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Abstract - This investigation delves into the intersection of deep learning and image processing for early detection and 

classification of violence, with a primary focus on differentiating between movie fights (staged or fake) and true violence. 

Leveraging the "Violence and Non-violence Images Dataset," along with the collected movie fight images dataset, the proposed 

methodology involves Training Model3 (Hierarchal combination of Model1 and Model2). The hierarchy enhances performance 

and significantly improves specificity scores, even in a dataset biased toward nonviolence cases. The proposed model achieves 

an impressive accuracy of 98.33%, showcasing its potential for crime detection. 

Keywords - CNN, Domain Transfer Learning (DTL), Domain Data Augmentation (DDA), Deep learning, LSTM. 

1. Introduction  
In current years, the over-provision of digital content and 

the prevalent use of image classification techniques have led 

to remarkable advancements in various domains. One notable 

application is the use of image classification in detecting 

violence, a critical endeavor in enhancing public safety and 

security. Women, in general, have benefited greatly from 

these.[1] However, the accuracy of such systems is not 

without its challenges, as instances of misclassification, 

particularly in the context of movie scenes depicting fights, 

can lead to the generation of false alerts. Movie scenes often 

involve staged fights that may be misclassified as real-life 

violence by image classification algorithms, resulting in 

unnecessary and potentially disruptive notifications. To 

address this issue, researchers have turned to advanced 

methodologies such as hierarchical classification combined 

with a transfer learning approach. This innovative approach 

aims to improve the precision of violence detection systems 

by refining the classification process and minimizing false 

positives, specifically in scenarios where distinguishing 

between staged and real violence is crucial.[2][3] 

 

Hierarchical classification involves organizing classes 

into a hierarchical structure, allowing the model to learn and 

distinguish between different levels of features. In the context 

of movie fights and violence detection, a hierarchical 

classification system enables the algorithm to recognize the 

nuances between staged fights and real violence, leading to 

more accurate and context-aware results [3, 4]. The proposed 

research on the hierarchical classification of movie fights and 

violent images holds significant promise for various 

applications. Firstly, it can enhance the performance of 

surveillance systems by reducing false alerts enabling security 

personnel to focus on genuine threats. Additionally, in the 

realm of content moderation, online platforms can benefit 

from more precise filtering mechanisms, preventing the 

unnecessary removal of content due to misclassifications.[5] 

 

The intersection of image classification and violence 

detection presents both challenges and opportunities. By 

leveraging hierarchical classification with a transfer learning 

approach, We aim to refine the accuracy of detection systems, 

mitigating the misclassification of movie fights and improving 

the overall reliability of violence detection algorithms in 

various applications.[6][7] 

 

2. Literature Review 
In response to the escalating demand for efficient 

monitoring systems in light of increasing violence cases, a 

research paper by Vieira et al. presents a solution employing 

low-cost Convolutional Neural Networks (CNNs) for the 

automatic recognition of suspicious events. The study utilizes 

a curated dataset, combining instances of violent behavior and 

non-violent acts across diverse environments. Notably, 

MobileNet-v2 emerges as the most accurate among the three 

mobile CNN architectures, achieving a high accuracy of 

91.63%. The paper delves into the trade-off between accuracy 

and the total number of parameters, asserting that mobile 

CNNs prove effective even in interfaces with restricted 

processing capability. The research makes a valuable 

contribution to the practical challenges associated with 

deployment costs and processing speed on embedded systems, 
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particularly in real-world applications of deep learning for 

violence recognition.[8] 

 

In a comprehensive review, Host and  Ivašić-Kos explore 

Human Action Recognition (HAR) research in global team 

sports, encompassing soccer, volleyball, hockey, basketball, 

table tennis, tennis, and badminton. The study notes a 

significant surge in research over the last four years, with 

soccer standing out as the most researched sport. Challenges 

in HAR for sports, such as simultaneous actions, cluttered 

backgrounds, and varied perspectives, are discussed. The 

review highlights commonly used feature representations, 

with optical flow being prevalent, and explores Machine 

Learning (ML) and Deep Learning (DL) methods. The authors 

emphasize the importance of creating specialized databases 

for implementing HAR methods, contributing valuable 

insights into existing frameworks, challenges, and trends in 

HAR research for various sports.[9] 

 

Addressing the imperative need for analyzing 

surveillance videos in public and industrial security, Ullah, et 

al. focus on violence detection within the Industrial Internet of 

Things (IIoT) context. The proposed VD-Net framework 

integrates artificial intelligence into an IIoT-based system to 

efficiently detect violence, utilizing a lightweight CNN for 

initial information gathering and a ConvLSTM for detailed 

investigation in the cloud. VD-Net surpasses modern violence 

detection methods, showing a 3.9% increase in accuracy. The 

paper introduces a new real-world industrial surveillance 

dataset and conducts a comparative analysis with state-of-the-

art methods, categorizing them based on learning strategies. 

The study positions VD-Net as an effective solution for 

violence detection in industrial setups, addressing challenges 

of computational complexity and viewpoint variations[10,11]. 

 

In the domain of video action recognition, a survey paper 

by Wu et al. underscores the importance of understanding 

human behaviors through video action recognition, 

particularly in sports analytics. The survey covers a wide array 

of sports, both team and individual, providing a 

comprehensive overview of video action recognition methods. 

The paper explores challenges posed by sports-related data, 

fast-paced actions, and the complexities of recognizing 

actions in team sports. It includes a practical aspect with the 

development of a toolbox using PaddlePaddle, a deep learning 

platform tailored to support action recognition in specific 

sports like football, basketball, table tennis, and figure skating. 

The paper establishes the groundwork for a thorough 

examination of video action recognition in sports analytics, 

offering insights into existing frameworks and challenges.[12] 

 

In the realm of automated video surveillance systems, 

Himeur et al. underscore the critical role of these systems in 

ensuring public security during events with large crowds. 

Recognizing challenges inherent in Deep Learning (DL) 

algorithms, the paper introduces innovative solutions. DTL 

and DDA aim to ease training processes, enhance model 

generalizability, and overcome data scarcity issues. The paper 

provides a comprehensive overview of existing DTL- and 

DDA-based video surveillance methods, addressing their 

benefits and challenges by outlining future perspectives. It 

positions itself as a valuable resource to contribute critical 

insights into the current state of research in DTL and DDA-

based video surveillance.[13] 

 

Asad et al. introduce a novel method for detecting violent 

actions in videos, specifically addressing the challenge of 

continuous human observation in autonomous surveillance 

systems. The proposed approach combines spatial and 

temporal features extracted from sequential frames using a 

CNN and LSTMs. Notably, the introduction of "Wide-Dense 

Residual Blocks (WDRB)" effectively learns combined 

spatial features, showcasing high accuracy compared to 

modern methods. The research emphasizes the significance of 

transfer learning, additional residual blocks, and LSTM units 

in enhancing the model's capability to detect various types of 

violent actions in videos, contributing to the advancement of 

autonomous surveillance technology.[14] 

 

Tommasi et al. present a comprehensive study on 

violence detection in videos, introducing the CrimeNet neural 

network. The core problem addressed is achieving high 

average precision in violence detection while minimizing false 

alarms. CrimeNet, based on the ViT architecture and NSL 

with adversarial training, significantly outperforms previous 

models, reducing false positives to nearly zero. The study 

rigorously tests CrimeNet on challenging violence-related 

datasets, demonstrating substantial improvements in ROC 

AUC across different datasets. Leveraging optical flow for 

pre-processing and incorporating NSL for adversarial learning 

contribute to CrimeNet's state-of-the-art performance. The 

paper concludes by recognizing CrimeNet's achievements, 

emphasizing the significance of NSL and adversarial learning, 

and suggesting avenues for future research.[15] 

 

Finally, Ullah et al. introduce an intelligent violence 

detection approach tailored for industrial video surveillance. 

The proposed method combines lightweight CNNs, optical 

flow features, and LSTM networks for effective sequential 

pattern analysis. The paper highlights the potential 

effectiveness of the proposed approach in addressing the 

challenges of violence detection in industrial surveillance 

settings. The contributions to existing datasets and 

improvements in accuracy underscore the significance of this 

approach for enhancing video surveillance capabilities in 

industrial contexts.[16] 

 

3. Dataset Description 
The dataset, due to limitations of the available ones, was 

collected from diverse sources, they include online 

opensource datasets and images.  
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The first dataset is of violence and non-violence images. 

It was taken from an opensource platform. This dataset 

contains only two directories: Non-violence (which contains 

5231 real-life situations images like eating, sports activity, 

singing, etc, and this directory does not have any violent 

situations) and the other directory, Violence (contains 5842 

images with severe violence in various situations) the dataset 

was extracted from 1000 real life videos of violence and 

nonviolence activities like eating, walking, sports and more. 

The dataset captures real street fight situations, providing a 

realistic and challenging set of scenarios for violence 

recognition models. These videos encompass various 

environments and conditions, adding complexity to the dataset 

and enhancing its relevance to real-world applications. 

 

The second dataset was a collection of movie fight scenes 

augmented to fit the scale. The dataset originally had only 

1000 images, they were each augmented to balance the 

classes. 

 

4. Methodology 
4.1. Augmentation and Preprocessing 

The dataset had an imbalance in the number of images for 

each class, so the first step we took was augmentation; we 

applied transformations like cropping, zooming, width shift (3 

px max), mirroring, etc. 

 

 
Fig. 1 Imbalance in number of classes here: Class 1 refers to 

the movie fight class, class 2 refers to the non-violence class, 

class 3 is the violence class 

 
The preprocessing pipeline for the images entails a multi-

step procedure. Initially, the images are resized to a 

standardized format of 300 by 300 pixels, ensuring uniformity 

in their dimensions. Subsequently, after a train test split, a 

noise reduction technique is implemented using the Gaussian 

blur function sourced from the OpenCV2 library, contributing 

to the refinement of image quality. 

 

To further enhance the visual characteristics, a contrast 

adjustment stage is introduced. This involves the extraction of 

YUV features through the application of the OpenCV2 

cvtColor function. Specifically, the luminance component (Y 

channel) is isolated, and the contrast is normalized using the 

cv2.equalizeHist operation. This strategic contrast adjustment 

serves to refine the overall perceptual quality of the images. 

The resultant images, now endowed with standardized 

dimensions, reduced noise, and optimized contrast, are then 

seamlessly integrated into the subsequent layers of the 

processing pipeline, thus laying the foundation for 

downstream analysis or model training. 

 

4.2. Training Model 1 

The model, denominated as "Model 1", represents a CNN 

designed specifically for violence detection. Leveraging the 

ResNet18 architecture, transfer learning is employed to 

harness the pre-trained weights from a ResNet18 model while 

tailoring the final layers to address the targeted task. The input 

layer is configured with dimensions of 224 x 224 x 3 to 

accommodate the RGB color channels, and the `include_top` 

parameter is set to false for ResNet18. 

 

The transfer learning process involves extracting 

convolutional and dense layers from the ResNet18 

architecture, thereby capitalizing on learned features from a 

diverse dataset. Subsequently, fine-tuning is conducted on a 

new dataset encompassing classes denoted as "Violence" and 

"Non-violence." To mitigate overfitting, a custom dropout 

layer with a rate of 0.1 is applied. 

 

Post-transfer learning layers, the results traverse a max-

pooling layer to downsample spatial dimensions in the 

representation, thereby reducing computational complexity 

and highlighting salient features. A sigmoid activation 

function is then applied to the output layer, facilitating the 

transformation of raw network output into probabilities. Its 

formula is as depicted below: 

 

𝑆(𝑥) =
1

1 + 𝑒−𝑥
 

 

The sigmoid activation mainly helps with binary 

classification, and the model performance is more easily 

controlled than with multiple-class classification problems. 

Throughout the training process, the Adam optimization 

function is identified as the most suitable optimization 

technique, with a learning rate set to 0.0001. Additionally, an 

early stopping technique is implemented for regularization 

purposes. Evaluation metrics such as accuracy, precision, 

recall, or F1-score are employed to assess the model's 

performance. 

 

In essence, the transfer learning CNN architecture of 

Model1 endeavors to adeptly capture and classify patterns 

pertaining to violence and non-violence in images. It derives 

advantages from the knowledge accrued by the ResNet18 

model during its pre-training on a broader image recognition 

task. The model performed poorly with the classification of 

violence and non-violence images. Its accuracy was 86.03% 
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4.3 Training Model 2 

The model denominated as "Model2" represents a CNN 

designed specifically for violence detection. The input layer 

processing and the parameter taken for Model2 are the same 

as Model1. For training the model, the input dataset is non-

violence and the movie fight and the model will classify the 

dataset into these two classes. The activation function of the 

hidden layer is the same, but a sigmoid activation function is 

applied to the output layer, facilitating the transformation of 

raw network output into probabilities. 

 

In essence, the proposed transfer learning CNN 

architecture endeavours to adeptly capture and classify 

patterns pertaining to Movie fights and non-violence in 

images. It derives advantages from the knowledge accrued by 

the ResNet18 model during its pre-training on a broader image 

recognition task. The model performed a little poorly with the 

classification of violence and nonviolence images. Its 

accuracy was 99.38% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 Model 1 training 

4.4. Training Model 3 

The model 3 is a hierarchal classifier ensemble of Model 

1 and Model 2. Its functioning is as described below. 

 

Model 1 undertakes the processing of input images, 

yielding probabilities or scores associated with the violence 

and movie fight classes. The outcomes generated by Model 1 

serve as inputs to Model 2, which assumes the responsibility 

of further refining the classification. Upon classification by 

Model 1, if an image is designated as depicting violence, an 

additional layer of validation ensues via Model 2_violence. 

Conversely, in the event of classification as movie Fights, the 

outcome is directly conveyed as such. Images not conforming 

to either of these classifications are designated as violence-

class images by default. 

 

The decision to categorize a given probability as 

indicative of violence or movie fights is contingent upon a 

predefined threshold. This threshold acts as a discriminative 

criterion, determining the point at which a probability 

surpasses the defined threshold and is consequently assigned 

to either the violence or movie fights category. This 

architecture achieved an accuracy of 98.33%. This multi-step 

architecture, involving Model 1 and subsequent validation 

through Model 2, aims to enhance the precision and 

granularity of image classification, particularly in the nuanced 

domains of violence and movie fight identification. 
 

4.5. Evaluation Methods 

Some commonly used metrics to evaluate the 

performance of classification models are used to evaluate the 

performance of model are: 

 

4.5.1. Accuracy (AC)  

Definition: AC quantifies the inclusive correctness of the 

model by computing the ratio of correctly projected instances 

to the total number of instances. 

 

Formula 

𝐴𝑐 =
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

Interpretation 

AC is a general measure of correctness but may not be 

suitable for imbalanced datasets where the classes have 

significantly different sizes. 

 

4.5.2. PE 

Definition: PE, also famed as ”positive predictive value”, 

quantifies the AC of ”positive predictions”. It is the ratio of 

correctly predicted positive instances to the total number of 

predicted positives. 

Formula 

𝑃𝐸 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
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Fig. 3 Flowchart of methodology and Model3 architecture 

 

Interpretation 

PE becomes increasingly significant when the cost or 

number of false positives is high, and there is a need to 

minimize false positive predictions. 

 

4.5.3. SEN (Sensitivity or True Positive Rate) 

Definition: SEN quantifies the adeptness of the model to 

capture all the positive instances. It is the fraction of correctly 

predicted positive instances to the total actual positives. 

  
Formula 

SEN =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

Interpretation 

SEN becomes increasingly significant when the cost or 

no. of false negatives is high, and there is a need to minimize 

instances of the positive class being missed. 

 
4.5.4. F-score (FS) 

Definition: The FS is the HM of PE and SEN, providing 

a uniform measure of both. It is especially useful when there 

is an uneven class distribution.  

 

Formula 

𝐹𝑆 = 2 ×
𝑃𝐸 × 𝑆𝐸𝑁

𝑃𝐸 + 𝑆𝐸𝑁
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Interpretation 

The FS glues PE and SEN into a single metric, with 

higher values indicating a better balance between the two.The 

models were each evaluated with these factors. A summary of 

the table of results is as follows. 

 
Table 1. AC, SEN, FS and PE of the models 

 Accuracy Precision Sensitivity 
F1- 

score 

Model 1 86.03 84.9 87.53 84.03 

Model 2 99.38 98.23 98.46 98.92 

Model 3 98.33 99.05 98.42 98.76 

 
The table 1 presents performance metrics for three 

models: Model 1, Model 2, and Model 3. Model 1 

demonstrates an accuracy of 86.03%, precision of 84.9%, 

sensitivity (recall) of 87.53%, and an F1-score of 84.03%. In 

contrast, Model 2 exhibits superior performance with an 

accuracy of 99.38%, precision of 98.23%, sensitivity of 

98.46%, and an impressive F1-score of 98.92%. Model 3 also 

performs well, achieving an accuracy of 98.33%, precision of 

99.05%, sensitivity of 98.42%, and an F1-score of 98.76%. 

Overall, Model 2 demonstrates the highest accuracy and 

balanced precision, sensitivity, and F1-score, making it the 

top-performing model among the three. 

4.6. ResNet18 

ResNet18, a variant of the residual network architecture, 

is designed to overcome challenges associated with training 

extreme DNNs. Its distinctive components play crucial roles 

in its effectiveness. 

 

ResNet18 introduces the innovative concept of residual 

blocks, each containing two convolutional layers. The 

inclusion of shortcut connections facilitates the learning of 

identity mappings, addressing the vanishing gradient problem 

and enabling the training of very deep networks. The layered 

architecture involves stacking multiple residual blocks, 

progressively increasing the number of filters to deepen the 

network. 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4 Resnet18 architecture 

 
 

 

 

 

 

 

 
 

Fig. 5 Skip connections 

 
Convolutional layers, fundamental to ResNet18, perform 

spatial convolutions with 3x3 filters within residual blocks. 

Batch normalization is employed to normalize layer inputs, 

stabilizing and accelerating training by mitigating internal 

covariate shift. The Rectified Linear Unit (ReLU)  serves as 

the activation function, introducing non-linearity to capture 

complex relationships in the data. 

ReLU(x) = max(0, x) 

Max pooling layers downsample spatial dimensions, 

reducing computational complexity. Fully connected layers at 

the network's end perform classification based on high-level 

features learned by convolutional layers. Global Average 

Pooling (GAP) is utilized before the fully connected layers to 

provide a compact representation for classification. 

 

Skip connections, or shortcut connections, facilitate 

gradient flow during backpropagation by directly connecting 

input to output, aiding in the training of deep networks. 

ResNet18 often serves as a pre-trained model, leveraging 

weights learned from large datasets like ImageNet for transfer 

learning on specific tasks where labeled data is limited.
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5. Results and Discussion 
The proposed model, denoted as Model 3, demonstrated 

exceptional performance within the constraints of the limited 

dataset, exhibiting an impressive accuracy of 99.38%. This 

remarkable accuracy is substantiated by specific performance 

metrics, including 1187 true positives, 997 true negatives, 11 

false positives, and 19 false negatives. The model underwent 

training for a duration of 300 epochs, showcasing its resilience 

and ability to generalize effectively. 

 
 

Fig. 6 Confusion matric of the predicted result 

 

 
Fig. 7 Some predicted results 

 
In comparison, ResNet18 models, when trained on the 

entire dataset, exhibited a range of accuracies between 86.43% 

and 92.56%. However, an intriguing observation emerged 

when the dataset was stratified, and the models were tailored 

for binary classification tasks.  

 

In this context, the accuracy witnessed a noteworthy 

improvement, ranging up to 98.33%. Its precision, sensitivity 

and f1 score are approximately 99.05%, 98.4% and 98.7%. 

This disparity in performance raises intriguing questions, and 

several factors may contribute to this phenomenon. 

 

Firstly, the heightened accuracy of Model 3 could be 

attributed to enhanced confidence in detecting instances 

belonging to the non-violence class. The model might have 

acquired a nuanced understanding of features characterizing 

non-violence, contributing to its heightened accuracy in 

discerning such instances. 

 

Secondly, the simplicity inherent in the binary 

classification problem undertaken by Model 3 might have 

facilitated a more effective learning process. Binary 

classification tasks often allow models to focus on 

differentiating between two distinct classes, potentially 

leading to more refined and accurate representations.[14] 

 

Lastly, the hierarchical nature of movie fight 

classification, where the outcome depends on the accuracy of 

both Model 3 and the complementary model responsible for 

the non-violence class, could further contribute to the 

observed increase in accuracy. The combined hierarchical 

approach ensures a comprehensive evaluation of the input, 

considering both violence and non-violence aspects. 

 

In conclusion, the exemplary performance of Model 3 on 

the limited dataset underscores the nuanced interplay between 

dataset characteristics, model architecture, and the intricacies 

of the classification task. The observed accuracy 

improvements in binary classification scenarios illuminate the 

potential benefits of tailored model design in addressing 

specific nuances within the dataset.[5][17] 

 

6. Future Scope 
The successful performance of Model 3 on the limited 

dataset, as evidenced by its remarkable accuracy, precision, 

sensitivity, and F1 score, opens avenues for promising future 

research and applications. Despite the achievements realized 

within the constraints of a limited dataset, it is crucial to 

acknowledge the inherent limitations imposed by dataset size, 

which may impact the model's generalizability. This limitation 

prompts an imperative consideration for the expansion of the 

dataset, fostering a more comprehensive understanding of 

diverse instances and further enhancing the model's 

robustness. 

 

One notable avenue for future exploration lies in the 

realm of video processing, particularly for the classification of 

staged fights versus authentic altercations. Model 3, with its 

adeptness in discerning violence and non-violence in images, 

could be extended to video processing scenarios. The 

integration of temporal information across frames could 

fortify the model's capacity to distinguish between staged 

fights, prevalent in cinematic contexts, and real instances of 

violence. The temporal analysis of video sequences holds the 

potential to capture nuanced patterns that are indicative of 

genuine altercations, thus contributing to a more sophisticated 

and context-aware classification system.[6][7] 
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Moreover, the proposed model could benefit from further 

optimization and fine-tuning. Hyperparameter tuning, such as 

adjusting learning rates or exploring alternative optimization 

algorithms, may enhance the model's convergence and 

generalization capabilities. Additionally, the exploration of 

advanced model architectures beyond ResNet18, such as 

deeper or more specialized networks, could be a direction for 

future improvement. In the context of practical applications, 

the deployment of such a violence detection model holds great 

potential for security and surveillance systems. Integrating the 

model into surveillance cameras or monitoring systems could 

provide real-time alerts or assistance in identifying potential 

security threats. This not only enhances the efficiency of 

security measures but also contributes to the overall safety and 

well-being of individuals within monitored environments. 

 

Furthermore, considerations for ethical implications and 

bias in the dataset should be rigorously addressed. Future 

research should prioritize the exploration of strategies to 

mitigate biases in training data and model predictions, 

ensuring fair and unbiased outcomes across diverse 

demographic groups.
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