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Abstract - The centralization of control and programmability in Software-Defined networking (SDN) have enhanced network 

functionality, but they have also made it vulnerable to security threats like Distributed Denial of Service (DDoS) attacks, 

which may target both the data and control planes. To detect and mitigate the DDoS attacks in SDN’s control plane, a novel 

attack detection model is proposed in this research. The proposed model is developed utilizing Deep Learning (DL) and 

metaheuristic optimization algorithms. The key objective of this research is to classify and detect the attacks in SDN’s 

control plane layer. The proposed model, SDN-Intrusion Detection System (SDN-IDS), includes four main phases: data 

collection, data preprocessing, feature selection and classification. Initially, the InSDN dataset is collected to train and 

evaluate the research model. The data preprocessing phase includes data cleaning, data transformation, and normalization 

processes. After preprocessing, a Binary variant of the Ant Lion Optimizer (BALO) algorithm is used for selecting optimal 

features from the input dataset. Based on the selected features, the Attention-Based Bidirectional Long Short-Term Memory 

(ABiLSTM) model is implemented for classification. To improve the classification accuracy of the ABiLSTM model, the 

Bayesian Optimization (BO) technique is applied for hyperparameter tuning. The SDN-IDS model is assessed in terms of 

detection rate, accuracy, f1-score, FAR, and precision. Based on this analysis, the model attained 99.61% accuracy, 99.53% 

detection rate, 99.70% precision, 99.58% f1-score, and 0.46% FAR. Overall, these results indicate that the proposed SDN-

IDS model effectively detects and classifies DDoS attacks within the SDN control layer with higher accuracy while 

maintaining a low FAR compared to the existing models. 
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1. Introduction 
SDN offers enhanced programmability, management, 

efficiency, and flexibility in comparison to conventional 

networks. These are due to the network’s inherent mutual 

segregation or independence of the data and control planes. 

The separation of two planes and the centralized behaviour 

of SDN improve security against DDoS attacks by 

simplifying the application of network regulations. The 

controller’s capacity to screen network traffic and identify 

malevolent streams was assigned to its comprehensive 

network perspective. The separation of data and control 

planes has offered many advantages, but it has additionally 

posed a new difficulty regarding its vulnerability to DDoS 

attacks. DDoS pose a significant risk to SDN as it involves 

intentionally disrupting the services provided to normal 

users [1]. 

 

A DDoS attack is a method of flooding a server with a 

large amount of internet traffic, causing it to become 

unreachable to normal users. It imposes limitations on 

users’ network access, perhaps causing a complete halt to 

the entire network. Over the past decade, this assault has 

transformed into a significant threat because of the 

heightened severity and intensity of its impact on the 

networks [2]. The intensity of DDoS attacks is steadily 

escalating each year, resulting in significant disruption of 

network services. Several variables contributing to the 

increase in the severity of these attacks include the 

widespread use of IoT devices, the abundance of upload 

bandwidth, and the easy accessibility of source codes of the 

attacks. The menacing nature of DDoS attacks has prompted 

businesses and scholars to develop innovative measures to 

protect the internet infrastructure [3].  

 

The emergence of the SDN architecture was a response 

to the complexity of conventional networks. It allows for 

the establishment of a network that is both scalable and 

flexible and can be programmed according to specific 

needs. This is the most notable technical innovation in the 

domain of networking during the last few decades [4]. The 
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main concept of the architectural model is to separate the 

data forwarding layer from the network device’s logical 

control. The SDN architecture consists of three linked levels 

(data, control, and application layers) and a pair of 

interfaces (northbound and southbound). This categorization 

leads to a straightforward network that simplifies its 

controllability [5]. 

 

Figure 1 depicts three levels of the SDN architecture, 

each serving a specific role and having a clear purpose. 

SDN implementation requires some mandatory elements, 

such as Networks Operating System (NOS), application 

network, and northbound and southbound APIs. However, 

optional features like language-based hypervisor or 

virtualization are not necessary. The subsequent sections 

delineate each layer and API interfaces in a hierarchical 

order, starting from the highest level and descending to the 

lowest level [6].  

 

The forwarding devices based on software or hardware-

based in the data plane (also called the infrastructure plane) 

could forward, change, and drop packets based on control 

plane regulations. The control planes, the SDN 

architecture’s “brain,” processes and forwards data plane 

data (southbound communication). It receives northbound 

application requests and creates forwarding rules to satisfy 

them. For network traffic monitoring, it can collect data 

layer device performance statistics. Applications in the 

application layer could interact with the control layers to 

provide networking needs like bandwidth and latency so the 

control plane can configure the data layers to meet 

application requirements [7]. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Architecture of SDN

In the SDN architecture, the controllers are an 

especially appealing target for DDoS attacks since they may 

be viewed as a network’s single point of failure. The ways 

that can be used to initiate DDoS attacks in the control layer 

include targeting the controller, the eastbound API, the 

southbound API, the northbound API, or the westbound API 

[8]. DDoS assaults aim to inundate the resources of the 

network by creating a substantial number of unauthorized 
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requests, therefore obstructing the delivery of network 

services to actual users. Within the context of the control 

layer, the objective of DDoS/DoS attacks was to hinder the 

normal functioning of the control layer by inundating it with 

fraudulent requests. As a result, valid requests from data or 

application layers were either postponed or entirely 

disregarded owing to insufficient resources [9].  

 

Researchers have dedicated significant effort to 

developing efficient solutions for identifying and mitigating 

DDoS/DoS attacks. Similarly, most of the research in the 

field of deep learning for SDN security is mostly 

concentrated on the detection and prevention of DoS/DDoS 

attacks. In this context, the objective of a DDoS attack 

closely resembles that of a DoS attack. The only variation 

between this attack and a DDoS attack is in the severity 

[10]. 

 

Although SDN offers a multitude of advantages by 

detaching the control plane from the data plane, there is a 

link that is incongruous between DDoS attack and SDN. 

SDN’s capabilities make it simple to identify DDoS attacks 

and respond to them [11]. The separation of the control 

plane and the data plane in SDN results in the introduction 

of new types of attacks. Because of this, SDN might 

become a target of DDoS attacks. It is essential to have an 

efficient attack detection model in SDN to identify and 

mitigate these attacks quickly [12]. Through the 

preservation of network availability, the protection of 

resources, the maintenance of service quality, the prevention 

of financial losses, the protection of data and resources, and 

the enhancement of organizational reputation and trust, the 

detection model plays a significant role in ensuring that 

network operations are uninterrupted and improving overall 

cybersecurity defences [13]. Figure 2 depicts a common 

architecture of the attack detection model. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Common architecture of attack detection model 

 

1.1. Research Contribution 

In this research, an attack detection model called SDN-

IDS is proposed, which uses the DL and optimization 

techniques to identify attacks in SDN’s control layer. The 

research model includes data collection, data preprocessing, 

feature selection, and classification processes. The InSDN 

dataset is used to train and evaluate the proposed model. In 

data preprocessing, data cleaning, data transformation, and 

normalization processes are performed. After preprocessing, 

the feature selection is carried out using the BALO 

algorithm. Based on the selected attributes, the Attention-

BiLSTM DL model was employed to detect and classify the 

attacks. Further to improve the classification performance, 

the Bayesian Optimization technique is applied for 

hyperparameter tuning. The proposed SDN-IDS model’s 

performance is evaluated based on accuracy, detection rate 

(recall), precision and f1-score. Based on the research 

contribution, the following presents the research objectives: 

• To develop a novel attack detection model called SDN-

IDS designed for identifying attacks in the control layer 

of SDNs. 

• To utilize the InSDN dataset for training and evaluating 

the performance of the proposed SDN-IDS model in 

identifying attacks. 

• To apply the BALO algorithm for feature selection to 

choose the most significant features for identifying 

attacks within the SDN environment. 

• To employ the Attention-BiLSTM deep learning 

architecture to perform identification and classification 

of attacks based on the selected features. 

• To utilize the Bayesian Optimization technique for 

hyperparameter tuning to optimize the performance of 
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the Attention-BiLSTM model within the SDN-IDS 

framework. 

• To evaluate the performance of the proposed SDN-IDS 

model to assess its effectiveness in detecting and 

classifying DDoS attacks accurately and efficiently 

within the SDN control layer. 

 

The subsequent sections of the research are structured 

as follows: Section 2 is dedicated to investigating the 

existing attack detection models in SDN. Section 3 provides 

the presentation of the materials and methods employed in 

this research. The implementation of the proposed SDN-

IDS model is presented in Section 4. Section 5 includes the 

discussion of experimental analysis and the comparison of 

findings. In Section 6, the research concludes the work and 

suggests the possible areas for further research. 

 

2. Related Works 
SDNs are vulnerable to DDoS attacks. The research 

[14] presented a Machine-Learning (ML) and feature-

engineering-based SDN attack detection method. The best 

subset of features was identified utilizing an updated binary 

grey wolf optimizer approach after cleaning and 

normalizing the data set. After training and testing the ideal 

feature subset in Support Vector Machines (SVM), 

XGBoost, Decision Trees, Random Forests (RF), and K-

Nearest Neighbors (k-NN), the optimal classifier for 

detecting attacks was chosen and implemented in the 

controller. Multiple performance measurements 

demonstrated that RF performed better. The study [15] 

presented an effective SDN data and control planes DDoS 

identification method. The control layer used a DL method 

to identify DDoS attacks utilizing new traffic data 

characteristics. DL-based detection employed Bidirectional 

Gate Recurrent Units (BGRU) with Autoencoders (AE). 

The destination address of the unknown IP, TLP header, 

packet inter-arrival time, and ToS header were proposed 

control layer features. The approach measured the average 

arrival bit rate of the switch with the destination address of 

an unknown data plane. Experimental findings showed that 

the model was more accurate and had fewer false alarms. 

DDoS attacks were widespread in SDN network security.  

 

The study [16] detected DDoS attacks using SDN live 

traffic feature extraction and categorization. A good feature 

extraction process will filter task-relevant data and enhance 

ML algorithms. Some popular classifiers, including 

XGBoost, KNN, RF, SVM, and NB, were trained and 

evaluated using these extracted features to find the best 

classifier. SVM outperformed other classifiers. The 

Comprehensive Coordinated (CC)-Guard defensive 

framework was developed in [17]. The framework included 

the attack detection trigger module, which speeds up the 

DDoS reaction. The switch migration module reduced 

controller congestions and simplified network flow 

transfers. The anomaly detection module enhanced 

detection accuracy with coarse-grained two-stage 

detections. The mitigation module cleared anomalous 

blacklist traffics via the controller’s cross-domain 

collaborations. Results demonstrated that the framework 

could defend against DDoS attacks in real time, with higher 

detection accuracy and efficient network resource use. An 

SD-Internet of Things (IoT) DDoS detection model using 

feature extraction was developed in [18]. Normal and DDoS 

attack traffic was produced utilizing the hping3, and 

Distributed Internet Traffics Generator programs, and six 

characteristics were extracted. Popular classifiers, including 

RF, LGBM, SVM, and KNN were modelled and evaluated 

with the six vector pairs of attack and normal data to 

evaluate the derived features. The best LGBM model was 

used in the SDN controller to identify real-time traffic 

attacks.  

 

The research [19] proposed a safe and intelligent smart 

city DDoS defense system. This study reduced smart city 

DDoS attacks utilizing SDN security controllers and 

optimized ML models. This study used SDN-based security 

controllers and an optimized XGBoost detection system to 

prevent common DDoS attacks in smart cities. The use of 

non-realistic datasets and non-qualified features causes 

significant false positives and low accuracy in existing 

techniques. Thus, SDN controller DDoS attacks may be 

detected using DL. Data preprocessing, cross-feature 

selection, and Recurrent Neural Networks (RNNs) detection 

were proposed in [20] to detect DDoS. The model was 

evaluated using false positive rate and detection accuracy on 

a benchmark dataset. Results show that the model identified 

DDoS attacks. The study [21] thoroughly investigated the 

connections between data layer switches and control layer 

applications and introduced two novel attacks, the Control 

layer reflection attack, to utilize hardware switches based on 

SDN’s low processing power. Reflection attacks used 

indirect and direct data layer events to induce the control 

layer to send costly downlink messages to SDN switches. A 

probing-triggering attack with a two-phase approach 

improved reflection attacks’ efficiency and power. Attacks 

on a testbed with three physical OpenFlow switches showed 

that they damaged new flows and interrupted SDN 

controller-switch connections. 

 

A Spider Monkey-based Elman Spike Neural Networks 

(SM-ESNN) model was proposed in [22] to detect SDN 

intrusion risks. Detecting central controller intrusions and 

floods via multidimensional IP traffic analysis. 

Additionally, the dataset was used to update the SDN’s 

secure defense system. A software defense system with 

detection and mitigation modules was developed. The 

model improved SDN security by rapidly and accurately 

detecting attacks. FMDADM, an SDN-based attack 

mitigation and detection system for IoT networks, was 

developed in [23]. The first module used a 32-packet 

window size for average drop rate early detection. The 
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second module utilized a unique double-check mapping 

function to identify data layer attacks. The next module was 

a detection application based on ML, including 

preprocessing, feature extractions, training and testing, and 

classifications. This model identified DDoS assaults, and 

the last module introduced attack mitigation. The 

framework detected DDoS assaults at higher and lower 

rates, distinguished attack traffic from flash crowds, and 

protected remote and local IoT nodes by avoiding ISP 

infections.  

 

DL has been used to detect and prevent DDoS attacks 

in SDN systems. A hybrid DL model in [24], which used a 

1D-Convolutional Neural Network (CNN), Dense Neural 

Network (DNN), and gated recurrent unit (GRU), 

outperformed traditional ML algorithms in detecting DDoS 

attacks and optimizing SDN networks.  

 

DDoS and its version, Low-Rate DDoS was one of the 

hardest to identify and defend since the fraudulent user 

created destructive traffic slowly. ML, specifically 

Federated Learning (FL), has been successful in identifying 

and protecting against these threats. A Weighted-FL (WFL) 

was proposed in [25] to identify LR-DDoS assaults. The 

model has proven its worth for IDS, notably IoT networks 

based on SDN. 

 
Table 1. Comparative analysis of reviewed research works 

Ref Approach Application Scenario Advantages Disadvantages 

[14] 
Feature engineering and 

ML-based approach 
SDN DDoS detection 

Identified best feature 

subset using optimization; 

RF performed better 

Manual feature engineering 

was not generalized well 

[15] DL-based approach 

SDN data plane and 

control plane DDoS 

detection 

Utilized DL for accurate 

detection with fewer false 

alarms 

Required significant 

computational resources for 

DL training 

[16] 
Feature extraction and 

ML-based approach 

SDN live traffic feature 

extraction and 

categorization 

SVM outperformed other 

classifiers 

Manual feature extraction 

does not capture all relevant 

information 

[17] CC-Guard framework 

Real-time defense against 

DDoS attacks in SDN 

networks 

Higher detection accuracy 

and efficient resource use 

Complexity in 

implementation and 

deployment 

[18] 
Feature extraction and 

ML-based approach 
SD-IoT DDoS detection 

Utilized LGBM for real-

time detection; extracted 

relevant features 

Dependency on manually 

extracted features limit 

adaptability 

[19] 

SDN-based security 

controllers and 

optimized ML models 

Smart City DDoS 

defense 

Utilized SDN and ML for 

effective defense against 

DDoS attacks 

Require specialized 

hardware for ML 

optimization 

[20] DL-based approach 
DL-based detection with 

RNNs 

DL approach for DDoS 

detection improved 

accuracy 

Computational complexity 

of DL training 

[21] 
Attack investigation and 

prevention 

Control Plane Reflection 

Attacks in SDN-enabled 

switches 

Identified novel attack 

types; highlighted 

vulnerabilities 

Requires advanced 

understanding of SDN 

infrastructure 

[22] 
Intrusion detection and 

defense system 

SDN intrusion risk 

detection and mitigation 

Improved SDN security 

with rapid and accurate 

attack detection 

Implementation complexity 

and resource overhead 

[23] 
DDoS attack detection 

and mitigation 

SDN-based DDoS 

detection and mitigation 

for IoT networks 

Modular technique for 

mitigation and detection of 

attacks. 

Complexity in integrating 

with existing IoT 

infrastructure 

[24] 
Hybrid DL-based 

approach 

DL-based detection and 

optimization for SDN 

networks 

Outperformed traditional 

ML algorithms in detection 

and optimization 

Increased computational 

complexity compared to 

traditional ML 

[25] FL-based approach 

LR-DDoS assault 

identification in SDN-

based IoT networks 

WFL effectively identified 

LR-DDoS assaults 

Dependency on FL 

infrastructure 
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2.1. Research Gap Analysis 

It has been observed that traditional ML methods, while 

demonstrating effectiveness in DDoS attack detection, often 

necessitate manual feature engineering. This approach 

cannot capture all pertinent information and could struggle 

with generalizability across various network environments. 

In contrast, DL-based techniques have emerged as 

promising solutions for enhancing detection accuracy and 

reducing false positives. However, these methods require 

substantial computational resources for training and lack 

interpretability, posing challenges for real-time deployment 

within SDN environments.  

 

Additionally, a comprehensive evaluation regarding 

their efficacy against evolving and intricate DDoS attack 

methods. A pressing need exists for the evaluation of more 

standardized and realistic datasets. This would facilitate the 

accurate benchmarking and comparison of different 

detection methodologies. While some studies have directed 

their focus towards specific application scenarios, such as 

smart city DDoS defense or IoT networks, a comprehensive 

framework encompassing the diverse range of attack vectors 

and network topologies encountered in real-world SDN 

deployments remains elusive. Addressing these research 

gaps is paramount for achieving advancements in state-of-

the-art SDN-based DDoS detection and defense 

mechanisms. 

 

3. Materials and  Methods 
This section presents the subject of materials and 

methods focused on this research to develop an attack 

detection model. The primary aim of this attack detection 

model is to identify and minimize the attacks in the SDN’s 

control layer. The SDN-IDS model includes data collection, 

data preprocessing, feature selection and classification 

processes. For these processes, the research model utilizes 

different techniques and algorithms, as discussed in the 

following sections. Figure 3 represents the architecture of 

the proposed SDN-IDS model. 

 

3.1. Dataset Collection 

Generally, in IDS, the training dataset quality 

determines the performance. A fundamental challenge to 

implement detection models is the lack of current real-world 

datasets. The latest real-time dataset, InSDN, was utilized in 

this work to train and evaluate the proposed SDN-IDS 

model. The InSDN dataset is publicly available. Brute 

Force, Probe, Web, DoS application, U2R, password 

guessing, and DDos attacks are included in this dataset. In 

addition, InSDN normal traffic has some properties. Attacks 

from internal and external networks are used in the dataset 

to simulate attacks. In CSV format, it provides 83 statistics 

features, including protocol, duration, byte number, packet 

number, etc. Table 2 shows that the dataset includes 

343,939 instances for normal and attack traffic, 68,424 for 

normal and 275,515 for attack classes [26]. 

Table 2. InSDN dataset distribution 

Attack Classes Number of Instances 

Botnet 164 

Brute force 1405 

DoS-Network 3772 

DoS-Application 31628 

DDoS 9943 

Normal 68424 

Probe 15225 

U2R 17 

Web-Application 192 

Total 343939 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Proposed SDN-IDS architecture 

Since the SDN controller decides on regular and 

malicious traffic, attack traffic behaves normally. In contrast 

to the conventional networks of multiple attacks, the SDN 

network’s centralized perspective and separation of the data 

layer from the control layer provide the hacker with 

additional options. Since an attacker may access the 

victims’ server, these intrusions are hard to detect. This data 

collection could serve as a useful dataset for real-world 

model evaluation. This dataset has no duplicate information 

to keep the training model focused on the most prevalent 

records. The data set was split into 70:30 for training and 

evaluating the research model. 
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3.2. Data Preprocessing 

Data preparation refers to the process of preparing raw 

data to be suitable for a DL/ML model. During the 

preprocessing step, any missing values must be changed 

before the training phase. The research model includes 

preprocessing steps such as data cleaning, data 

transformation and normalization. Data cleaning involves 

fixing or removing data that is replicated, damaged, 

formatted incorrectly, or incomplete. Transformation of data 

is the process of translating data from one type or format to 

another. An example of this is transforming text into 

integers, which is necessary for it to be used in DL 

algorithms. 

 

This work employed min-max scaling to standardize all 

characteristics in the dataset, considering the different scales 

available. Min-max scaling is a linear adjustment that is 

done to the original data to normalize it. The scaling 

formula is expressed as follows, where 𝑑 represents the 

original data and 𝑑′ represents the transformed data: 

 

𝑑′ =
(𝑑−𝑚𝑖𝑛)

(𝑚𝑎𝑥−𝑚𝑖𝑛)
    (1) 

 

In this context, “max” and “min” represent the highest 

and lowest values found in the column where the variable 

“𝑑” is located. This standardization procedure has wide-

ranging applicability. By employing this technique, data is 

transformed to a scale of [0, 1] while preserving the real 

data structures, which sets it apart from the Z-Score 

standardization approach. Consequently, this method allows 

for expedited and uncomplicated data standardization within 

a certain range [14]. 

 

3.3. Binary Ant Lion Optimizer 

Meta-heuristic optimization approaches are divided into 

population-based and local search-based algorithms. Local 

search-based optimization approaches to progress with a 

single solution and use the neighborhood mechanism to 

enhance it. The population-based methods proceed by using 

multi-solution to improve candidate solutions at each 

generation to develop one or more superior solutions. The 

Ant Lion Optimizer (ALO) algorithm uses these two 

methods to create an intelligent algorithm that can search 

successfully using local exploitation and global exploration. 

In contrast to various meta-heuristic approaches, ALO is 

simple, customizable, and implementable, making it suitable 

for a range of optimization tasks [27].  

 

In this research, the ALO metaheuristic algorithm is 

planned to be used for the feature selection process. Since 

the binary variant algorithms are superior for feature 

selection, this research model used the binary type of ALO 

called Binary Ant Lion Optimizer (BALO). Binary vector 

representations are used to get the pertinent features. In this 

BALO technique, the solution vectors are denoted as 

(10101100....). In this representation, a value of 1 indicates 

that a certain feature is chosen, while a value of 0 indicates 

that the feature is not included in the subset [28]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Bi-LSTM architecture 

3.4. Bi-LSTM 

Due to the LSTM’s limitation of incorporating only 

forward sequence information into Neural Networks (NN) 

prediction and the challenge of capturing the content of 
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backward LSTM. Obtaining two different sets of hidden 

layer representation for each phrase is accomplished by the 

BiLSTM model through the utilization of sequential and 

inverse order computations. The final layer representation is 

then created by the process of vector stitching, which brings 

about an improvement in speed on time-series data that is 

more thorough. The forgetting gate, the input gate, and the 

output gate are the three gating structures that are included 

in each LSTM cell, including the BiLSTM structure, as seen 

in Figure 4 [29]. 

 

Unlike LSTM, which can only incorporate the data 

from a forward sequence into the NN for prediction, 

BiLSTM is composed of both a backward and a forward 

LSTM unit. All the LSTM units conform to the structure of 

LSTM, including separate forward and backward units. 

Therefore, based on the studies that have been conducted, 

BiLSTM is superior to LSTM when it comes to the 

prediction of time series data. 

 

4. Proposed SDN-IDS Model 
4.1. BALO-Based Feature Selection 

This research implements a BALO technique for 

feature selection. Each ant in this method adjusts its location 

based on Equation (1). The crossover procedure is 

performed by combining the dual binary solutions acquired 

from a random walk over the selected and elite antlion. 

 

𝐴𝑖
𝑡+1 = 𝐶𝑂(𝑅𝑋1, 𝑅𝑋2)            (2) 

 

In this equation, 𝐶𝑂(𝑎, 𝑏) represents the appropriate 

crossover among solutions a and b. 𝑅𝑋1 and 𝑅𝑋2 were 

binary vectors that indicate the impact of the elite antlion 

and a randomly picked antlion. 

 

The average operators employed in the conventional 

ALO serve to draw the ants towards the antlion trap cones, 

making them the primary operators for global search or 

exploration. In this case, the Crossover Operators (CO) 

substitute the average operators that are utilized in the ALO 

algorithm with two operators aiming to attain exploration 

and global searching. The CO was a straightforward method 

for generating the intermediate solutions by combining two 

existing solutions. The employed CO was a basic stochastic 

CO that alternates among the two vector inputs with equal 

probabilities, as specified in the equation as follows: 

 

𝑎𝑑 = {
𝑎1

𝑑   𝑖𝑓(𝑟𝑎𝑛𝑑) ≥ 0.5

𝑎2
𝑑            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     (3) 

 

In this equation, 𝑎𝑑 was the output obtained by 

performing crossover at dimension d among vectors 𝑎1
𝑑 and 

𝑎2
𝑑. 𝑅𝑋1 denotes the ant’s attraction towards the elite 

antlion, which was depicted as a random movement around 

the elite antlion with a well-suited step size. The process 

involves stochastic mutations occurring over a chosen ant 

lion, with the mutation value that is appropriate for the 

binary-valued elite antlion. This is expressed in the binary 

form as described in Equation (3). 𝑅𝑋2 is a representation of 

the attraction exerted by the other antlions. It is achieved by 

applying random mutations to an antlion in binary mode, 

using the roulette wheel selection technique for choosing 

the mutations. 

𝑎𝑜𝑢𝑡
𝑑 = {𝑎𝑖𝑛

𝑑       𝑖𝑓 𝑟𝑎𝑛𝑑1 ≥ 𝑟

𝑟𝑎𝑛𝑑2     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
            (4) 

 

The variable 𝑎𝑜𝑢𝑡
𝑑  represents a value of d-dimensional 

for the vector output resulting from mutations. The variable 

𝑎𝑖𝑛
𝑑  refers to the input vector that will undergo mutation. 

‘rand1’ and ‘rand2’ were dual random integers generated 

from the uniform distributions within the scale of [0, 1]. 

Here, ‘r’ represents the rate of mutation. It is evident that 

the value of r decreases directly with each repetition, 

spanning from 0.9 to 0, as indicated by Equation (5): 

 

𝑟 = 0.9 +
−0.9∗(𝑖−1)

𝐼𝑡𝑒𝑟𝑚𝑎𝑥−1
          (5) 

 

Here, ‘r’ represents the rate of mutation at the iteration’ 

i’, whereas 𝐼𝑡𝑒𝑟𝑚𝑎𝑥 denotes the total iterations for 

executing the optimization. The ALO is an algorithm that is 

utilized to dynamically explore the feature space to discover 

the optimal subsets of features. The optimal feature subset is 

the one that has the lowest classification error rate and the 

fewest chosen attributes. The fitness function utilized in this 

algorithm to assess separate search agents was represented 

in the equation as follows: 

 

𝐹𝐹 = 𝛼𝛾𝑅(𝐷) + 𝛽
|𝐶|

|𝑇𝐹|
   (6) 

 

The classification error rate, 𝛾𝑅(𝐷) was the rate at 

which classifier 𝐶 incorrectly classifies instances based on 

the features selection decision D. The variable 𝐶 represents 

the selected subset of the feature’s length, while 𝑇𝐹 

represents the total features in the dataset. The value of α is 

determined by calculating the minimal distance between the 

actual instance and the training instances [30]. 

 

The InSDN dataset includes 83 features. Out of 83 

features, only 15 optimal features, such as Protocol, Tot 

Fwd Pkts, Init Bwd Win Byts, Subflow Bwd Pkts, Bwd IAT 

Tot, Bwd IAT Max, Bwd Pkt Len Max, Bwd IAT Mean, 

Bwd Pkt Len Mean, Bwd Header Len, Bwd Pkts/s, Flow 

Pkts/s, Flow duration, Fwd Header Len, and Flow IAT 

Mean features are selected using the BALO algorithm. 

 

4.2. Attack Detection using A-Bi-LSTM 

The A-BiLSTM model has been utilized in the SDN-

IDS model for intrusion categorization. LSTM was an 

enhanced NN model that builds upon the RNN architecture 
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to address time-series problems. The unshaded sections 

indicate the current instant, while the shaded part indicates 

the preceding and subsequent actions, as shown in 

architecture. The network addresses the issues of the RNN’s 

susceptibility to gradients vanishing and exploding 

gradients by incorporating three regulating units: memory, 

forget, and output gates. It achieves this by implementing a 

distinct method of defining a threshold for the gradient 

range and storing “memory”. The fundamental purpose of 

LSTM is outlined as follows: 

 

The forget gate combines with the previous moment’s 

output ℎ𝑡−1 to filter the cell data 𝐶𝑡−1, removing the 

influence of these moments. The mathematical expression 

can be represented using Equation (7): 

 

𝑓𝑔𝑡 = 𝜎(𝑤𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)          (7) 

 

The sigmoid function is denoted as 𝜎. The final output 

at the last layer was represented as ℎ𝑡−1. The weighting 

coefficient and offsets of linear correlations were 𝑤𝑓 and 𝑏𝑓, 

respectively. The result of the forget gate was 𝑓𝑔𝑡 and the 

input at the current time is 𝑥𝑡. The memory gate stores the 

data of the cell 𝑐𝑡−1 together with an output ℎ𝑡−1 from the 

previous time step. It is expressed as: 

 

𝑚𝑔𝑡 = 𝜎(𝑤𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)          (8) 

 

𝑐𝑡 = tanh(𝑤𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)            (9) 

 

𝐶𝑡 = 𝑓𝑔𝑡 × 𝐶𝑡−1 × 𝑖𝑡 × 𝑐𝑡    (10) 

 

The equations include the input variables. 𝑖𝑡 and 𝑐𝑡 for 

the initial and subsequent sections, respectively. The 

updated cell state is denoted as 𝐶𝑡. The related weighted 

coefficients and offset values are represented by 𝑤𝑖 , 𝑏𝑖, and 

𝑤𝑐. The output gate is connected to the previous instant 

ℎ𝑡−1 and the current cell data 𝐶𝑡. The input provided to the 

neural network for processing is as follows: 

 

𝑂𝑡 = (𝑤𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)   (11) 

 

ℎ𝑡 = 𝑂𝑡 × tanh(𝐶𝑡)     (12) 

 

Currently, 𝑂𝑡 represents the top layer, and the values of 

ℎ𝑡−1 and 𝑥𝑡 are determined by the utilization of the sigmoid 

function. The A-BiLSTM technique utilizes an attention 

mechanism to give individual weight to the parts of the 

feature sequences. The mechanism of attention highlights 

the most salient information, mitigates the impact of poorly 

correlated data, and enables the classifier to provide a 

highly accurate estimation. 

 

𝐴𝑡𝑒𝑛 = ∑ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑓(𝑥𝑖)) × 𝑥𝑖
𝑚
𝑖=1     (13) 

 

The variable 𝑥𝑖 represents the sequence of features that 

are inputted into the state of the attention scheme. The 

attention scheme, on the other hand, refers to the total of 

weights that are weighted [31]. 

 

4.3. Hyperparameter Tuning using BO 

Optimizing the hyperparameters of the model is 

necessary to considerably enhance the model’s prediction 

accuracy using the ideal combination of hyperparameters. 

Bayesian optimization is a method for optimizing 

parameters, as represented by the function expression 

indicated in equation (14). 

 

𝑋∗ ∈ 𝑎𝑟𝑔𝑚𝑎𝑥𝑥∈𝑋𝑓(𝑥)   (14) 

 

In this equation, the variable x represents the 

hyperparameter’s value that is being optimized, while 𝑓(𝑥) 

represents the performance function. The Bayesian 

optimization method employs a probabilistic agent model 

that utilizes a Gaussian model. This model is applied to a 

particular objective function f, where the input space was 

denoted as 𝑥 ∈ 𝑋. 

 

The data set D consists of n samples, denoted as 
{(𝑥1, 𝑦1), (𝑥2, 𝑦2), … (𝑥𝑛 , 𝑦𝑛) }, where 𝑦𝑖  is the value of the 

function 𝑓 at 𝑥𝑖. Next, the Gaussian probability theory could 

be formulated in the following manner. 

 

𝑓~𝐺𝑃𝑇[𝜇(𝑥), 𝑘(𝑥, 𝑥′)]   (15) 

 

The function 𝜇(𝑥) represents the mean value, which is 

equal to the expected value of 𝑓(𝑥). The average value 

function is typically assigned a value of 0. The variable 

𝑘(𝑥, 𝑥′) represents a covariance function, which states that 

for any variables 𝑥 and 𝑥′, the covariance between 𝑓(𝑥) and 

𝑓(𝑥′)  is given by 𝑘(𝑥, 𝑥′) [32]. 

 
Table 3. BO-Based hyperparameters tuned 

Hyperparameter Value 

No. of BiLSTM Layers 2 

BiLSTM Hidden Size 256 

No. of Attention heads 2 

Batch Size 64 

Learning rate 0.001 

Dropout rate 0.5 

Epochs 100 

 

5. Results and Discussion 
5.1. Experimental Setup 

This section presents the experimentation and 

performance analysis of the proposed SDN-IDS model. As 

an experimental setup, the proposed model was 

experimented in a system that has Windows 10, 64-bit OS, 

with Intel(R) i7 processor @ 4.60 GHz CPU, and 16GB of 

RAM specifications. The Python 3.11.4 64-bit tool was used 
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to develop the model and used the Pandas, Numpy, and 

Scikit-learn libraries. The results attained for the SDN-IDS 

model are compared and validated with the current attack 

detection models in SDN. 

 

5.2. Performance Metrics 

The research model is evaluated based on accuracy, 

detection rate (recall), f1-score, FPR, and precision. These 

metrics are computed based on the values of True Positive 

(TP), False Positive (FP), True Negative (TN), and False 

Negative (FN), which are the four categories that can be 

used to classify the outcomes of the detection. The number 

of attack samples that were properly detected as attack 

samples by the model was denoted by TP. The number of 

normal samples that were correctly detected as TN denoted 

normal samples. The number of normal samples that were 

wrongly detected as attack samples by the model was 

denoted by FP. The value of FN provides a representation of 

the count of attack instances that the model wrongly 

detected to be normal samples. 

 

In the context of the attack detection process, the term 

“accuracy” refers to the proportion of properly detected 

outcomes relative to the total number of samples. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
           (16) 

 

Precision can be defined as the proportion of negative 

samples that were accurately detected as positive out of the 

total samples that were detected as positive. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
             (17) 

 

The detection rate was the proportion of samples that 

were actually positive to the total positive samples. 

 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
          (18) 

 

The F1 score is a statistic measure that is utilized for 

the purpose of determining how accurate optimistic class 

detections are. The ratio of samples that were accurately 

detected as positive to all samples that were detected to be 

positive is represented by the f1-score. 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
              (19) 

 

FPR in an IDS refers to the percentage of alerts 

generated by the system that are false alarms or non-

malicious events.  

 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
    (20) 

 

False positives can be caused by various factors, such 

as misconfigurations, outdated rules or signatures, or normal 

traffic that triggers the IDS. Therefore, minimizing false 

positives is an important consideration in the design and 

implementation of an IDS [17]. 

 

5.3. Performance Evaluation 

This section presents a detailed analysis of the 

experimental results of the proposed SDN-IDS model. To 

determine the performance of the research model in 

identifying attacks in SDN, an assessment of its 

performance was conducted using the performance metrics. 
 

Table 3. Results of the proposed SDN-IDS Model 

Metric Training Results Testing Results 

Accuracy 99.87 99.61 

Detection Rate 99.80 99.53 

Precision 99.89 99.70 

F1-score 99.74 99.58 

FPR 0.38 0.46 

 

Table 3 represents the results of the proposed SDN-IDS 

model evaluated based on training and test sets. As it can be 

seen, the model has attained higher performances in the 

training set compared to the test set. The model attained 

99.87% accuracy in training and 99.61% in testing, which 

has a performance difference of 0.26%. The detection rate 

of the model was 99.80% in training and 99.53% in testing, 

which has a variation of 0.27%. The precision rate of the 

model was 99.89 in training and 99.70 in testing, which has 

a difference of 0.19%. The f1-score of the model was 

99.74% in training and 99.58% in testing, which has a 

variation of 0.16%. The model obtained 0.38% FAR in 

training and 0.46% in testing, which has a difference of 

0.08%. All these differences will not impact the model’s 

performance in validation. Figures 5 and 6 represent the 

graphical plot of the SDN-IDS model’s performance in 

training and testing. 

 

 
Fig. 5 Graphical plot of SDN-IDS model’s training and  test results 
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Fig. 6 Graphical plot of SDN-IDS model’s FPR results 

 
Fig. 7 Graphical plot of accuracy comparison 

Table 4. Results comparison of the SDN-IDS model with current models 

Models Accuracy (%) Detection Rate (%) Precision (%) F1-score (%) 

RF (CIC-IDS-2018) [14] 96.35 97.23 95.10 96.16 

SVM (Own Dataset) [16] 99.38 99.40 99.41 99.39 

CNN-GRU (Own Dataset) [17] 99.18 99.34 98.97 99.28 

DNN [17] 98.36 99.36 97.50 98.42 

Decision Tree (BoT-IoT) [19] 97.90 93.00 93.00 93.00 

RNN (SDN Dataset) [20] 94.66 NA 91.70 94.80 

SM-ESSN (UNB ISCX IDS 2012) [22] 99.00 99.12 98.76 NA 

FMDADM (Edge-IIoT) [23] 99.53 99.13 98.38 99.13 

WFL (CAIDA) [25] 98.85 98.13 99.27 94.21 

SAT-IDS (InSDN) [33] 99.39 99.40 98.50 98.45 

Proposed SDN-IDS 99.61 99.53 99.70 99.58 

 

Table 4 represents the comparison of the SDN-IDS 

model’s results compared with the other current models 

discussed in the related works section. This comparison is 

carried out to validate the research model’s efficiency and 

superiority in detecting attacks in SDN. As indicated in this 

comparison, the research model outperformed all the other 

models in terms of every parameter with consistent 

performance. Figures 7 to 10 represent the graphical plots of 

the comparison of the results starting from accuracy to f1-

score. 
 

 
Fig. 8 Graphical plot of detection rate comparison 
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Fig. 9 Graphical plot of precision comparison 

Fig. 10 Graphical plot of F1-score comparison 

In this comparison, the SDN-IDS model’s test results 

are used. All the models used in this comparison are mainly 

developed for detecting DDoS attacks in SDN but evaluated 

with different datasets as they are mentioned in the table. 

However, the research model is also developed for detecting 

DDoS attacks in SDN, the comparison is carried out. The 

research model attained 99.61% accuracy, which is 0.08% 

to 4.95% higher than the compared models. The FMDADM, 

SAT-IDS, SVM, and CNN-GRU models all have obtained 

an accuracy of over 99%. The least performed model was 

RNN, with 94.66%. The detection rate of the research 

model was 99.53%, which is 0.13% to 6.53% improved than 

the other models. The SVM and SAT-IDS models have a 

similar detection rate of 99.40%, and some models like 
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CNN-GRU, DNN, SM-ESSN, and FMDADM models have 

also obtained more than 99% detection rate. The least 

performed model was the decision tree, with 93%. The 

research model has attained a precision rate of 99.70%, 

which is 0.29% to 8% higher than the compared models. 

The SVM model has a close performance of 99.41% 

compared to the research model. The least performed model 

was RNN, with 91.70% in this comparison. The f1-score of 

the research model was 99.58%, which is 0.19% to 6.58% 

improved than the other models. The SVM, FMDADM, and 

CNN-GRU models have an f1-score of more than 99%. The 

least performed model was the decision tree, with 93%. 

Overall, the research model has outperformed all the 

compared models in terms of accuracy, detection rate, f1-

score, and precision. Based on the obtained results and this 

comparison, it can be concluded that the proposed SDN-IDS 

model is effective and better at detecting and mitigating 

attacks in SDN. 

 

The proposed SDN-IDS model exhibits several 

advantages. These include exceptional accuracy, high 

detection rates, precision, and F1 scores. Compared to 

existing models, it demonstrated superior performances in 

identifying attacks present in the SDN control layer. The 

model used DL and optimization techniques, resulting in 

robust identification and classification of attacks, effectively 

providing a reliable defense mechanism against network 

threats. Furthermore, the incorporation of feature selection 

using the BALO algorithm enhanced efficiency by focusing 

on relevant features. Additionally, BO was employed to 

fine-tune hyperparameters of ABiLSTM, effectively 

optimizing classification performance.  

 

However, there are a few limitations to consider in this 

research. The limitations include the computational 

complexity inherent to DL models and the substantial 

computational resources required for both training and 

inference. The qualities and representativeness of a training 

data set can also impact the model’s performance. This 

necessitates continuous updates and refinement to adapt to 

evolving attack patterns and network dynamics. Despite 

these limitations, the SDN-IDS model represents a 

significant advancement. It offers robust protection against 

DDoS attacks in SDN, and there are some considerations 

for further research and development in network security. 

 

6. Conclusion 
This research proposed a novel attack detection model 

called SDN-IDS for identifying attacks in SDN’s control 

layer. More specifically, the research model is developed 

and trained to detect DDoS attacks in the SDN’s control 

plane. The SDN-IDS model includes collecting data, 

preprocessing data, selecting optimal features and 

classification processes to perform the attack detection task. 

For data collection, the InSDN dataset was gathered and 

used for training and evaluating the model. The data set was 

split into a 70:30 ratio. In data preprocessing, data cleaning, 

data transformation, and normalization tasks were carried 

out. For normalization, the Min-Max normalization 

technique was applied. After preprocessing, the feature 

selection task was performed using the binary version of the 

ALO algorithm called BALO, in which the significant 

optimal features were selected using the binary vector 

representation. Based on the selected features, the 

ABiLSTM model performed the classification task to detect 

the attack from the input instances. The hyperparameters of 

the ABiLSTM were tuned by the BO technique to improve 

the model’s performance in classifying the attacks. The 

SDN-IDS model was assessed in terms of detection rate, 

accuracy, f1-score, FAR, and precision. Based on this 

analysis, the model attained 99.61% accuracy, 99.53% 

detection rate, 99.70% precision, 99.58% f1-score, and 

0.46% FAR. Overall, these findings indicated that the SDN-

IDS model effectively detects and classifies DDoS attacks 

within the SDN control layer with high accuracy, detection 

rates, precision, and F1 scores while maintaining a low false 

positive rate. The SDN-IDS model outperformed 

comparably to other existing models in terms of each 

parameter. The future works for this research will include 

exploring real-time implementation of the SDN-IDS model 

in real environments, investigating its adaptability and 

scalability to evolving network threats, and integrating 

anomaly detection techniques to enhance its capability in 

detecting novel attack patterns. 
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