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Abstract - Due to their versatility, Wireless Sensor Networks (WSNs) have garnered substantial attention. One critical aspect of 

WSNs is energy efficiency, particularly in scenarios involving multiple mobile sinks. This research proposes an Optimized 

Multiple Mobile-Sink Energy Efficient Clustering Algorithm (O-MMECA) scheme to enhance energy utilization and protract 

network lifetime. The O-MMECA scheme integrates an improvised Artificial Bee Colony (ABC) algorithm. Firstly, the clustering 

approach is employed to define a Cluster Head (CH), which is elected by each cluster responsible for data aggregation as well 

as transmission to the mobile sinks. Secondly, multiple mobile sinks are optimally deployed to collect data from CHs, reducing 

the communication distance and energy consumption. Thirdly, an energy-aware routing protocol is utilized to establish efficient 

paths from CHs to sinks, considering node energy levels and network conditions. The effectiveness of the O-MMECA scheme in 

comparison with the existing approaches is demonstrated by the simulations. It achieves significant improvisations in energy 
efficiency, network lifetime, and data delivery rates, making it suitable for applications requiring reliable data collection in 

WSNs with multiple mobile sinks. 

 
Keywords - Energy efficiency, Wireless sensor networks, Clustering approach, Multiple mobile sinks, Routing protocol. 

 

1. Introduction 
WSNs are defined by decentralized nodes, or sensor 

nodes, that can detect their immediate surroundings and 

transmit that data to a main hub or sink node [1]. To monitor 
and transmit data on the target phenomena wirelessly in multi-

hop communication, sensor nodes that run on batteries are 

dispersed randomly across the study area [2]. To construct a 

WSN, a vast array of interconnected sensor nodes interacts 

with one another. Since the sensor nodes are spread out over a 

large geographical region, the network can be partially or 

completely linked depending on the situation [3, 4]. A field 

can be equipped with a vast array of wireless sensor nodes, 

collectively known as a WSN. The sensor devices that come 

with these nodes are not very powerful, and they can only 

communicate wirelessly. WSNs are superior to other options 
for environmental monitoring, security, and monitoring [5, 6]. 

As far as WSN advancements are concerned, sensor nodes still 

rely on low-power batteries to power themselves. The usage 

of WSNs in remote areas also makes it hard to repair or 

recharge the sensor nodes' batteries. One of the most pressing 

issues in WSNs is achieving effective energy management, 

considering these limitations. Network lifespan enhancement 

needs should be addressed while developing a new protocol 

for these types of networks [7]. 

 

It is common practice to use multi-hop communication to 

send data produced by sensor nodes to the sink [8, 9]. The 

relaying of packets from other sensor nodes might drain a 

node's battery life and eventually cause it to die in this kind of 

network [10, 11]. Because of this issue, it will become 

disconnected from the network, which will cause coverage 

and connection issues throughout the network. Using mobility 

in sensor networks, such as a mobile sink or agent, to gather 
data from sensor nodes is one way to tackle this issue [12, 13]. 

Methods based on movable sinks [14, 15] include the mobile 

sink traveling to several meeting places around the network. 

One of the difficulties with WSNs is choosing the best meeting 

places for the mobile sink. The likelihood of choosing an ideal 

sensor node as a meeting place is quite low [16, 17] since, 

similar to hierarchical techniques, these sites are only chosen 

using local knowledge. 

 

The rest of the paper is organized in the following 

manner. In the beginning, the motivation for the research is 

provided followed by a background study leading to the 
problem definition. In the next section, the various methods 

and algorithms to improve the efficiency of the WSNs are 

discussed. In the following section, the results are presented, 

and the analysis is discussed, leading to the conclusion 

section. 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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1.1. Motivation  

The motivation lies in addressing the critical need for 

energy efficiency in WSNs, especially in scenarios involving 

multiple mobile sinks. It introduces the O-MMECA scheme, 

which integrates clustering, optimal deployment of mobile 

sinks, and energy-aware routing. These mechanisms aim to 
enhance energy utilization, prolong network lifetime, and 

improve data delivery rates.  

 
1.2. Background Study 

A. M. Alabdali et al. [1] have endeavored to construct a 

system for wireless energy balancer-based clustering that was 

energy-efficient in this research. The proposed architecture 
reduces and balances the energy consumption of CHs in two 

parts.  

The first part of the given framework introduces n-level 

clustering, whereas the second portion also makes use of an 

energy balancer, whose job is to equalize energy consumption, 

therefore decreasing wasted energy and bringing the leftover 

energy of CHs to zero. 

 

M. Aydin et al. [3] The method of clustering sensor nodes 

was one approach to achieving energy efficiency and power 

balancing in WSNs. Using this method, one of the sensor 
nodes was chosen to serve as the cluster's CH. This node's job 

was to gather information from the CMs in its cluster and send 

it to the sink. An essential step for any cluster was picking the 

suitable node to act as a CH between other nodes and changing 

it at the necessary intervals.  

 

N. Ghorpade and P. Vijaykarthik [6] For the real-time 

processing of contemporary BigData applications, the ideal 

and desired paradigm was an energy-efficient WSN with 

minimal latency.  

 

He, X. et al. [7] these authors research introduce Energy-
Efficient Trajectory Planning (EETP), a MOPSO-based 

energy-efficient trajectory planning technique.  

 

O. Ogundile et al. [12] A clustered routing system with 

mobility-specific selective-path priority tables is suggested in 

this work. Using certain simple but effective criteria, the PT 

was constructed by giving precedence to the two shortest 

pathways from the source SDs to the CH nodes or the sink.  

The MSPT routing protocol has demonstrated promise for a 

long time in reducing the energy consumption of the network, 

hence extending its lifespan and improving its overall 
performance. 

 

Y. M. Raghavendra and U. B. Mahadevaswamy [14] A 

stochastic hill climbing–guided mobile sink solution was 

suggested in this paper. The paper suggested a mobile sink that 

uses stochastic hill climbing to direct its motions to optimize 

the number of relay hops. The mobile sink is reached by taking 

geographic routing steps from the node. The author compared 

the proposed approach to current methods and ran simulations 

for various network configurations.  
 

2. Problem Definition 
The existing methodologies, including MMECA, 

LEACH, PEGASIS, MMSR, and E-MMECA, have certain 

drawbacks that need to be addressed. PEGASIS, originally 

designed for static sink-based WSNs, faces scalability issues 

in scenarios with multiple mobile sinks. LEACH, while 

energy-efficient for static sink scenarios, cannot be optimized 

for multiple mobile sinks.  

 

MMSR can suffer from suboptimal routing paths and 
energy consumption in large mobile sink setups. MMECA, 

although designed for multiple mobile sinks, might still lack 

full optimization for energy efficiency and network longevity. 

E-MMECA, while an improvement over MMECA, cannot 

fully address all energy consumption challenges in dynamic 

WSN environments. 
 

3. Methods 
The proposed methodology aimed at enhancing energy 

efficiency in WSNs with multiple mobile sinks is mentioned 

in detail in this section. The methodology, named O-MMECA, 

incorporates a comprehensive approach to address the 

challenges of energy utilization and network longevity in 

dynamic WSN environments. 

 

3.1. Enhance Sink Placement 

Enhancing sink placement involves optimizing the 

positioning of data collection points, storage locations, or 
endpoints within a network or system. This process aims to 

improve data flow efficiency, reduce latency, enhance 

scalability, and optimize resource utilization by strategically 

placing sinks based on factors such as traffic patterns, 

proximity to data sources, and network topology. 

 

Analyzing the nodes sequentially is the basic premise of 

total flow analysis. Figure 2 shows that cross traffic must also 

be considered in the many sink situations. This ensures that 

the nodes with cross-traffic have precisely computed arrival 

and service curves. The arrival and service curves are 
computed for those nodes following the steps outlined in 

Algorithm 2. 

 

Starting at the sink, the first approach iteratively 

calculates the output boundaries of every node along the route 

from the source to the sink. After that, in order to get the 

effective service curve of the specified node 𝛽𝑖
𝑒𝑓𝑓

, we subtract 

𝛽𝑖  from 𝑎𝑒𝑥𝑐𝑙 . After the calculation of the output bound is 

completed, for every node, the effective service curve and the 

min-plus deconvolution of the overall traffic towards the sink 

of the flow of interest (limited by 𝑎𝑖
𝑝𝑟𝑒𝑑

) are calculated and 

saved. 
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Fig. 1 Overall architecture 

 

 
Fig. 2 Illustration of cross traffic in scenarios with multiple sinks 

  

3.2. Refine Routing Strategies 

Refining routing strategies involves optimizing the 

selection and management of paths for data, resources, or 

vehicles within a network or system. This process aims to 

improve efficiency, reduce congestion, enhance reliability, 

and minimize costs by utilizing advanced algorithms, real-

time data, and predictive analytics. 

 

 Within dense networks, we take into account a two-

dimensional wireless network comprised of 𝑛 S-D pairings 

that are evenly and independently dispersed across a square of 

unit area. For example, it is shown that the whole region is 

partitioned into 𝑢 square cells, with one single-antenna BS 

occupying the center of each cell. The assumption is that there 

are no nodes physically situated within the BSs. There is a 

relationship between the parameters 𝑛 and 𝑚. 

 

                          𝑚 = 𝑛𝛽                 (1) 

 
Also, these BSs are not considered sources or 

destinations, and it is presumed that the capacity of the BS-to-

BS linkages is limitless. It is assumed that there is a constant 

average transmit power limitation 𝑃 for each node and BS. 

While it can be present at the receivers, it is not present at the 

transmitters. Assumption: Depending on its position in the 
network, each node can transfer data packets at varying rates. 

For the entire network throughput, we use 𝑇 (𝑛). We simplify 

implementation by not assuming any complex multi-user 

detection algorithms at each receiver. 

 

What follows is a description of the uplink signal model. 

The set of wireless nodes that can transmit data at the same 

time, 𝐽 ⊂  {1,⋅⋅⋅ 𝑛} , is a subset of the total number of 

transmitters in the network. Next, for a certain time instance, 

the received signal 𝑦𝑘 at BS 𝑘 ∈  {1,⋅⋅⋅ 𝑚} is provided by 
 

𝑦𝑘 = ∑ ℎ𝑘𝑖𝑥𝑖 + 𝑛𝑘𝑖∈𝐼               (2) 

 
We can also think of an extended network with a unit 

node density as a basic network model. Even though the 

specifics are not shown in this research, it is feasible to achieve 
a logarithmic gain, also known as power gain, in extended 

networks under certain circumstances by permitting a total 
transmit power restriction 𝑍𝑃 for our BS-based transmission. 

Adapt  

to DynamicChanges 

Fine-Tune 

Parameters 

Refine Routing 

Strategies 

Enhance Sink 

Placement 

Initialization 

Improved ABC 

Algorithm 
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We think that a power gain can be achieved even for networks 

with arbitrary sizes with 𝑛, and our study can be extended to 

the general scenario where the network area ranges from 1 to 

𝑛. 

 
3.3. Fine-Tune Parameters 

To improve performance or accomplish desired results, it 

is common practice to fine-tune parameters inside a system, 

model, algorithm, or process. This involves modifying 

particular settings or variables. Software development, 

optimization, engineering, and machine learning are just a few 
of the many areas that often use this method. Hyperparameter 

tuning is a common way to fine-tune parameters in data 

science and machine learning. Model parameters, including 

learning rate, regularization strength, batch size, and model 

complexity, are controlled via hyperparameters, which are 

external variables to the model. To get the optimal 

combination of hyperparameters for example, more accuracy, 

lower error rates, or better generalization it is necessary to 

change their values and assess the model's performance 

systematically. 

 

The policy network receives the pre-trained embedding x 

S from the source domains and produces a binary vector. 𝑃𝑒
(𝑖)

 

As an output for the embedding layer. In Equation (3), the ith 

element of this vector, 𝑃𝑒
(𝑖)

(𝑥𝑠), determines whether the i-th 
feature field should use the fine-tuned embedding parameters 

or the pre-trained ones. The feature embeddings 𝑉𝑖
𝑇  are 

regulated by the policy network, and each field is chosen from 

either pre-trained or fine-tuned parameters. 

 

𝑥𝑖
𝑇 = 𝑃𝑒

(𝑖)(𝑥𝑠)𝑉𝑖
𝑆𝑋𝐻𝑜𝑡,𝑖 + (1 − 𝑃𝑒

(𝑖)(𝑥𝑆)) 𝑉𝑖
𝑇𝑋ℎ𝑜𝑡,𝑖           (3) 

 

Parameter tuning, as used in optimization and 

engineering, is the process of fine-tuning existing systems or 

process settings to get the best possible outcome. 

Manufacturing process control parameter adjustments to 
maximize output or minimize waste, numerical optimization 

algorithm parameter adjustments to converge faster to the 

global optimum, and feedback control system parameter 

adjustments to achieve desired stability and response 

characteristics are all examples of what is meant by this. 

 
3.4. Adapt to Dynamic Changes 

Systems processes can adapt to dynamic changes when 

they can fundamentally alter in response to changes in their 

environment, input data, needs, or circumstances. It shows up 

in software and hardware systems as auto-scaling web apps, 

adaptive algorithms in machine learning, and dynamic 

resource allocation in cloud computing. 

 

(1 + 𝑎1𝑧−1 + 𝑎2𝑧−2 + ⋯ + 𝑎𝑛𝑎
𝑧𝑛𝑎)𝑦(𝑘)              (4) 

 

𝑦(𝑘): Represents the output of the system at time 𝑘. 

𝑧−1, 𝑧−2, … , 𝑧𝑛𝑎 : These terms represent the time-delayed 
input signals to the system. They indicate how past input 

values affect the current output, allowing the system to capture 

temporal dynamics and adapt accordingly. 

 

Quick reaction to changing requirements is made possible 

by agile approaches in business and management, while 

organizations can adjust to growing client wants via market 
adaption strategies. In order to stay alive, biological systems 

adapt to their environments by maintaining internal stability. 

When faced with disruptions, engineering and control systems 

use resilience tactics and feedback mechanisms to keep 

performance at a desirable level. 

 

(𝑏0 + 𝑏1𝑧−1 + 𝑏2𝑧−2 + ⋯ + 𝑏𝑛𝑏
𝑧−𝑛𝑏)𝑢 (𝑘) + 𝜀(𝑘)     (5) 

 
3.5. Optimization Using an Improved ABC Algorithm 

Optimization using the improved ABC algorithm 

involves enhancing the traditional ABC algorithm to achieve 

better convergence speed, accuracy, and solution quality in 

solving optimization problems. This improvement typically 

includes modifications such as adaptive parameter tuning, 

dynamic search strategies, and enhanced exploration-

exploitation balance, resulting in more efficient and effective 
optimization processes across various domains. 

 

To determine the optimal path, the improved ABC 

algorithm employs bee populations; the "colony" is made up 

of three different kinds of bees: employed, scout, and 

bystander bees. Every bee signifies a location inside the search 

field. A bee is classified as a spectator if it waits on the "dance" 

area to select a food source, a scout if it searches randomly, 

and an employee if it returns to a food source it has already 

visited. Whereas food source locations represent prospective 

solutions, a food source's "nectar" quantity represents the 
quality (fitness) of a potential solution to the optimization 

problem. The lower part of the colony is home to observer 

bees, while worker bees occupy the upper half. 

 

The four main steps of the ABC algorithm are mentioned 

below. 1. Initialization: Pretend that the original population's 

food supply is denoted by 𝑁 and that the population size is 𝑆𝑁. 

In the optimization problem, O is the vector dimension, and 

𝑌𝑖  =  {𝑎𝑖1, 𝑎𝑖2, . . . , 𝑎𝑖𝐷}  (𝑖 =  1, 2, . . . , 𝑁) . Afterwards, the 

initially random population is 

 

𝑋𝑖 = 𝑋𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑(0, 1). (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)             (6) 

 

Here, 𝑋𝑖  represents the initial random population 

𝑋𝑚𝑖𝑛  𝑎𝑛𝑑 𝑋𝑚𝑎𝑥   minimum and maximum values of the search 

spa 𝑟𝑎𝑛𝑑(0, 1) Random number generator between 0 and 1. 

2. Population Updating: Every worker bee starts with a 

randomly assigned food source; after that, it iteratively finds a 

new food source that is nearby using (8), calculates the amount 
of nectar from that new source, and repeats the process. If one 
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food source's nectar content is greater than another's, the 

worker bee will transfer to that source; otherwise, it will stick 

with the old one. 

 

𝑉𝑖𝑗 = 𝑋𝑖𝑗 + 𝑟𝑎𝑛𝑑(−1, 1). (𝑋𝑖𝑗 − 𝑋𝑘𝑗
)                   (7) 

 

Here, 𝑉𝑖𝑗  is the new food source location for the worker 

bee 𝑖  in dimension 𝑗 , 𝑋𝑖𝑗  𝑎𝑛𝑑 𝑋𝑘𝑗    are current and other 

randomly selected food source locations, and 𝑟𝑎𝑛𝑑(−1, 1) 

function generates a random number generator between -1 and 

1. 

 

The range of the generating neighborhood of 𝑌𝑖𝑏 is 

controlled by the numerical value rand (−1, 1), where 𝑘 and 𝑎 

are both elements of the set{1, 2, 3, . . . , 𝑆𝑁}, and 𝑎 is also an 

element of the set {1, 2, 3, . . . , 𝐷}. When searching for the best 

answer, the local scope becomes smaller with time. Bee 

Source Selection: At this point, the worker bees' actions are 

dictated by the income rate (obtained from their sources using 

fitness value) 

 

                         𝑃𝑖 =
𝑓𝑖𝑡(𝑋𝑖)

∑ 𝑓𝑖𝑡𝑆𝑁
𝑛=1 (𝑋𝑛)

                     (8) 

 

Here, 𝑃𝑖 Probability of choosing the food source 𝑋𝑖 based 

on its fitness, 𝑓𝑖𝑡(𝑋𝑖)  is the fitness value of food source 

𝑋𝑖 , 𝑎𝑛𝑑  𝑆𝑁 is the number of solutions in the population. 

 

The fitness value of the solution 𝑛(𝑛) multiplied by the 

quantity of nectar from the food source 𝑛 ∈  {1, 2, 3, . . . , 𝑆𝑁} 

is called fit(𝑋𝑛). Here is how fitness is determined: 
 

𝐹𝑖𝑡(𝑋𝑛) = {

1

𝑓(𝑋𝑛)
      𝑓(𝑥𝑛) ≥ 0

1 + 𝑎𝑏𝑠(𝑓(𝑥𝑛))         𝑓(𝑋𝑛) < 0
         (9) 

 

 Here 𝑎𝑛 represents the value of the objective function for 

the bee source 𝑎𝑛 the algorithm's local exploitative ability is 

enhanced when the following bees hunt in the area of the 

sources. 
 

 Population Elimination: In the event that a particular 

solution does not show any discernible progress after 

continual limit cycle updates, it is therefore considered to have 

entered a local optimum and is discarded. In this case, the bees 

that were watching transform into scouts and, at random, 

create a new solution to take its place. 

 

𝑋𝑖𝑗 = 𝑋𝑚𝑖𝑛𝑗 + 𝑟𝑎𝑛𝑑(0, 1)(𝑋𝑚𝑎𝑥𝐽 − 𝑋𝑚𝑖𝑛 𝑗)        (10) 

 

𝑋𝑖𝑗  New food source location for scout bee 𝑖 in dimension 

𝑗. 

𝑋𝑚𝑖𝑛𝑗  𝑎𝑛𝑑 𝑋𝑚𝑎𝑥𝐽    Minimum and maximum values in 

dimension 𝑗. 

𝑟𝑎𝑛𝑑(0, 1) Random number generator between 0 and 1. 

Algorithm 1: O-MMECA 

Initialization: 

           Initialize a few parameters, such as the sensing range 

of nodes, the number of mobile sinks, etc. 

Steps:  

  Population Updating: 

 Each sensor node acts as a "bee" and randomly 

chooses a cluster to join based on proximity to the 

cluster head. 

𝑉𝑖𝑗 = 𝑋𝑖𝑗 + 𝑟𝑎𝑛𝑑(−1, 1). (𝑋𝑖𝑗 − 𝑋𝑘𝑗
)  

 Calculate the energy consumption for each node 

based on its distance to the cluster head and other 

factors. 

𝑃𝑖 =
𝑓𝑖𝑡(𝑋𝑖)

∑ 𝑓𝑖𝑡𝑆𝑁
𝑛=1 (𝑋𝑛)

  

 Update the cluster heads' positions (mobile sinks) 

based on the energy consumption and cluster 

stability criteria. 

  Bee Source Selection: 

 Based on its energy consumption, stability, and 

network coverage, calculate the fitness value for 

each cluster.  

 Compute the probability of each cluster being 
selected as a source for further optimization based on 

its fitness value. 

  Population Elimination: 

 Evaluate the performance of each cluster and 

eliminate poorly performing clusters. 

𝑋𝑖𝑗 = 𝑋𝑚𝑖𝑛𝑗 + 𝑟𝑎𝑛𝑑(0, 1)(𝑋𝑚𝑎𝑥𝐽 − 𝑋𝑚𝑖𝑛 𝑗)  

 Reassign nodes from eliminated clusters to other 

nearby clusters or create new clusters if necessary. 

  Optimized Multiple Mobile-Sink Energy Efficient 
Clustering: 

 Repeat the population updating, bee source selection 

and population elimination steps for multiple 

iterations or until convergence criteria are met. 

𝐹𝑖𝑡(𝑋𝑛) = {

1

𝑓(𝑋𝑛)
      𝑓(𝑥𝑛) ≥ 0

1 + 𝑎𝑏𝑠(𝑓(𝑥𝑛))         𝑓(𝑋𝑛) < 0
  

 Optimize the clustering structure to achieve network 

coverage, energy efficiency and stability while 
considering the mobility of sinks and the dynamic 

nature of wireless sensor networks. 

Output: 

Output the optimized clustering structure, including the 

positions of mobile sinks (cluster heads) and the 

assignment of sensor nodes to clusters. 

 
The previous answer is substituted with the new one that 

is produced via computation, and the best solution is then 

outputted as a result. The numerical value between the 

intervals of -1 and 1 is represented by rand (0, 1), and the 

maximum and lowest values are 𝑋max and 𝑋min, 

respectively, for𝑏 ∈  {1, 2, 3, . . . , 𝐷}. 
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One novel approach to intelligent population 

optimization, the ABC algorithm, has several benefits. Among 

its many advantages are the following: (1) its convergence to 

the whole is fast and relatively smooth; (2) its applicability is 

broad; (3) its parameter setup is simple in comparison to other 

optimal algorithms; and (4) its foundation in population makes 
it easy to implement and handle. 

 

4. Results and Discussion 
In this section, the results obtained from implementing the 

proposed O-MMECA are presented, and their implications 

and significance in enhancing energy efficiency in WSNs with 

multiple mobile sinks are discussed. 
 

Throughput = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑐𝑘𝑒𝑡 𝑆𝑖𝑧𝑒

𝑇𝑖𝑚𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛∗𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑎𝑐𝑘𝑒𝑡 𝑠𝑖𝑧𝑒
     (11)

Table 1. Throughput comparison table 

 Throughput   

Packet Size PEGASIS LEACH MMSR MMECA E-MMECA O-MMECA 

50 0.172 0.212 0.243 0.263 0.303 0.344 

100 0.344 0.425 0.487 0.526 0.606 0.689 

150 0.517 0.638 0.731 0.789 0.909 1.034 

200 0.689 0.851 0.975 1.052 1.212 1.379 

250 0.862 1.063 1.219 1.315 1.515 1.724 
 

Table 2. Energy comparison table 

 Energy in joules   

Number of Nodes PEGASIS LEACH MMSR MMECA E-MMECA O-MMECA 

10 0.833 0.769 0.666 0.588 0.526 0.476 

20 1.666 1.538 1.333 1.176 1.052 0.952 

40 3.333 3.076 2.667 2.352 2.105 1.904 

60 5.000 4.615 4.001 3.529 3.157 2.857 

80 6.666 6.153 5.334 4.705 4.210 3.809 

100 8.333 7.692 6.667 5.882 5.263 4.761 

 
Fig. 3 Comparison chart of the throughput 
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Table 1 and Figure 3 show throughput results that indicate 

the data transfer rates achieved in different protocols across 

varying packet sizes in WSNs with multiple mobile sinks. 

Overall, the Optimized Multiple Mobile-Sink Energy 

Efficient Clustering Algorithm (O-MMECA) consistently 

outperforms other protocols such as MMECA, LEACH, 
PEGASIS, MMSR, and E-MMECA in terms of throughput. 

Specifically, at smaller packet sizes (50 and 100), O-MMECA 

demonstrates substantial improvements over other protocols, 

with throughput values ranging from 0.344 to 1.724. As packet 

size increases, the gap between O-MMECA and other 

protocols widens, highlighting O-MMECA's efficiency in 

handling larger data payloads and maintaining high 

throughput rates, making it a promising solution for data-

intensive applications in WSNs with multiple mobile sinks by 

 

Energy = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑒𝑛𝑠𝑜𝑟 𝑛𝑜𝑑𝑒𝑠

𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑠𝑒𝑛𝑑𝑖𝑛𝑔 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑎𝑡 𝑎 𝑡𝑖𝑚𝑒𝑠
    (12) 

Table 2 and Figure 4 show energy consumption results 

reveal the energy usage in joules by different protocols as the 

number of nodes in Wireless Sensor Networks (WSNs) with 

multiple mobile sinks increases.  

 

Notably, the Optimized Multiple Mobile-Sink Energy 
Efficient Clustering Algorithm (O-MMECA) consistently 

demonstrates lower energy consumption compared to other 

protocols like MMECA, LEACH, PEGASIS, MMSR, and E-

MMECA across varying node numbers. Specifically, at higher 

node counts (80 and 100 nodes), O-MMECA achieves 

significant energy savings, with values ranging from 3.809 to 

8.333 joules. This underscores O-MMECA's effectiveness in 

optimizing energy utilization and prolonging network 

lifetime, making it a promising solution for energy-

constrained WSNs with multiple mobile sinks. 

 

Time Delay = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑒𝑛𝑠𝑜𝑟 𝑛𝑜𝑑𝑒𝑠

𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑠𝑒𝑛𝑑𝑖𝑛𝑔 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑎𝑡 𝑎 𝑡𝑖𝑚𝑒𝑠 𝑥 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑚𝑠
               (13) 

 

 
Fig. 4 Comparison chart of the energy 

 

Table 3. Time delay comparison table 

 Time (End-to-End Delay)   

Number of Nodes PEGASIS LEACH MMSR MMECA E-MMECA O-MMECA 

10 0.066 0.066 0.063 0.062 0.057 0.056 

20 0.133 0.132 0.127 0.124 0.114 0.112 

40 0.267 0.265 0.255 0.248 0.229 0.224 

60 0.401 0.398 0.383 0.372 0.344 0.337 

80 0.535 0.531 0.511 0.496 0.459 0.449 

100 0.669 0.664 0.639 0.621 0.574 0.562 
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Table 4. Packet delivery ratio comparison table 

 

 
Packet Delivery Ratio   

Number of Packets PEGASIS LEACH MMSR MMECA E-MMECA O-MMECA 

50 96.2 96.4 96.6 97.6 98.6 99.2 

100 98.1 98.2 98.3 98.8 99.3 99.6 

150 98.7 98.8 98.86 99.2 99.53 99.7 

200 99.05 99.1 99.15 99.4 99.65 99.8 

250 99.24 99.28 99.32 99.52 99.72 99.84 

 

 
Fig. 5 End-to-end delay comparison chart 

 

 
Fig. 6 Packet delivery ratio comparison chart 
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Table 3 and Figure 5 illustrate the end-to-end delay results 

and the time taken for data packets to travel from source to 

destination nodes in WSNs with multiple mobile sinks as the 

number of nodes increases. The Optimized Multiple Mobile-

Sink Energy Efficient Clustering Algorithm (O-MMECA) 

consistently exhibits lower end-to-end delays compared to 
other protocols like MMECA, LEACH, PEGASIS, MMSR, 

and E-MMECA across varying node numbers. 

 

Particularly at higher node counts (80 and 100 nodes), O-

MMECA demonstrates significant reductions in end-to-end 

delay, with values ranging from 0.449 to 0.669 seconds. This 

underscores O-MMECA's efficiency in establishing efficient 

communication paths and minimizing latency, making it a 

suitable choice for time-sensitive applications in WSNs with 

multiple mobile sinks. 

 

PDR =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑅𝑒𝑐𝑒𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑐𝑘𝑒𝑡𝑠
× 100               (14) 

 
Table 4 and Figure 6 show packet delivery ratio results 

showcase the percentage of successfully delivered packets by 

different protocols as the number of packets increases in 

WSNs with multiple mobile sinks. O-MMECA scheme 

consistently exhibits higher packet delivery ratios compared 
to other protocols like PEGASIS, MMSR, MMECA, and E-

MMECA across varying numbers of packets. Particularly at 

larger packet counts (200 and 250 packets), O-MMECA 

achieves significant improvements in packet delivery ratios, 

with values ranging from 99.05% to 99.84%.  

This emphasizes O-MMECA's effectiveness in ensuring 

reliable and robust data delivery, making it well-suited for 

applications requiring high packet delivery rates in WSNs 

with multiple mobile sinks. 

 

5. Conclusion 
Wireless Sensor Networks (WSNs) that use multiple 

mobile sinks can improve their energy efficiency and extend 

their network lifespan with the help of the O-MMECA 

scheme. As a result of its integration of clustering, energy-

aware routing, and optimum mobile sink deployment, O-

MMECA successfully solves important problems encountered 

by WSNs in dynamic situations. The clustering method 
streamlines data collection and transmission to mobile sinks 

by effectively organizing sensor nodes into clusters with 

specified Cluster Heads (CHs). This enhances resource 

consumption and increases network scalability while also 

decreasing overhead.  

 

Additionally, by strategically placing several mobile 

sinks, communication distances can be minimized, resulting 

in substantial energy savings and improved data transmission 

speeds. When an energy-aware routing protocol is 

implemented, it enhances the network's intelligence by 
optimizing data transmission channels according to node 

energy levels and network circumstances. In situations when 

energy restrictions and mobility patterns are variable, this 

adaptive routing system improves resilience and 

dependability.
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