
SSRG International Journal of Electronics and Communication Engineering                                              Volume 11 Issue 6, 74-87, June 2024 

ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V11I6P107                                                   © 2024 Seventh Sense Research Group®        

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Original Article 

Stacked Optimized Ensemble Machine Learning Model 

for Predicting Stock Trends through Candlestick Chart 

Analysis with Feature Engineering Approach 

R. Sumathi1, S. Ashokkumar2 

1,2Department of Computer Science and Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and 

Technical Sciences (Deemed to be University), Chennai, India. 

1Corresponding Author : r.sumathi.sap@gmail.com  

 
Received: 13 April 2024                  Revised: 24 May 2024              Accepted: 09 June 2024            Published: 29 June 2024 

 

Abstract - The process of predicting stock trends through the analysis of Candlestick Charts (CCs) involves interpreting the 

patterns formed by these candlesticks to make informed predictions about future price movements. Utilizing Machine Learning 

(ML) for Stock Trend Prediction (STP) through CC analysis is common in algorithmic trading. CCs provide crucial information 

about the high, open, closed, and low prices within a specific time rate. However, stacked ensemble methods are employed to 

enhance reliability and stability, which combine the predictions of multiple models. Motivated by this objective, this work 

introduces the Stacked Optimized Ensemble ML Techniques with a Feature Engineering Approach for STP, referred to as 

SOEMLT-FEA. In the training phase, various models, including Random Forests (RF), SVM (Support Vector Machine), 

XGBoost, Decision Tree (DT), Adaboost, and ANN (Artificial Neural Network), are trained and optimized using the Chiroptera 

Algorithm (CA) to fine-tune their parameters. The optimized classifiers are then ranked, and the top three models are selected 

as the base classifiers for a stacking ensemble method. The efficacy of the developed feature engineering approach is confirmed 

by the experiential outcomes obtained (2000 and 2017) in China’s stock market. This approach demonstrates promising 

economic returns for individual portfolios and stocks, achieving a prediction accuracy exceeding 90% for specific trend patterns. 

Keywords - Stock trends, Candlestick chart, Future price movements, Stacked ensemble machine learning methods, Feature 

engineering scheme, Chiroptera algorithm. 

1. Introduction 
The efficacy of STP techniques is crucial in attracting 

more individuals to the market and enhancing overall market 

confidence. Fundamental examination and methodological 

analysis are the two principal approaches utilized for 

predicting stock price activities and informing investment 

choices [1]. Within the stock market, sellers and buyers 

convene to execute transactions to maximize their ROI 

(Return on Investment).  

 

The fundamental economic principles of demand and 

supply drive fluctuations in stock prices. Predicting trends in 

the Stock Market (SM) is challenging due to its non-linear 

characteristics, which are impacted by various factors, 

including company-specific news, global economic 

conditions, company profiles, and public sentiment. Over the 

years, predicting SM trends has enticed many data scientists, 

given the need to navigate the extensive data produced by the 

market and undertake both fundamental and technical 

analyses. The efficacy of Deep Learning (DL) and ML 

techniques has been demonstrated in this context. 

Fundamental analysis thoroughly examines a company’s 

financial data, encompassing elements such as the EBITA 

(Earnings Before Taxes, Amortization) sheet, interest, and 

quarterly stock results [2]. Conversely, technical analysis is a 

more frequent process, conducted daily, and involves the 

scrutiny of Candlestick Patterns (CPs) and the observation of 

moving averages and other indicators.  

 

Research has revealed a strong correlation between the 

upcoming trend in the generation of CPs and the SM. 

Fundamental analysis involves a comprehensive review of an 

organization’s economic data to define its true value and 

predict future stock values.  

 

Consequently, most investors regard fundamental 

analysis as particularly well-suited for long-term predictions. 

Conversely, procedural analysis operates on the premise that 

historical patterns tend to repeat themselves, seeking to 

forecast future stock price movements by scrutinizing past 

trends in stock prices [3].

http://www.internationaljournalssrg.org/
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Fig. 1 Candlestick chart (Bullish/Bearish) 

 

An essential technical analysis element involves 

examining CC patterns [4], commonly known as “candlestick 

charting.” Figure 1 depicts numerous CC patterns recognized 

as signals for bearish/bullish continuations and reversals. 

According to historical records, the candlestick charting 

method is believed to have emerged sometime after 1850 [5]. 

Despite its popularity and longstanding history, studies 

employing the candlestick charting technique yield varied 

results. Research on the predictability of candlesticks yields 

conflicting findings, with negative conclusions reported [6].  

 

In contrast, positive results emerge for various CC 

patterns through research on the U.S., Asian SMs, and 

European markets [7-10]. The revisions [9] employ 

descriptions that include a series of dissimilarities with diverse 

constraints to stipulate CPs, contributing to the ongoing 

controversy surrounding numerical definitions of these 

patterns. Additionally, chart patterns do not strictly adhere to 

time series, as stock price fluctuations persist at regular 

intervals spanning several days, influenced by declarations of 

significant political news, economic indicators, and other 

factors [10]. In these intervals, candlesticks are frequently 

recorded as short-body candlesticks that overlap, forming a 

sequence of turbulent candlestick patterns.  

 

A preceding study [10] explores a chart retrieval 

framework incorporating various parameters to characterize 

CPs. This model utilizes the dynamic programming technique 

called nLCSm, a numerical adaptation of the LCS (Longest 

Common Substring) system. Despite the prior investigation 

successfully predicting future stock trends, it needs more 

transparency, attributable to the comprehensive management 

of all necessary processes, including the treatment of noisy 

candlesticks through the dynamic programming method.  

1.1. Research Objectives 

This paper presents a systematic methodology that 

utilizes a blending technique for CCs [11]. The research makes 

significant contributions in the following ways: 

• This study enhances the scope of SM predicting by 

integrating traditional candlestick charting with cutting-

edge ML methods. 

• This work devised a straightforward eight-trigram 

classification system based on the eight-trigram scheme. 

Furthermore, a comparative analysis of diverse categories 

of technical indicators concerning their contribution to 

short-term stock prediction is conducted. This 

examination aims to elucidate the role played by these 

indicators when incorporated into ML models. 

• The proposition involves the introduction of the 

SOEMLT-FEA method selection framework, 

accompanied by a novel feature engineering approach. 

This framework enables the automatic selection of 

suitable ML prediction methods corresponding to 

different candlestick charting patterns. 

• A predictive framework has been developed to construct 

an investment strategy. Empirical results demonstrate the 

effectiveness of this strategy in generating favourable 

economic yields for both distinct portfolios and stocks. 

The following parts of this document are organized in the 

following manner: Section 2 elucidates the relevant literature, 

while Section 3 delineates the design of an ensemble 

prediction framework utilizing ML techniques. Section 4 

showcases empirical findings obtained from stock data, 

incorporating comprehensive validation procedures. Lastly, 

Section 5 presents the concluding remarks of this paper. 

2. Related Works 
This section presents an analysis of current models based 

on the application of the proposed research. Cagliero et al. [12] 

introduced an approach suggesting the separation of ML and 

pattern recognition processes. This configuration enabled the 

trading system to produce a more detailed set of thoroughly 

validated trading recommendations. The proposal involved 

the selective filtration of ML-based trading suggestions, 

identifying those considered potentially unreliable based on 

recognized graphical patterns.  

The approach explored diverse methods to integrate 

pattern recognition strategies with a range of ML models, 

encompassing both deep and shallow supervised models and 

autoregressive methods. By conducting experiments across 

various market exchanges and under diverse conditions, this 

approach’s efficacy was illustrated concerning the trading 

system’s return on investment and maximum drawdown. The 

drawback of ML-based STP models, whether shallow or deep, 

lies in their challenge to efficiently capture the dynamic and 

complex nature of economic markets, leading to limited 

adaptability and accuracy.  
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Liang et al. [13] introduced a predictive model for 

forecasting multivariate financial time series related to stocks. 

The model incorporated sequence similarity and sequential 

pattern mining to enhance the precision of STPs. The model 

improved upon traditional sequential pattern mining methods 

by integrating K-line pattern mining into multivariate time 

series information. The improvement in the candlestick 

charting method was based on the morphological features of 

the K-line, which have been validated by empirical data 

analysis. The goal was to overcome the limitations associated 

with outdated forecasting models for individual stocks. The 

introduced sequence similarity aligned with the financial 

market’s volatility, considering various influencing factors, 

and effectively-identified analogous volatility patterns. 

However, it was worth noting that K-line pattern mining in 

STP may be susceptible to overfitting and may have limited 

adaptability to changing market conditions. 

Ananthi and Vijayakumar [14] forecasted the stock price 

based on datasets gathered from diverse sources about specific 

equity, predicting the overall sentiment of the stock. The 

forecasting of stock prices encompassed regression analysis 

and the identification of CPs. The system produced signals on 

the candlestick graph, facilitating the anticipation of market 

movements with commendable accuracy. This enabled users 

to evaluate whether to categorize a stock as a ‘Buy/Sell’ and 

make well-informed decisions regarding shorting or opting for 

a long position through delivery. The accuracy of stock 

exchange predictions has been analyzed and enhanced to 85% 

by applying ML algorithms. The drawback of candlestick 

regression in STP was its vulnerability to noise and the 

challenge of accurately capturing the intricate market 

dynamics, affecting the model’s reliability for trend 

prediction. 

Liu et al. [15] integrated DL and RL (reinforcement 

learning) to propose a multifaceted data fusion framework 

referred to as Deep Reinforcement Learning (MSF-DRL). The 

framework mentioned encompasses technical metrics, stock 

data, and CCs, with technical pointers used to decrease the 

influence of noise on stock information. On the MSF basis, 

trading strategies were developed by extracting temporal 

features from technical indicators and stock data using an 

LSTM network. Additionally, a sequence of applying a CNN 

followed by a bidirectional LSTM was used to excerpt 

features from the CC. The RL module then utilized these 

combined features to make trading decisions. Reasonable 

trials on datasets consisting of Chinese stocks and selected 

stocks from the S and P 500 index were conducted to 

demonstrate the efficiency of the MSF-DRL method. This 

approach demonstrated superior profitability and a higher 

Sharpe ratio than alternative trading strategies. Mahmoodi et 

al. [16] designed to improve the precision of predicting SM 

trading signals by employing an appropriate structural 

framework. Two models for technical adaptation analysis 

were utilized for this purpose. In conjunction with PSO, SVM 

was employed, where PSO served as a rapid and precise 

classification method to explore the problematic space. 

Subsequently, the obtained results were combined with the 

routine of two algorithms, precisely the NN and the CS 

(Cuckoo Search) system. The findings indicated that all the 

models exhibited reliability within six days. Notably, SVM-

PSO outperformed the baseline research, obtaining a hit rate 

of 77.5%, while the hit rates for NN and SVM-CS are 71.2% 

and 71.4%.  

The study focused on 2013–2021, suggesting that more 

optimal results might be achievable with extended periods. 

The SVM-PSO method demonstrated better performance than 

SVM-CS and even outperformed the commonly recognized 

feed-forward static NN algorithm, considered the field 

benchmark. The study introduced two separate methods for 

generating input data for the model: signal-based and raw-

based approaches. It is important to note that unforeseen 

events were not considered despite using historical data. The 

accuracy of the predictions was assessed by calculating the hit 

rate, i.e., the percentage of correct predictions over 16 days. 

However, the combination of SVM and PSO for STP has a 

drawback regarding potential overfitting and limited 

robustness, particularly when adapting to financial markets’ 

dynamic and non-linear nature. 

Shah et al. [17] proposed a framework leveraging an 

integration of LSTM and CNN for predicting the concluding 

price of the Nifty 50 SM index. The framework was structured 

to extract features from various data types, encompassing raw 

cost data from foreign indexes, commodities, and exchange 

rates of currency, technical indicators, and the target index. 

These features were selected based on similarities and 

recognized trade setups within the industry. For time series 

modelling, the framework utilized a look-back period of 20 

trading days to predict the movement of the following day.  

Impressively, the model effectively captured information 

from these features and achieved a MAPE (Mean Absolute 

Percentage Error) of 2.54% when predicting the target 

variable, the closing price, over a 10-year data span. The 

framework exhibited a significant return enhancement when 

contrasted with the conventional buy-and-hold method. 

Jearanaitanakij and Passaya [18] proposed architecture for 

predicting short-term stock trends by combining a CNN with 

CPs. They conducted experiments using a dataset of CP 

images collected from different stocks in the SET (Stock 

Exchange of Thailand). Each image in the dataset consists of 

six to twelve consecutive candlesticks. By leveraging CNN 

and CPs, the architecture aimed to provide accurate 

predictions of short-term stock trends based on the patterns 

observed in the CCs. The investigational results demonstrated 

that the method accurately predicted short-term trends for 

most stocks. Furthermore, the architecture surpassed the 

renowned ResNet-18 in terms of both training time and 

accuracy. The limitation of using CNNs for STP lies in their 



R. Sumathi & S. Ashokkumar / IJECE, 11(6), 74-87, 2024 

 

77 

restricted capability to capture the temporal needs and 

sequential patterns inherent in financial time series data. Lin 

et al. [20] employed DL methods for analyzing stock 

information precisely to forecast the track of ultimate prices. 

 

The presented basis provided a suitable ML prediction 

technique for each pattern based on the accomplished 

outcomes. The speculation approach was formulated 

employing ensemble ML methods. Empirical results covering 

the period (from 2000 to 2017) in China’s SM validated that 

their feature engineering exhibited active predictive 

capability.  

The model attained a prediction accuracy of over 60% for 

STP. The drawback of DL methods for STP was their 

susceptibility to limited interpretability and overfitting, 

hindering the model’s ability to generalize effectively in 

dynamic and complex financial markets. 

2.1. Research Gap 

Examining STP through ML uncovers notable 

shortcomings, encompassing challenges in comprehending 

the intricate and dynamic nature of financial markets, 

vulnerability to overfitting, and struggles in accommodating 

evolving conditions. Concerns such as data quality, 

interpretability, and reliance on feature engineering further 

constrain the efficacy of individual models. Nevertheless, the 

survey underscores the merits of stacked ensemble ML 

methods in this domain.  

Through the amalgamation of diverse models, stacked 

ensembles offer enhanced predictive performance, improved 

generalization to new data, and greater adaptability to intricate 

patterns. This approach mitigates risks associated with 

depending solely on single algorithms, providing a more 

dependable and robust framework for STP. Thus, it addresses 

some limitations observed in standalone ML models. 

3. Proposed Methodology 
This study expands the horizons of SM prediction by 

combining traditional candlestick charting with advanced ML 

approaches. The research introduces a straightforward eight-

trigram classification system based on an eight-trigram 

scheme, providing a systematic approach to categorizing CPs. 

Furthermore, the study conducts a comparative analysis of 

various technical indicators to understand their roles in short-

term stock prediction when integrated with ML models. The 

novel introduction of the SOEMLT-FEA method selection 

framework and an innovative feature engineering scheme 

allows for the automatic selection of appropriate ML 

prediction methods corresponding to different candlestick 

charting patterns. The developed predictive framework for 

constructing an investment strategy demonstrates empirical 

effectiveness, showcasing favourable economic revenues for 

individual portfolios and stocks. This research advances SM 

prediction methodologies by leveraging the synergy between 

traditional charting and state-of-the-art ML approaches, 

offering a comprehensive and efficient prediction system, as 

shown in Figure 2. 

3.1. Dataset Description and FEA 

Initially, 13 types of one-day patterns are formulated and 

categorized from a dataset comprising 3,455 stocks in this 

study. Subsequently, eight-trigram information and technical 

indicators corresponding to each pattern are computed. 

Subsequently, these feature data are fed into the ensemble ML 

model, which evaluates the prediction accurateness for each 

pattern. The SOEMLT method with the maximum prediction 

accuracy for each pattern is duly acknowledged.  

Ultimately, the adaptive recommendation plan prescribes 

specific SP activities based on the assessed outcomes [19]. 

The foundation of the prediction framework relies on a simple 

8-trigram structure to illustrate daily stock price actions 

depending on 2-day CPs. The CC, known as the K-line, is 

constructed using high, close, low, and open values, with the 

segment between close and open designated as the real body. 

In the Chinese Stock Market (SM), the frame will burst with 

red if the strength exceeds its opening.  

Conversely, in European and American SMs, it is 

signified in green or white. On the other hand, if the closing 

price is lower than the opening’s worth, the frame is green in 

the Chinese SM and filled with red or black in European and 

American SMs. The CPs are categorized into 13 classes based 

on fundamental elements: opening, closing, low, and high 

prices. Compared to the closing value of the preceding day, 

the day’s opening position indicates sentiment accumulation 

during non-trading periods. The inter-day charge measure is 

then categorized into eight segments based on the comparative 

location of yesterday’s K-line patterns and today’s price 

range. Additionally, trading volume, a parameter often 

overlooked in academia, is considered a crucial inconstant 

autonomous of price [19]. 

3.2. Prediction Model using SOEMLT 

Motivated by the objective of enhancing STP, this study 

introduces the Stacked Optimized Ensemble ML Techniques 

with Feature Engineering Scheme, abbreviated as SOEMLT-

FEA. In the training phase, diverse models such as RF, SVM, 

XGBoost, ANN, Adaboost, and DT are employed and 

optimized using the CA for parameter fine-tuning.  

 

Stacking these optimized models in an ensemble 

framework aims to capitalize on their strengths and 

collectively improve predictive performance. This approach 

showcases a comprehensive strategy, combining various ML 

techniques with an FEA to enhance the robustness and 

accuracy of STP. The hyperparameters of these classifiers are 

designed using CA. 
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Fig. 2 Structure of proposed SOEMLT-FEA-based stocks trend prediction model 

Random Forest 

RF is a supervised ML algorithm that utilizes DTs as the 

foundational building blocks in its ensemble structure [20]. 

The algorithm operates on the principle of majority voting, 

wherein each DT independently forecasts the class for an 

opinion, and the period with the maximum number of ballots 

is assigned as the final confidential label.  

 

To mitigate the data sensitivity and instability inherent in 

individual DTs, RF addresses these challenges by training 

every tree on the random samples with replacements, a 

procedure identified as bagging. One notable distinction 

between DT and RF lies in feature randomness. While a 

decision tree treats all the features while building its 

hierarchical architecture, each tree within the RF was trained 

on the subsets of randomly selected attributes.  

 

This approach adds an element of diversity to the 

ensemble, contributing to the algorithm’s robustness. The 

workflow of the RF procedure is outlined in Table 1. 

Table 1. Random forest construction algorithm 

1. 
Employ a random selection process to extract 

stock models of size k from the unique data set D. 

2. 
Iteratively construct a specific tree for each 

extracted stock data. 

3. 
Produce an output utilizing each independently 

formed tree. 

4. 

Tally the frequency of every class label and 

designate the one with the maximum count as the 

ultimate classification. 

Hyperparameter Tuning 

Refine hyperparameters, including but not limited to the 

minimum samples per leaf, tree depth, and the number of 

trees, to enhance the model’s overall performance. 

Support Vector Machine 

Originally familiarized as a binary classifier, the SVM 

adeptly segregates information into two modules by 

discerning an optimum hyperplane that exploits the margin 

between Support Vectors (SV) [21]. The hyperplane serves as 
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the decision boundary, distinguishing between different 

classes. The determination of the optimal hyperplane involves 

solving a quadratic optimization delinquent, expressed as 

follows: 

 

𝑓(𝑥) = 𝑏𝑖𝑎𝑠 + 𝑤𝑇𝑥        (1) 

In this Equation, 𝑤 signifies the weight vector, 𝑏 denotes 

the 𝑏𝑖𝑎𝑠, and 𝑥 signifies the SVs. SVs play a pivotal role as 

essential data points near the hyperplane, contributing 

significantly to its definition. 

Hyperparameter Tuning 

Optimize the performance of the SVM model by finely 

adjusting hyperparameters, including kernel-specific 

parameters and the regularization parameter (C). 

ANN 

The operation of the human nervous system serves as a 

model for constructing an ANN or an MLP (Multilayer 

Perceptron). An ANN is characterized by layers of consistent 

neurons, which neurons could embody various measured 

functions for information collection and analysis [22]. The 

neural network comprises three distinct layers: input, hidden, 

and output. The input layer describes the input design, while 

the output layer maps the input data to predefined 

classifications. Hidden layers in a neural network are assigned 

weights to enhance network optimization and minimize errors. 

In the context of the planned study, an ANN is configured with 

14 nodes in the input layers and two nodes in the output layers 

to evaluate the SP. The NN has three hidden layers, employing 

a ReLU (Rectified Linear Unit) with an Activation Function 

(AF). 

Hyperparameter Tuning 

Fine-tune hyperparameters, including the count of layers, 

nodes in all layers, and activation functions, to optimize the 

ANN model’s performance. 

XGBoost 

XGBoost, an abbreviation for EML Learning (eXtreme 

Gradient Boosting, is a scalable Ensemble Machine) 

technique specifically designed for speed and high 

performance. It is proficient in solving ranking, classification, 

and regression problems across various datasets. XGBoost 

achieves this by decomposing the objective function 𝑂𝐹(𝛩) 

into two main components: a shared differentiable training 

loss function, denoted as 𝐿𝑜𝑠𝑠(𝛩), applicable to all RTs 

(regression trees), and a distinct regularization term for each 

RT, represented as Ω(Θ):  

 

𝑂𝐹(𝛩)  =  𝐿𝑜𝑠𝑠 (𝛩)  +  𝛺 (𝛩)          (2) 

The selection of an appropriate loss function depends on 

the dataset’s characteristics. However, the regularization term 

in the 𝑂𝐹(𝛩)  is determined by the number of leaves, two Loss 

Functions (LFs), and supplementary constants, as illustrated 

in Equation (3). 

 

𝛺 (𝛩)  =  𝛼 [𝐿𝑜𝑠𝑠1(𝛩)]  +
1

 2
𝜆[𝐿𝑜𝑠𝑠2(𝛩)]  +  𝛾𝑄       (3) 

Where 𝐿1(𝛩) and 𝐿2(𝛩) are LFs, 𝑄 is the sum of leaves, 

and (𝜆, 𝛼, and𝛾) are the XGBoost constants that make the 

model more conventional. Trees are constructed through a 

greedy function, which calculates the gain to facilitate the 

determination of the optimum split conclusion. DTs are 

concurrently built in a multi-level manner in XGBoost, 

ensuring tree attributes are sorted once at each stage. 

Hyperparameter Tuning 

Fine-tune hyperparameters, such as maximum depth, the 

number of boosting rounds, and learning rate, to optimize the 

XGBoost model’s performance. 

Decision Tree 

DT is classified under supervised learning and is suitable 

for regression and classification tasks. Conceptually, a DT is 

depicted as a directed edge and hierarchical structure 

comprising nodes [23]. Within this structure, the classification 

process initiates from the root nodes, where all levels present 

a set of queries. As a dataset record responds to a query, it 

proceeds to the subsequent level for further inquiries. Each 

terminal node in the tree structure represents a specific class 

tag. Despite its simplicity and effectiveness in handling high-

dimensional data, decision trees suffer a significant 

drawback—their susceptibility to instability. A minor change 

in the data can result in a substantial alteration of the whole 

structure. The alternative limitation is the prolonged training 

time required [23]. The construction of a decision tree relies 

on Information Gain (IG) principles and entropy as measures 

for attribute collection. At all levels, the trait with the 

lowermost entropy was nominated for data partitioning. If a 

branch attains zero, it becomes a leaf node; otherwise, the 

branching process continues. The mathematical calculation of 

entropy for dissimilar attributes is detailed in Table 2. 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑝𝑖log2𝑝𝑖  
𝑛
𝑖=1     (4) 

Table 2. Decision tree construction algorithm 

1. Initiate the tree construction with the R (root nodes) 

and the D data set. 

2. In each iteration, calculate entropy to identify the 

optimal idle attribute A. 

3. Utilize the designated A to partition the D into 

subsets of data. 

4. Iterate the process on each subcategory till a point is 

reached with the highest information gain. 

AdaBoost 

AdaBoost is an ensemble technique based on gradient 

boosting that does not necessitate prior information of weak 

learner accuracies. Functioning as a DT algorithm, it generates 
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a forest of stumps characterized as simple trees with a single 

node and two leaves. These bases are identified as weak 

learners with limited regression capabilities. Each base 

provides an individual vote, assigned according to the error of 

diverse vote w. In each step of the AdaBoost algorithm, the 

dataset’s total vote for a feature is designed based on the total 

error, 𝑒𝑟𝑟𝑡 , representing the sum of votes w for imprecise 

samples. The cumulative vote for each stump can be 

considered as follows:  

 

𝑒𝑟𝑟𝑡 = 𝑊1 + 𝑊2 + ⋯ + 𝑊𝑖    (5) 

Where (i) indicates the count of records in the D. 

Consequently, the vote is determined according to the 

subsequent Equation: 

𝜐 =
1

2
log

1−𝑒𝑟𝑟𝑡

𝑒𝑟𝑟𝑡
               (6) 

In the context of AdaBoost, when the total 𝑒𝑟𝑟𝑡 (0 to 1), 

higher votes are assigned to lower 𝑒𝑟𝑟𝑡 and vice versa. When 

𝑒𝑟𝑟𝑡 = 0.5, the present stump displays no enhancement from 

the previous phase, as illustrated in Figure 6. The adapted 

weight, 𝑊𝑡+1, is considered as shown in Equation (7): 

 

𝑊𝑡+1 = 𝑊𝑡 × 𝑒𝑟𝑟𝜐          (7) 

Adjustments to other features are made based on this 

modification by applying the following relation (8) to the 

remaining features in the dataset.  

 

𝑊𝑡+1 =  𝑊𝑡 × 𝑒𝑟𝑟−𝑣           (8) 

The overall sample 𝑊𝑡 undergoes normalization, and the 

adapted 𝑊𝑡 are allocated to each feature for the subsequent 

stump in the ensemble. The weighted Gini index is employed 

to identify the feature that should be split in the next stump, 

considering the largest𝑊𝑡. This process accentuates a feature 

based on a random number(0,1), where the generated number 

determines the dataset feature with the most substantial 

influence on the next stump. The iterative execution of this 

process continues until the predefined stopping measure is 

met. 

Stacking Ensemble Method 

Ensemble learning (EL) is a hybrid ML method that 

leverages predictions from numerous base models to enhance 

overall predictive demonstration [24]. The base model can be 

built using various ML algorithms. An ensemble comprising 

a similar assortment of base learners is referred to as a similar 

EL model; otherwise, it is termed heterogeneous. EL 

encompasses three main measures: stacking, boosting, and 

bagging. Bagging contains the independent training of weak 

learners and produces the forecast average from diverse ML 

models. Boosting, on the other hand, sequentially adds base 

learners and yields the prediction weighted average made by 

these base models. Stacking is an EL where base classifiers 

are trained on the same data set, and an extra classifier, the 

meta-learner, is employed to enhance the overall model 

routine. In this work, Adaboost is utilized by incorporating 

predictions from individual classification models to determine 

the STP, as shown in Table 3. Figure 2 illustrates the stacking 

ensemble based on ML techniques such as RF, SVM, 

XGBoost, ANN, DT, and Adaboost. 

Table 3. Algorithm steps of stacked ensemble ML classifier 

Input: Training dataset 𝐷 =  {𝑋𝑖 , 𝑌𝑖}𝑖=1
𝑚   

where 𝑋𝑖 ∈ set of features and 𝑌𝑖 ∈ class labels  

Output: STP.  

1: Split the 𝐷 into m equal parts such that 𝐷 =
{𝐷1,  𝐷2, 𝐷3. . . 𝐷𝑚}  

2: for b = 1 to B, do  

3: Develop base classifier using dataset D, ensuing steps 4 

to 7.  

4: Compute the weighted sum and include the bias for all 

nodes in the hidden layers using 𝐼𝑛𝑓 𝑜 =  ∑ 𝑥𝑖
𝑛
𝑖 × 𝑊𝑖 +

𝑏𝑖𝑎𝑠.  

5: Compute the values of ∆𝑊 = 𝑊 −  𝜂
 𝜕𝐸

 𝜕𝑊
  and 𝐸 =

1

2
∑ ∑ (𝑇𝑖𝑜 − 𝐴𝑖𝑜)2𝑚

𝑜=1
𝑛
𝑝=1 .  

6: Fine-tune the learning parameters and adjust weights 

iteratively till the lowest 𝑒𝑟𝑟 rate is reached.  

7: At all base classifiers, apply a ReLU: 𝑓 ( 𝐼𝑛𝑓𝑜 )  =
 𝑚𝑎𝑥 (0, 𝐼𝑛𝑓𝑜 ).  
8: end for  

9: Create a training set tailored for XGBoost.  

10: for i = 1 to m do  

11:  𝐷𝐸 = {𝑥 𝑖
′ , 𝑦𝑖}, where 𝑥 𝑖 = {ℎ1(𝑥𝑖), . . . , ℎ𝐵(𝑥𝑖)}  

12: end for  

13: Train an XGBoost using 𝐷𝐸 .  

14: Return predictions𝑦𝑖 = {𝑦1 , 𝑦2, 𝑦3, . . . , 𝑦𝑛} from the 

formed ensemble model. 

3.3. Hyperparameters Tuning of Stacked Ensemble ML 

Classifiers using CA 

Hyperparameters, distinct from model parameters learned 

during training by model algorithms, are adjustable 

parameters that can significantly influence the performance of 

an ML model. Hyperparameter tuning is an external process 

conducted by the data scientist before training. In 

optimization, parameter setting serves as a strategy designed 

to enhance the flexibility and robustness of solvers, but it 

necessitates meticulous initialization [25]. Algorithm 

parameters significantly influence the efficiency of solving 

processes, and determining the optimal parameter setting is 

not straightforward. The ideal values depend on the specific 

problem, the instance being addressed, and the desired search 

time for problem-solving.There exists no universally optimal 

set of parameter values for a given computational intelligence 

algorithm [26]. The approach of online parameter control 

utilizes a bio-inspired problem solver to precisely identify the 

optimal hyperparameter set for stacked ensemble ML 

techniques. This methodology functions as a loop declaration 

that transfers feedback, or accuracy, from the stacked 
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ensemble ML classifiers to the optimizer. The optimizer then 

works to enhance the results obtained. The Chiroptera 

algorithm is built upon three basic rules.  

1. The underlying assumption is that all Chiropteras utilize 

echolocation to determine distances and possess the 

ability to differentiate between prey, background barriers, 

and food sources. 

2. Each Chiroptera, called 𝑐ℎ𝑖𝑟𝑜𝑝𝑡𝑒𝑟𝑎𝑖 , actively searches 

for prey at a specific position𝑥𝑖, initially chosen 

randomly. The Chiropteras adjust their frequency based 

on the proximity of their target, which subsequently 

affects their velocity. To transform their position, 

Chiropteras utilize a frequency 𝑓𝑟𝑒𝑞𝑖 calculated using 

Equation (9), and their velocity 𝑣𝑖  is determined through 

Equation (10). The new position is then determined using 

Equation (11). The Chiroptera procedure can be 

characterized as a frequency-tuning procedure that 

balances exploitation and exploration. Higher (positive) 

velocities correspond to increased exploration, whereas 

lower (positive) velocities correspond to enhanced 

exploitation. 

 

𝑓𝑟𝑒𝑞𝑖 = 𝑓𝑟𝑒𝑞𝑚𝑖𝑛 + (𝑓𝑟𝑒𝑞𝑚𝑎𝑥 − 𝑓𝑟𝑒𝑞𝑚𝑖𝑛)𝛽  (𝛽 ∼  (0, 1))   (9) 

𝑣(𝑖,𝑡+1) = 𝑣(𝑖,𝑡) + (𝑥𝑏𝑒𝑠𝑡 − 𝑥(𝑖,𝑡))𝑓𝑖    (10) 

𝑥(𝑖,𝑡+1) = 𝑥(𝑖,𝑡) + 𝑣(𝑖,𝑡+1)    (11) 

3. In the Chiroptera algorithm, the inconsistency of 

solutions is represented by the loudness 𝐿𝑜𝑢𝑑0 Moreover, 

the rate of pulse release r, which falls within the range of 

(0,1). The 𝐿𝑜𝑢𝑑, determined by Equation (7), can vary in 

various ways. However, it is implicit that the 𝐿𝑜𝑢𝑑 starts 

from a great (positive) value 𝐿𝑜𝑢𝑑0 and gradually 

decreases to a minimum constant value 𝐿𝑜𝑢𝑑𝑚𝑖𝑛. The 

rate of pulse emission, denoted by r and calculated using 

Equation (8), influences the exploration and exploitation 

balance of the algorithm. 

 

𝐿𝑜𝑢𝑑(𝑖,𝑡+1) = 𝛼𝐿𝑜𝑢𝑑0 0 <  𝛼 <  1   (12) 

𝑟(𝑖,𝑡+1) = 𝑟(𝑖,0)(1 −  exp(−𝛾𝑡))𝛾 > 0   (13) 

Table 3 displays the pseudocode for CA. Initially, a 

population of m Chiropteras is set with 𝑥𝑖 and 𝑣𝑖. The location 

of each Chiroptera, represented by 𝑐ℎ𝑖𝑟𝑜𝑝𝑡𝑒𝑟𝑎𝑖 , is a vector 

consisting of a set of weights and biases. This vector is utilized 

for tuning and training the stacked ensemble classifiers, with 

each Chiroptera solution serving as the position𝑐ℎ𝑖𝑟𝑜𝑝𝑡𝑒𝑟𝑎𝑖 . 

The training process involves a single epoch and returns the 

attained loss and accuracy. Subsequently, the frequency 𝑓𝑖 at 

𝑥𝑖 is established, followed by 𝐿𝑜𝑢𝑑 and pulse charges, which 

are determined through uniform distribution (0,1). Finally, the 

OF evaluates the accuracy and loss as fitness. This study 

employs the OF in the following manner. 
 

𝑓𝑖𝑡 → maximize 𝑘 · 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + (1 −  𝑘) · 𝑙𝑜𝑠𝑠  (14) 

In the computational experiments, a constant 𝑘 is used to 

weigh the objectives of accuracy and loss. Specifically, k takes 

on values from the set {0, 10, 20, ..., 100}. This means that the 

OF is evaluated eleven times for each value of k. The fitness 

rate is determined as the best (greatest) value obtained and 

stored in the fitness vector’s ith position, 𝑓𝑖𝑡. The subsequent 

step entails a while loop encompassing a set of movements to 

be iteratively executed 𝑡 times till the T repetitions. In lines 6-

15, the 𝐿𝑜𝑢𝑑 of each Chiroptera is associated with a random 

rate.  
 

Table 4. CA for hyperparameters of stacked ensemble ML classifiers 

Data: 𝑚, 𝑓𝑚𝑖𝑛 , 𝑓𝑚𝑎𝑥 , 𝑡𝑚𝑎𝑥 , 𝛼, 𝛾, and 𝜀.  

Result: 𝑥𝑏𝑒𝑠𝑡 .  

// Initialize the Chiroptera population as hyperparameters of 

stacked ensemble ML classifiers:  

// velocity 𝑣𝑖, 𝐿𝑜𝑢𝑑𝑖, 𝑥𝑖, and 𝑟𝑖.  

1. for 𝑏𝑎𝑡 𝑖, (𝑖 =  {1, . . . , 𝑚} do  

2. 𝑣𝑖 ←  𝑅𝑎𝑛𝑑𝑜𝑚[0, 1], 𝑥𝑖 ←  𝑅𝑎𝑛𝑑𝑜𝑚[0, 1], 𝐴𝑖 ←
𝑅𝑎𝑛𝑑𝑜𝑚[0, 1], 𝑟𝑖 ← 𝑅𝑎𝑛𝑑𝑜𝑚[0, 1];  

3. 𝑓𝑖𝑡𝑖 ←  𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒_ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑥𝑖);  
4. end  

5. global fit ← 

6. hyperparameters of stacked ensemble ML classifiers;  

// Produce 𝑡𝑚𝑎𝑥-generations of m Chiropteras.  

7. while 𝑡 <  𝑡𝑚𝑎𝑥  do  

8. for 𝑐ℎ𝑖𝑟𝑜𝑝𝑡𝑒𝑟𝑎𝑖 , (𝑖 =  {1, . . . , 𝑚}) do 

//     If the 𝐿𝑜𝑢𝑑 of the 𝑖th Chiroptera exceeds that of any 

other Chiroptera.  

9. if 𝐿𝑜𝑢𝑑𝑖 > 𝑅𝑎𝑛𝑑𝑜𝑚[0, 1] then  

10. 𝐿𝑜𝑢𝑑𝑖 ← 𝛼𝐿𝑜𝑢𝑑𝑖 , 𝑟𝑖 ← 𝑟0[1 − 𝑒(−𝛾𝑡)];  
11. end  

12. end  

13. {𝑏𝑒𝑠𝑡 𝑓 𝑖𝑡, 𝑏𝑒𝑠𝑡𝑖𝑛𝑑𝑒𝑥}  ←  𝑒𝑣𝑎𝑙(𝑓𝑖𝑡);  

14. if 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑓𝑖𝑡 𝑖𝑠 𝑏𝑒𝑡𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑡ℎ𝑒 𝑔𝑙𝑜𝑏𝑎𝑙 𝑓𝑖𝑡, then  

15. 𝑔𝑙𝑜𝑏𝑎𝑙 𝑓𝑖𝑡 ←  𝑏𝑒𝑠𝑡 𝑓𝑖𝑡, 𝑥𝑏𝑒𝑠𝑡 ← 𝑥𝑏𝑒𝑠𝑡𝑖𝑛𝑑𝑒𝑥;  

16. end  

17.  for 𝑏𝑎𝑡 𝑖, (𝑖 =  {1, . . . , 𝑚} do  

18. if 𝑟𝑖 > 𝑅𝑎𝑛𝑑𝑜𝑚[0, 1] then  

19. 𝑥𝑖 ← 𝑥𝑖 + 𝜀𝐿𝑜𝑢𝑑̅̅ ̅̅ ̅̅ ̅;  

20. end  

21. if 𝐿𝑜𝑢𝑑𝑖 > 𝑅𝑎𝑛𝑑𝑜𝑚[0, 1] and 𝑓𝑖𝑡𝑖 < 𝑔𝑙𝑜𝑏𝑎𝑙 𝑓𝑖𝑡 

then  

22. 𝛽 ←  𝑅𝑎𝑛𝑑𝑜𝑚[0, 1];  
23. 𝑓𝑖 ← 𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)𝛽, 𝑣𝑖 ← 𝑣𝑖 + (𝑥𝑏𝑒𝑠𝑡 −

𝑥𝑖)𝑓𝑖 , 𝑥𝑖 ← 𝑣𝑖 + 𝑥𝑖  ;  
24. 𝑓𝑖𝑡𝑖 ← 𝑂𝐹(𝑥𝑖);  
25. end  

26. end  

27. end 

28. Return the  
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If the 𝐿𝑜𝑢𝑑 of the ith Chiroptera beats that of any other 

Chiroptera, it undergoes reduction using Equation (6), and the 

ratio of pulse emission is increased using Equation (14). This 

state accommodates the inconsistency of potential resolutions 

during exploitation and exploration. Smaller values for 𝐿𝑜𝑢𝑑 

indicate strengthened results, accompanied by larger values 

for pulse emission rates. 

 

Afterwards, the best fit and index are determined through 

the assessment of the OF. If the best fit is superior to the global 

fit, then the best 𝑓𝑖𝑡 is kept in the global 𝑓𝑖𝑡 variable. 

Subsequently, the loop declaration between lines 17 and 25 

represents the movement of Chiropteras. A result is initially 

nominated from the current best results, and a new result is 

produced through random walks (Equation (15). 

 

𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑙𝑑 + 𝜀𝐿𝑜𝑢𝑑̅̅ ̅̅ ̅̅ ̅   (15) 

In Equation (15), 𝜀 is a random variable that takes on 

values from the set {-1, 0, 1}, and 𝐿𝑜𝑢𝑑̅̅ ̅̅ ̅̅ ̅ represents the average 

𝐿𝑜𝑢𝑑 of all Chiropteras. The Chiropteras control the stride and 

array of their actions, where β introduces variability to the 

occurrences and is arbitrarily generated from a uniform 

distribution (0, 1). Equation (10) defines the velocity of the ith 

Chiroptera at time 𝑡, where 𝑥𝑏𝑒𝑠𝑡  signifies the current global 

best location from the m Chiropteras. Lastly, Equation (14) 

regulates the new position of the ith Chiroptera.  

Toward the end of the algorithm, the Chiropteras are 

ranked to find 𝑥𝑏𝑒𝑠𝑡, which represents the best configuration 

(hyperparameters) for the stacked ensemble classifiers and 

thus produces the superlative classification model. The 

efficiency of the Chiroptera algorithm has been demonstrated 

in various instances of combinative and optimization 

difficulties. The pseudocode is provided in Table 4. This study 

introduces an adaptive prediction framework that utilizes a 

stacked ensemble of ML models to estimate the way of the 

closing price. 

3.4. Final Investment Strategy 

The investment strategy outlined in this paper involves 

two scenarios: long-only and long-short. The approach is 

created based on the DE model mentioned earlier. The steps 

for constructing the asset approach are as given as follows: 

• Check the precise K-line patterns of the up-to-date stocks 

at time t. 

• Select a suitable ML technique from the evaluation model 

to predict the growth or fall of t + 1. 

• If the predicted result aligns with the actual outcome, 

record the profit at t + 1. 

• If the prediction is incorrect, store the negative return at t 

+ 1 as a loss. 

• Repeat the above stages to compute the profits and losses 

at t + 1, t + 2, etc. 

This strategy only makes investments when the predicted 

result indicates an upward movement. 

4. Experimental Results and Discussion 
This study employs daily data from the CSM, spanning 

18 years (2000 to 2017). The dataset encompasses information 

from all 3,455 stocks sourced from CCER, a limited data 

earner in China. The initial preprocessing step excludes daily 

information for a specific stock if the transaction size is 0, 

indicating a trading halt, possibly due to company 

redeployment. The dataset comprises 13 patterns, and their 

distribution is outlined in Table 3, illustrating a consistent 

historical distribution. Subsequently, feature information is 

generated for each stock on each day (t), encompassing the 

intra-day pattern, the date, the closing price for the subsequent 

day, 21 other indicator values, and the inter-day pattern. To 

ensure efficiency, three rounds of training are executed. In 

each round, five thousand rows of everyday stock data for all 

13 intra-day patterns are randomly chosen from the database, 

resulting in 65,000 rows for every iteration. To maintain 

classification equilibrium during training, an equal number of 

instances with rising and falling prices are selected for each 

intra-day pattern. 

This section presents the projected SOEMLT-FEA 

model, evaluated and compared with other commonly used 

methods in STP, including the Ensemble ML method [19], 

SVM-PSO [16], and SVM-CS [16]. The experiment results 

demonstrate that the proposed SOEMLT-FEA model, which 

utilizes a residual network with multidimensional feature 

comparison, outperforms traditional models. Performance 

criteria such as accuracy, sensitivity/recall, f-measure, 

specificity, and precision are used to assess the performance 

of the suggested model.  

True Positives (TPs) represent accurately classified 

positive stock trends, while FNs (False Negatives) indicate 

negatively classified stock trends. True Negatives (TNs) refer 

to correctly predicted negative stock trends, while False 

Positives (FPs) represent instances where negative trends are 

incorrectly classified as positive. The proposed method’s 

qualitative results show a high accuracy level in identifying 

STPs. The convergence rate of the model’s contour is 

improved compared to previous classification approaches. 

Overall, the experimental results highlight the superior 

performance of the SOEMLT-FEA model in STP, surpassing 

traditional methods in terms of effectiveness and accuracy. 

Recall 

Recall measures the number of positive class calculations 

made from all positive instances in the dataset as specified 

below: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (16) 
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Precision 

Precision measures the number of positive class 

calculations that belong to the positive class, and it is projected 

as follows:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (17) 

F-measure 

F-Measure carries a single score that balances both the 

concerns of precision and recall in one number, and it is 

assessed as follows: 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
(2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
  (18) 

Accuracy 

The proportion of successfully segmented data relative to 

the total number of samples is a popular metric for evaluating 

classification performance. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   (19) 

Figure 3 shows the degree to which the suggested 

SOEMLT-FEA agrees with the currently employed models 

for a given pattern in each database. The SOEMLT-FEA 

reduces processing times without any loss of accuracy. The 

SOEMLT-FEA outperforms all other classification models, 

including the Ensemble ML method, SVM-PSO and SVM-

CS, with an accuracy of 98.95% without requiring significant 

patterns during reduction.  

The test findings also show that the SOEMLT-FEA is 

superior to the individual Ensemble ML method, SVM-PSO 

and SVM-CS models. The suggested model shows superior 

feature extraction and outperforms state-of-the-art approaches 

by a wide margin. The numerical accuracy results for 

projected and existing methods are shown in Table 5. 

For a given subset of database properties, Figure 4 shows 

how the proposed SOEMLT-FEA compares to other models, 

such as the Ensemble ML method, SVM-PSO and SVM-CS, 

in terms of accuracy. The precision improves with time as 

measured in epochs. For example, the SOEMLT-FEA has a 

higher accuracy than earlier approaches (97.65%). When 

SPC-CNN and SOEMLT-FEA are combined, they produce 

the most outstanding results regarding loss values and overall 

performance across precision metrics.  

Experiments show that the fusion-based hybrid can 

extract better characteristics for further categorization. The 

model used the CA method for parameter value selection for 

MKELM. To boost the model’s performance and drastically 

cut down on false negatives, the IDBSCAN technique is fed 

into it. The fact that the proposed SOEMLT-FEA technique 

outperforms the standard model demonstrates its importance.  

Table 5. The numerical results of accuracy for projected and existing 

methods 

Number of 

patterns 

SOEMLT-

FEA 

Ensemble ML 

method 

SVM-

PSO 

SVM-

CS 

2 97.5 97 90 89 

4 97.92 97.4 91 90 

6 98.5 97.8 92.5 91 

8 98.76 98 93.5 91.5 

10 98.85 98 94 93 

12 98.95 98.2 94.58 93.54 

 
Fig. 3 Accuracy results in comparison 
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Fig. 4 Precision results comparison 

 

The numerical precision results for projected and existing 

methods are shown in Table 6. The randomness of the 

hyperparameters impacts traditional ML models. By 

providing optimal hyperparameters, the proposed CA 

optimization algorithm expedites the convergence of the 

proposed SOEMLT-FEA model. The recall is shown in Figure 

5 for the proposed SOEMLT-FEA and other current models 

like the Ensemble ML method, SVM-PSO and SVM-CS over 

a range of feature counts.  

Table 6. The numerical results of precision for projected and existing 

methods 

Number of 

patterns 

SOEMLT-

FEA 

Ensemble ML 

method 

SVM-

PSO 

SVM-

CS 

2 95.62 91 90 87 

4 97.56 91.5 90.5 88 

6 98.95 92 91 88.5 

8 98.96 93 91.5 89 

10 98.63 94 92 89.56 

12 97.65 95.6 93.2 90.2 
 

With more patterns, the recall rises For example, the 

SOEMLT-FEA achieves a recall of 98.56 %, higher than any 

prior approaches. According to the findings, the suggested 

SOEMLT-FEA model has superior STP performance 

compared to all other models. The numerical recall of 

precision for projected and existing methods is shown in Table 

7. By applying the SOEMLT-FEA method independently on 

the weight and bias vectors, the proposed SPC-CNN and 

SOEMLT-FEA model is fine-tuned.  

The proposed model has a higher F1 score for the number 

of patterns in the provided databases than the existing 

SOEMLT-FEA, ensemble ML method, SVM-PSO and SVM-

CS models (see Figure 6). The epoch count and the f-measure 

are both tuned at the same time.Compared to other models, the 

SOEMLT-FEA achieves an f-measure of 98.23%. On both the 

accuracy and F1 scales, the SOEMLT-FEA emerged 

victorious. Indeed, the projected model has the competence to 

detect patterns and improve prediction accuracy by combining 

the results of the CA (Cellular Automata) model.  

The proposed methodology offers valuable insights and 

methods to enhance STP by leveraging the CA model’s 

outcomes. The numerical results of the f1-score for projected 

and existing methods are shown in Table 8. 

Table 7. The numerical results of recall for projected and existing 

methods 

Number of 

patterns 

SOEMLT-

FEA 

Ensemble ML 

method 

SVM-

PSO 

SVM- 

CS 

2 95.62 93 87 85 

4 97.56 94.5 87 85.2 

6 98.62 95 88 86 

8 98.47 95.5 88 86 

10 98.24 96.3 89 86.5 

12 98.56 97.3 89.33 87.2 
 

Table 8. The numerical results of the f1-score for projected and existing 

methods 

Number 

of 

patterns 

SOEMLT-

FEA 

Ensemble 

ML 

method 

SVM-

PSO 

SVM-

CS 

2 95.74 94.6 88 84 

4 96.58 95 88.4 84.5 

6 96.12 95.4 88.9 84.9 

8 96.85 95.8 90 85 

10 97.95 96 90.1 85.5 

12 98.23 96.3 90.43 86.7 
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Fig. 5 Recall results comparison 

 
Fig. 6 F1-score results comparison 

By evaluating the China stock dataset, the proposed 

model demonstrates its effectiveness and potential in 

providing valuable perspectives for STP. By incorporating the 

CA model’s results, the proposed methodology introduces a 

novel approach that can contribute to improving the accuracy 

and reliability of STPs. The combination of the CA model and 

the proposed methodology opens new possibilities for 

enhancing STP by leveraging the strengths of both 

approaches. This innovative approach may offer valuable 

insights and methods that can further advance the SM analysis 

and prediction field. 

5. Conclusion 
This work presents an ensemble ML prediction model 

designed to automatically choose appropriate prediction 

methods for daily k-line patterns in SM prediction. The 

practical outcomes validate the effectiveness of this 

framework, with the investment strategy derived from the 

model showcasing superior returns. The contribution of this 

study is multifaceted. Firstly, it merges traditional Candlestick 

charting with cutting-edge AI techniques, adding depth to SM 

prediction research. Through scrutinizing the prediction 
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outcomes of every 13 one-day candlestick patterns using 

diverse ML approaches, the research combines conventional 

technical analysis with artificial intelligence advancements, 

identifying candlestick patterns such as patterns 4 and 5 with 

notable analytical influences on SM. Furthermore, the study 

introduces an 8-trigram classification of two-day k-line 

patterns alongside the volume change features and 13 daily k-

line patterns. This expanded feature set enhances the model’s 

predictive capabilities. Thirdly, the SOEMLT framework uses 

six commonly utilized effective prediction approaches (SVM, 

RF, XGBoost, ANN, DT, Adaboost) and optimizes the 

parameters of each model. The experimental study reveals that 

RF and XGBoost consistently exhibit strong predictive 

abilities for short-term predictions. Finally, based on the 

prediction outcomes, the study formulates an investment 

approach. The experiential results illustrate that this model 

generates favourable economic returns in theory for individual 

portfolios and stocks. This suggests that the prediction results 

prove effective by leveraging big data, undergoing multiple 

training rounds, and implementing feature settings. However, 

it is crucial to acknowledge that actual transaction costs 

significantly influence real-world transactions. This paper 

presents a comprehensive approach combining traditional and 

AI methods, introduces new features, and utilizes ensemble 

ML to enhance SM prediction and develop profitable 

investment strategies. In real-world investment, other factors 

must be measured to achieve excess yields. Future research in 

predicting stock trends through DL could delve into various 

directions to augment the precision and resilience of predictive 

models. The following are potential directions for future 

investigations: Temporal Feature Engineering: Examine 

advanced methodologies for temporal feature engineering, 

considering the distinctive attributes of financial time series 

data. This might entail devising innovative features or 

incorporating external factors influencing stock prices. Hybrid 

Models: Investigate the amalgamation of diverse DL 

architectures or hybrid models. Integrating the capabilities of 

RNNs (Recurrent Neural Networks), CNNs, and transformers 

can enhance the model’s efficacy in capturing both short-term 

and long-term dependencies within stock data. 
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