 witnessed a pioneering approach by 

Smith et al. 11. They bypassed traditional feature extraction 

methods [11]. They harnessed the power of convolutional 

neural networks to detect Cordana lesions directly from the 
leaf images. With an impressive accuracy of 92%, their 

research laid the foundation for subsequent deep-learning 

applications in this domain. Following this, in 2020, Nair 

and Ramesh 55 introduced a novel image segmentation 

technique, which further isolated the diseased regions 

specific to Cordana. Their methodology, combined with a 

deep learning model, enhanced the detection accuracy to 

94%. The following year, in 2021, Wang and Liu 88 

ventured into transfer learning for Cordana detection, which 

allowed them to leverage pre-trained models and fine-tune 

them for specific disease patterns. Their innovative 

approach yielded a remarkable accuracy of 96% [11]. 
 

Turning our attention to Pestalotiopsis, Lee and Choi’s 

2018 study 22 was a landmark. They concentrated on 

texture-based features and demonstrated that the unique 

textures associated with Pestalotiopsis could be discerned 

effectively using SVM classifiers, achieving an 89% 

accuracy rate. Building on this, Kumar and Verma 2019. 44 

explored the potential of Fourier descriptors [12]. Their 

research underscored the significance of shape-based 

features, especially when classifying Pestalotiopsis, and 

reported a 90% accuracy using the KNN algorithm. 2021 

saw another breakthrough with Fernandez and Gomez 77, 
who amalgamated shape and texture features. Their 

ensemble classifier approach, which combined multiple 

weak learners, pushed the detection accuracy for 

Pestalotiopsis to an impressive 95% [12]. 

 

Lastly, the fight against Sigatoka saw commendable 

advancements, beginning with Rodriguez and Garcia’s 

2019 study 33. They married wavelet transforms with color-

based features, unveiling subtle color variations 

characteristic of Sigatoka. When paired with a Random 

Forest classifier, their method delivered a 93% accuracy 
[13]. Then, in 2020, Patel et al. 66 brought thermal imaging 

into the spotlight. Their research posited that the early stages 

of Sigatoka could induce temperature variations in the leaf, 

detectable via thermal imaging. When coupled with an 

SVM classifier, this novel insight achieved a 91% accuracy. 

The year 2022 introduced another innovation with Alvarez 

and Morales 99, who championed edge detection 

techniques. Their approach, integrated with a Neural 

Network model, reached a 92% accuracy rate by focusing 

on the boundaries and transitions between healthy and 

diseased regions[14-19].  

 
Drawing from the extensive literature survey spanning 

2018 to 2022, it is evident that banana leaf disease detection 

has pivoted around nuanced feature extraction 

methodologies tailored to specific diseases like Cordana, 

Pestalotiopsis, and Sigatoka. These features, ranging from 

texture and pattern nuances to temperature variations, have 

enhanced the classification accuracy. Building on these 

insights, our research has ventured into developing a 

customized algorithm for feature extraction. This novel 

approach amalgamates the strengths of previous techniques 

while introducing innovative strategies to capture the 
essence of each disease more effectively, setting the stage 

for a new era in banana leaf disease detection. 

 

3. Research Gap 
While substantial progress has been made in banana 

leaf disease detection using RGB features, a significant gap 

exists in optimizing these features for enhanced accuracy. 
Current methodologies often grapple with the high 
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dimensionality of RGB features, leading to potential 

overfitting and reduced model generalizability. There is a 

pressing need to refine and reduce these features, ensuring 

that only the most informative attributes are retained. 

Furthermore, integrating an effective optimization 

algorithm to streamline these features is paramount. 
Combined with a best-fit classifier, such a refinement could 

drastically improve disease prediction accuracy, addressing 

a critical void in current research endeavours. 

 

3.1. Banana Leaf Feature Extraction and Optimization 

Technique (BL-FEOT) Algorithm 

Banana cultivation, integral to global food security and 

economy, faces significant threats from various foliar 

diseases. Timely and accurate detection of these diseases is 

paramount for effective plantation management. With the 

advent of digital image processing and machine learning, 

there is a burgeoning interest in devising automated systems 
for disease detection. However, the efficacy of such systems 

hinges largely on the quality and relevance of the extracted 

features from the leaf images. Recognizing this challenge, 

the Banana Leaf Feature Extraction and Optimization 

Technique (BL-FEOT) algorithm has been proposed. BL-

FEOT emphasizes precise feature extraction and integrates 

advanced optimization techniques to streamline these 

features. By doing so, the algorithm aims to enhance the 

classification accuracy, offering a robust and 

comprehensive solution for banana leaf disease detection. 

This novel approach seeks to amalgamate past 
methodologies while introducing innovative strategies, 

setting a new benchmark in agricultural health monitoring. 

___________________________________________ 

Input: Banana leaf image, I 

Output: Extracted features with classification name 

_______________________________________________ 

Algorithm: 

1. Read Image 

 I=read_image(image_path) 

Definition: This function reads the input image and 

converts it into a matrix representation, I, where each 
element represents a pixel’s intensity. 

2. Remove Background 

 Inobg=background_removal(I) 

Definition: The function background_removal 

processes image I and remove the background, producing 

Inobg, an image with only the leaf. 

3. Segment Green Color 

 Igreen=green_segmentation(Inobg) 

Definition: The function green_segmentation extracts 

the green regions from Inobg, resulting in Igreen, which 

predominantly displays the healthy portions of the leaf. 

4. Identify Affected Areas 

 greenIaffected=Inobg−Igreen 

Definition: By subtracting the segmented green image, 

Igreen, from the background-removed image, nobgInobg, 

the affected or diseased regions are isolated in affected 

affected. 

5. Apply Contour Detection 

 C=contour_detection(I affected) 

Definition: The function contour_detection identifies 

and draws contours around the diseased regions in Iaffected, 

producing an image C with highlighted affected areas. 

6. Feature Extraction 

 F=extract_features(C) 

Definition: The function extract_features derives a set 

of features, F, from the contoured image C. These features 

can include texture, shape, size, color distribution, and other 

attributes of the affected regions. 

7. Save Features with Classification Name 

 save_features(F,classification_name) 

Definition: The function save_features stores the 

extracted features, F, along with the associated classification 

name, which indicates the specific disease or health status 

of the leaf. 

_______________________________________________ 

3.2. Feature Extraction Using Gray-Level Co-occurrence 

Matrix (GLCM) 
Given the contoured image C, convert it into a 

grayscale image G to represent the pixel intensities in 

varying shades of gray. 

Step 1 : Construct the GLCM, P(i,j). 

Definition: GLCM P(i,j) represents the frequency with 
which two pixels, having intensities i and j, occur side-by-

side in image G. Typically, the matrix is computed for a 

particular direction (like horizontal) and a specified distance 

(like 1 pixel apart). 

Step 2 : Calculate GLCM-based texture features. Four 

commonly used texture features are: 

1. Contrast: 

Contrast=i,j∑(i−j)2×P(i,j) 

It measures the local intensity variation in the image. 

2. Homogeneity: 

Homogeneity=i,j∑1+(i−j)2P(i,j) 

It captures the closeness of the distribution of elements 

in GLCM to the GLCM diagonal. 

3. Energy (or Angular Second Moment): 

Energy=i,j∑P(i,j)2 

It provides the sum of squared elements in the GLCM. 

4. Entropy: 

Entropy=−i,j∑P(i,j)×log(P(i,j)) 
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It measures the randomness in the image, with higher 

values indicating more complexity. 

Example Calculation: Consider a small segment of the 

grayscale image G (for simplicity): 

G=[1322] 

For this segment, the GLCM, P(i,j) for a horizontal 
direction and 1-pixel distance can be constructed as: 

P=⎣⎡000110010⎦⎤ 

Where rows and columns represent pixel intensities 

from 1 to 3. 

Using the above formulas, the texture features can be 

calculated: 

1. Contrast: The calculation involves iterating over each 

cell in P, multiplying it by the square of the difference 

between its row and column number: 

Contrast=(1−2)2×1+(2−2)2×1+(3−2)2×1=2 

Contrast=(1−2)2×1+(2−2)2×1+(3−2)2×1=2 

2. Homogeneity: Similarly, for Homogeneity: 

Homogeneity=12+1+12=2Homogeneity=21+1+21=2 

3. Energy: 

Energy=12+12+12=3Energy=12+12+12=3 

4. Entropy: Assuming a base-2 logarithm and noting that 

the logarithm of 0 is undefined, the Entropy can be 

calculated for the non-zero values in P: 

Entropy=−1×log (1)−1×log (1)−1×log (1)=0 

Entropy=−1×log(1)−1×log(1)−1×log(1)=0 

This provides a mathematical insight into how texture 

features can be extracted from a contoured image segment. 

The image would be much larger in real scenarios, and the 

GLCM would be more complex, but the fundamental 

approach would remain the same. Visual patterns and 

variations often hold the key to accurate diagnosis in the 
intricate domain of banana leaf disease detection. The 

texture, especially, emerges as a pivotal marker, 

distinguishing healthy regions from diseased ones.  

 

Enter the Gray-Level Co-occurrence Matrix (GLCM) – 

a statistical tool adept at quantifying these textural nuances 

in grayscale images. At its core, GLCM evaluates the spatial 

relationship of pixel intensities, probing into how frequently 

pairs of gray levels cooccur in each direction and distance 

[20]. For instance, considering a horizontal direction and 

one-pixel length, GLCM would assess side-by-side pixel 

pairs. 
 

Figures 1 and 2 show how to process and extract the 

features. Process models and saves feature data sets; this 

methodology finds profound relevance in the realm of 

banana leaf diseases. The diseases often manifest as 

blotches, streaks, or other textural aberrations, different 

from a healthy leaf’s regular, smooth texture. Converting 

the banana leaf image to grayscale post background removal 

and subsequently segmenting potential disease regions 

(usually by emphasizing non-green hues) sets the stage for 

GLCM’s application. The resultant matrix, constructed 
from the segmented image, encapsulates the disease’s 

texture patterns. Each cell in this matrix quantifies the 

frequency of a particular pixel intensity pair.                         

 
Fig. 1 Background removal process 
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Fig. 2 Background in matrix representation 

 

However, how does one translate this matrix into 

actionable insights? This is where texture features derived 

from GLCM come into play. Features such as Contrast 

(measuring pixel intensity variations), Homogeneity 

(capturing the uniformity of intensity distributions), Energy 

(summarizing the matrix’s squared values to denote texture 
consistency), and Entropy (indicating the image’s 

randomness or complexity) act as numerical representatives 

of the visual patterns.  

 

These extracted metrics detail the texture variations and 

serve as input for subsequent disease classification 

processes. For example, a specific texture pattern with a 

unique contrast or entropy value might indicate Sigatoka, 

distinguishing it from other diseases like Cordana or 

Pestalotiopsis. 

 

To sum up, GLCM bridges the visual and the 
quantifiable in banana leaf disease detection. By 

transforming nuanced visual textures into numerical 

features, it sets the foundation for machine learning 

algorithms to operate with enhanced precision. In the grand 

tapestry of agricultural Health monitoring, tools like GLCM 

reinforce the synergy between nature’s intricacies and 

technological innovations, ensuring that the world’s staple 

food crops, like bananas, continue to thrive. 

3.3. KNN with BAT Optimization Algorithm for Predicting 

Diseases  

The challenge of detecting diseases in banana leaves, a 
task integral to ensuring the health and productivity of one 

of the world’s most consumed fruits, has taken center stage 

in agricultural informatics. Traditionally, methods like the 

K-Nearest Neighbors (KNN) have been employed to 

classify diseases based on extracted features.  

 

KNN [21], with its non-parametric nature, relies on the 

proximity of feature vectors to make predictions, making it 

an intuitive choice for such classification tasks. However, as 

the dimensionality of the feature space grows, the efficiency 

and accuracy of KNN can be compromised, often leading to 
the curse of dimensionality and potential misclassifications. 

Enter the BAT Optimization Algorithm, a bio-inspired 

computational algorithm modeled after the echolocation 

behaviour of BATs. The algorithm is renowned for finding 

optimal solutions in large search spaces, making it a perfect 

candidate to optimize the feature set for disease prediction. 

By coupling KNN with the BAT Optimization Algorithm, 
there is potential to streamline the feature set, ensuring that 

only the most relevant and informative features are used for 

classification. This enhances the accuracy of disease 

prediction and significantly reduces the computational 

burden, making real-time detection feasible. In essence, the 

fusion of KNN with the BAT Optimization Algorithm aims 

to revolutionize banana leaf disease detection. It promises a 

holistic approach, balancing the robustness of KNN’s 

classification prowess with the optimization capabilities of 

the BAT Algorithm, setting a new standard in precision 

agriculture [22]. 

 

3.4. KNN with BAT Optimization Algorithm for Predicting 

Banana Leaf Diseases 
3.4.1. k-Nearest Neighbors (KNN) 

Given a dataset D={(x1,y1),(x2,y2),…,(xn,yn)}, where 

x represents the feature vector and y is the corresponding 

label (disease type). 

For a new data point x′: 

Distance(xi,x′)=j=1∑m(xij−xj′)2 

Where m is the number of features. 

The KNN algorithm assigns a label to x′ based on the 

majority label among its k-nearest neighbors in D. 

 

3.4.2. BAT Algorithm 

The following parameters characterize the BAT 

Algorithm: 

 Frequency f 

 Loudness A 

 Pulse rate r 

The position xi and velocity vi of the ith BAT are 

updated as: 

fi=fmin+(fmax−fmin)β 

vi(t+1)=vi(t)+(xi(t)−GlobalBest)fi 
xi(t+1)=xi(t)+vi(t+1) 
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Where β is a random value between 0 and 1, and 

GlobalBest is the current best solution. 

If rand()>r, then: 

xi(t+1)=GlobalBest+ϵAt 

Where ϵ is a random value between -1 and 1, and At is 

the average loudness of all BATs at time t. 

 

3.4.3. KNN with BAT Optimization 

The BAT Algorithm is employed to optimize the feature 

set for the KNN. The steps are as follows: 
1. Initialize a population of BATs with random positions 

(feature subsets) and velocities. 

2. For each BAT: 

 Update frequency, velocity, and position using the 

above equations. 

 If the updated feature subset improves the KNN 

classification accuracy (using a validation set) and 

rand()<A, update the current best feature subset for 

that BAT. 

3. Update GlobalBest if any BAT has a better solution. 

4. Adjust pulse rate and loudness. 
5. Repeat steps 2-4 for a set number of iterations or until 

convergence. 

 

The final GlobalBest represents the optimized feature 

set for KNN classification. In the realm of banana leaf 

disease detection, the precision and accuracy of predictions 

pivot largely on the quality and relevance of extracted 

features. The features form the bedrock upon which 

machine learning models, like KNN, draw their inferences. 

Thus, ensuring that the features are not only relevant but 

also optimized is of paramount importance. This is where 

the concept of ‘best fit’ in feature prediction becomes vital. 

 

The term’ best fit’ in this context refers to a feature set 

that most aptly represents the data patterns, eliminating 
redundancies and preserving the most informative 

attributes. A well-fitted feature set enhances model 

accuracy, ensures faster computation, and reduces the risk 

of overfitting. In the case of banana leaf diseases, where 

early and accurate detection can mean the difference 

between a thriving crop and a devastated one, the 

importance of best fit cannot be overstated. 

 

The BAT Optimization Algorithm, when integrated 

with KNN, serves precisely this purpose. The echolocation 

behavior of BATs, which the algorithm mimics, is inherently 

a search for the best fit. BATs adjust their frequencies to 
navigate and hunt, constantly seeking the optimal frequency 

that will lead them to their prey. Drawing a parallel, the BAT 

Optimization Algorithm adjusts the ‘frequency’ (or feature 

set, in this context) to find the best possible representation 

of the data. Loudness and pulse rate in the BAT Algorithm 

play pivotal roles in this search. Loudness, which decreases 

over iterations, represents the willingness of a BAT (or 

solution) to update its position (feature subset). With higher 

loudness, BATs are initially more explorative, seeking 

solutions far and wide. As the algorithm progresses and 

loudness diminishes, BATs become more exploitative, fine-
tuning around the best solutions found. 

 

 
Fig. 3 Mind map diagram for KNN with BAT optimization algorithms 
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The pulse rate, on the other hand, measures the 

frequency with which BATs emit their echolocation pulses. 

A higher pulse rate means the BATs are more likely to 

explore the vicinity of the current best solution 

(GlobalBest). As the BAT Algorithm converges, the pulse 
rate typically increases, signaling a shift from broad 

exploration to focused exploitation. Incorporating these 

adaptive loudness and pulse rate mechanisms into the 

feature selection process ensures that the KNN model is fed 

with the best-fit features. The iterative nature of the BAT 

Algorithm, guided by these parameters, hones in on an 

optimal feature subset that captures the essence of banana 

leaf disease patterns. Combining KNN with BAT 

Optimization, guided by the principles of best fit, loudness, 

and pulse rate, offers a promising approach to banana leaf 

disease detection. By continually seeking the optimal 

feature representation, this hybrid model ensures that 
predictions are accurate and timely, safeguarding the health 

of banana crops worldwide. 

 

4. Results and Discussion 
In agricultural informatics, diagnosing and timely 

detecting diseases affecting staple crops like bananas have 

profound implications. The marriage of traditional farm 

knowledge with modern computational techniques has 

opened avenues for more accurate, efficient, and timely 

disease detection. Central to this paradigm shift has been the 

application of powerful programming languages, libraries, 

and frameworks that facilitate data processing, analysis, and 

machine learning. Among these, Python has emerged as a 
frontrunner, owing to its versatility, ease of use, and the vast 

ecosystem of specialized libraries it supports.  

 

In the endeavor to detect banana leaf diseases, this 

research harnesses the power of Python, augmented by its 

potent libraries: Matplotlib and Scikit-learn. Matplotlib, a 

comprehensive library for creating static, animated, and 

interactive visualizations, aids in visual data exploration, 

ensuring that the nuances of banana leaf images and their 

corresponding diseases are represented. This visual 

introspection is crucial, not just for data understanding but 
also for validating and interpreting the results post-analysis. 

On the other hand, Scikit-learn, a robust machine-learning 

library, forms the backbone of the disease classification 

process.  

 

With its data mining and analysis tools suite, Scikit-
learn facilitates the training, testing, and validation of 

models that predict banana leaf diseases based on extracted 

features. Its intuitive interface and efficient tools for model 

selection, pre-processing, and evaluation make it an 

invaluable asset in this research. 

 

The ensuing sections delve into the detailed results and 

implementation nuances of banana leaf disease detection 

using this Python-based framework. Through a combination 

of visual representations and quantitative metrics, the 

research elucidates the effectiveness of the proposed 

methodologies, shedding light on their potential and areas 
of improvement. 

 

5. Data Set 
The Original Set directory comprises a total of 937 

images, spanning four distinct classes that represent 

different conditions of banana leaves [23]. 

Breaking down the dataset: 

 The cordana class, indicative of the Cordana leaf spot 

disease, contains 162 images. 

 The healthy category, representing leaves devoid of any 

disease symptoms, consists of 129 images. 

 Images portraying the effects of the Pestalotiopsis 

disease are grouped under the Pestalotiopsis class, 

which has a count of 173. 

 The largest subset belongs to the Sigatoka class, 

representing the Sigatoka disease, boasting 473 images. 
 

This diverse collection, encompassing healthy and 

diseased states, provides a comprehensive overview of the 

various conditions banana leaves can exhibit.  

Such a rich dataset is instrumental in training robust 

machine-learning models capable of accurately identifying 

and differentiating between these conditions. 

 

 
Fig. 4 Detailed description of each disease based on the displayed images 

 

5.1. After Applying Feature Extraction Techniques 

Banana Leaf Feature Extraction and Optimization 

Technique (BL-FEOT) Algorithm 

The sample image from the cordana class showcases 

elongated, dark brown to black lesions on the leaf, often 

surrounded by a faint yellow halo. Cordana leaf spot, 

attributed to the fungus Cordana musae, is marked by these 

distinctive lesions. As the disease progresses, these patches 

might merge, leading to an extensive loss of the leaf area. 

The presence of these spots and their distinct coloration 
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make them distinguishable from other diseases. After 

Applying Feature Extraction Techniques Banana Leaf 

Feature Extraction and Optimization Technique (BL-

FEOT) Algorithm. 

 

 
Fig. 5 Original cordana banana leaf  disease 

 

Upon examining the provided image of a banana leaf, 

it is evident that it possesses varied textures, hues, and 

patterns, some of which indicate its health status. The 

primary task is to distil these visual cues into a quantitative 

format that can be processed and classified. 

 
Fig. 6, 7, 8, and 9 After applying BL-FEOT, a defective area was 

identified, and its features were identified 

5.2. Feature Extraction Using KNN with BAT 

Optimization Algorithm 

The K-Nearest Neighbors (KNN) algorithm, 

traditionally known for its prowess in classification tasks, 

gauges the ‘distance’ between data points in a feature 

space. In the banana leaf image context, these data points 
would represent certain attributes or ‘features’ extracted 

from the leaf be it color intensities, textures, patterns, or 

anomalies. When a new data point (or a new leaf image) is 

introduced, KNN classifies it based on its proximity to 

existing data points.  

 

However, the crux of the challenge lies in determining 

which features to extract and consider. This is where the 

BAT Optimization Algorithm plays a pivotal role. Inspired 

by the echolocation behavior of BATs, this algorithm is 

adept at navigating vast search spaces to pinpoint optimal 

solutions. In the realm of banana leaf disease detection, it 
scours through the myriad of possible features, optimizing 

and selecting those that are most indicative of the leaf’s 

health status. 

 

For instance, in the provided leaf image, the BAT 

Algorithm might prioritize features that capture the 

discolorations or spots, recognizing them as potential 

symptoms of diseases like Sigatoka or Cordana. It could 

also optimize features that highlight textural variations 

indicative of fungal infections or pest-induced damage. 

Once these features are extracted and optimized, the KNN 
algorithm can then classify the leaf based on its ‘similarity’ 

to known disease patterns.  

In essence, the fusion of KNN with the BAT 

Optimization Algorithm [23] provides a comprehensive 
solution to banana leaf disease detection. While KNN 

ensures robust classification, the BAT Algorithm ensures 

that this classification is based on the most relevant and 

informative features. Such a holistic approach enhances 

the accuracy of disease detection and ensures that early 

symptoms are not overlooked, paving the way for timely 

interventions and healthier crops. 

 

Table 1. After processing the feature extraction of 10 records of sample data 

Mean_ 

Red 

Mean_ 

Green 

Mean_ 

Blue 

Red_ 

Percentage 

Green_ 

Percentage 

Blue_ 

Percentage 

Brown_ 

Percentage 

Yellow_ 

Percentage 
Target 

142.68 141.56 102.96 0.73 0.71 0.45 0.00 0.75 Cordaan 

139.11 138.21 104.61 0.64 0.68 0.30 0.00 0.87 Cordaan 

150.73 159.76 84.96 0.91 0.96 0.06 0.00 0.99 Pestalotiopsis 

84.33 146.85 28.83 0.06 0.85 0.00 0.00 0.19 Pestalotiopsis 

153.53 149.19 142.02 0.76 0.77 0.73 0.00 0.90 Sigatoka 

149.17 146.20 136.31 0.78 0.78 0.63 0.00 0.97 Sigatoka 

154.62 156.93 52.00 0.99 0.95 0.00 0.00 0.99 Sigatoka 

149.32 135.49 119.71 0.66 0.51 0.37 0.00 0.89 Sigatoka 

138.95 134.74 127.50 0.46 0.43 0.39 0.00 0.72 sigatoka 
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Fig. 10 A few observations of the pair plot 

 

1. Strong Positive Correlations 

 Mean_Red has a strong positive correlation with 

Red_Percentage. 

 Mean_Green has a strong positive correlation 

with Green_Percentage. 

 Mean_Blue has a strong positive correlation with 

Blue_Percentage. 

 Brown_Percentage and Yellow_Percentage also 
show some correlation. 

 

 
Fig. 11 The heatmap of correlations provides insights into the linear 

relationships between the variables. 

 

2. Negative Correlations 

 Mean_Red has a negative correlation with 

Blue_Percentage and Brown_Percentage. 

 Mean_Green is negatively correlated with 

Blue_Percentage. 

3. Near Zero Correlations 

 Several pairs of variables have correlations close 
to zero, indicating little to no linear relationship 

between those pairs. 

 
Fig. 12 The boxplots provide insights into the distributions of each feature across different target categories 
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1. Variability Across Targets 

 Features like Mean_Red, Mean_Green, and 

Mean_Blue show distinct median values across 

different target categories, suggesting that these 

features may help differentiate between the 

categories. 

 Red_Percentage, Green_Percentage, and 

Blue_Percentage also exhibit variations in their 

distributions across the target categories. 

2. Outliers 

 Several features show potential outliers, especially 

in certain target categories. For example, 

Mean_Red and Mean_Green seem to have outliers 

for some target categories. 

3. Distribution Spread 

 Some features show a widespread (e.g., 

Mean_Blue), while others have a more compact 
distribution across target categories. 

 
 

 
Fig. 13 the 2D visualization using Principal Component Analysis 

PCA) provides the following insights 

 

1. Separation of Categories: Data points from different 

target categories form distinct clusters in the 2D space. 

This suggests a good amount of separability in the data, 

and the features have relevant information that can be 

used to distinguish between the target categories. 

2. Data Distribution: The spread of the data points in the 

reduced dimensionality space shows how closely or 

widely scattered the data points are within each 

category. 
3. Overlap: While there is a clear separation between most 

categories, there is some overlap between a few. This 

suggests that while PCA captures a good amount of 

variance, there might still be some features or 

interactions between features that could provide 

additional discriminative power. 

 

The uploaded image depicts a confusion matrix, a 

commonly used visualization in the field of machine 

learning and data analytics. However, without being able to 

read the specific values or labels within the matrix directly, 

it is challenging to provide a detailed description. A 
confusion matrix is a table used to describe the performance 

of a classification model on a set of data for which the true 

values are known. 

 
Fig. 14 Confusion matrix for banana leaf diseases after applying on 

KNN with BAT optimization algorithm 

 

It typically comprises four main components: True 

Positives (TP), False Positives (FP), True Negatives (TN), 

and False Negatives (FN). These metrics allow researchers 

to calculate other crucial performance metrics, such as 
accuracy, precision, recall, and F1-score. If one can provide 

more context or a brief description of the contents or labels 

in the matrix, it could offer a more detailed and tailored 

description. 

 

5.3. Performance Evaluation of Classification Models: 

KNN+BAT, KNN, and SVM 
Table 2. Algorithm performance metrics compared with novel 

algorithm 

Performance 

Metrics 
KNN+BAT KNN SVM 

Accuracy 0.95 0.89 0.92 

Precision 0.94 0.87 0.9 

Recall 0.945 0.878 0.89 

F1 Score 0.948 0.888 0.91 

 

In this comparative analysis, we evaluate the 

performance of three classification models: KNN 

augmented with BAT (KNN+BAT), the standard KNN 

algorithm, and the Support Vector Machine (SVM) based on 

four critical metrics: Accuracy, Precision, Recall, and F1 

Score.  

Accuracy: It measures the ratio of correctly predicted 

instances to the total instances. Higher accuracy means the 

model’s predictions largely align with the actual values. 

KNN+BAT leads the pack with an accuracy of 0.95, 

indicating that it correctly classified 95% of the instances. 
SVM [24] follows closely with an accuracy of 0.92.c.The 

standard KNN lags slightly behind with an accuracy of 0.89. 

Precision: This metric evaluates the number of 

correctly predicted positive observations out of the total 
predicted positives. Higher precision indicates that false 

positives are fewer. KNN+BAT again outperforms with a 

precision of 0.94.SVM has a precision of 0.9.KNN achieves 

a precision of 0.87.  

Recall (Sensitivity): Recall assesses the number of 

correctly predicted positive observations out of the actual 

positives. A high recall indicates that the model captures 
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most of the positive instances.KNN+BAT and KNN are 

closely matched, with recalls of 0.945 and 0.878, 

respectively. SVM secures a recall of 0.89, placing it in the 

middle of the pack. 

F1 Score: The F1 Score is the harmonic mean of 

precision and recall. It balances the two metrics, especially 

when the data has uneven class distribution.KNN+BAT 

achieves the highest F1 score of 0.948.SVM and KNN 

follow with scores of 0.91 and 0.888, respectively. 

6. Conclusion 
In the realm of banana leaf disease detection, accurate 

classification is of paramount importance to ensure timely 

and appropriate intervention. Among the evaluated 

classification models tailored for this purpose, the KNN 

augmented with BAT optimization (KNN+BAT) exhibited 

standout performance. Boasting an accuracy of 0.95, 

KNN+BAT surpassed both the standard KNN, which 

achieved an accuracy of 0.89, and the SVM model, with an 

accuracy of 0.92. This notable lead in accuracy, 6% 

improvement over the standard KNN and 3% over SVM, 

emphasizes the transformative impact of BAT optimization 
when applied to the feature extraction dataset of banana leaf 

images.  

The evident enhancements in KNN+BAT’s 

performance suggest that the BAT optimization effectively 
refines the feature space, enabling the model to identify and 

categorize various banana leaf diseases accurately. For 

stakeholders in the agricultural and research sectors, these 

findings underscore the critical role of BAT optimization, 

especially in the context of feature extraction for banana leaf 

disease detection. 
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