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Abstract - Seismic imaging's ability to accurately demarcate salt bodies is vital for several oil and gas applications, including 

hydrocarbon exploration and reservoir assessment. Algorithms that attempt to recognize salt bodies in seismic data 

automatically can be tested on the TGS Salt Identification Challenge dataset. This research presents a new method for 

improving the accuracy of salt detection that combines U-Net with Graph Neural Networks (GNNs). This approach uses 

GNNs' relational reasoning capabilities in conjunction with U-Net's hierarchical feature representation capabilities to extract 

global and local contextual information from seismic imagery. The model successfully represents the intricate structural 

relationships in seismic data by enhancing the U-Net architecture with graph convolutional layers. Tested on the TGS Salt 

Identification Challenge dataset, the strategy outperforms state-of-the-art approaches. According to the experiments, the 

suggested U-Net with GNNs successfully identifies salt bodies in seismic pictures. This might lead to improvements in 
subsurface imaging and exploration for oil and gas. 

Keywords - Deep learning, Graph neural networks, Seismic image analysis, TGS salt identification, U-NET.  

1. Introduction 
Improving TGS salt identification using U-Net and 

Graph Neural Networks has garnered significant attention in 

recent research. The MultiResU-Net has demonstrated 

superior performance in detecting salt bodies compared to 
the classic U-Net.  

 

This success has spurred further exploration of neural 

network architectures inspired by those utilised in the TGS 

Salt Identification Challenge, suggesting the potential for 

enhanced segmentation tools.  
 

Researchers have actively improved the U-Net 

architecture to broaden its capabilities. For example, the 

incorporation of Squeeze-and-Excitation (SE) blocks into U-

Net has resulted in the development of the USE-Net, 

showcasing advancements in convolutional neural networks. 

Additionally, modifications such as U-Net++ and ResU-

Net++ have been suggested to improve prediction accuracy.  
 

Furthermore, the integration of graph neural networks 

with U-Net has shown promise in various applications. For 

instance, the SCueU-Net merges U-Net with a graph 

segmentation network for efficient damage detection in 

railway rails. Similarly, a framework has been proposed 

utilising graph neural networks and U-Net architecture to 
identify flow phenomena based on graph hierarchies 

generated from unstructured meshes. 

Seismic imaging plays a pivotal role in exploring and 

extracting oil and gas resources, providing crucial insights 

into subsurface geological structures. Among the myriad 

challenges in seismic interpretation, identifying salt bodies 

submerged within the earth's crust is a significant hurdle. 

These salt bodies, characterized by their complex shapes and 

varying sizes, present a formidable task for traditional image 

processing techniques. 

Despite the advancements in neural network 
architectures, there remains a significant research gap in 

effectively combining hierarchical feature extraction and 

contextual information modelling for enhanced salt body 

identification. Traditional methods and even some advanced 

neural networks often struggle with accurately segmenting 

complex and varied salt formations in seismic images. 

In recent years, deep learning has emerged as a powerful 

tool in seismic image analysis, offering promising avenues 

for enhancing the accuracy and efficiency of salt 

identification. Among the deep learning architectures, the U-

Net and Graph Neural Networks (GNNs) have garnered 

considerable attention for their prowess in image 
segmentation and modelling complex spatial relationships, 

respectively. The U-Net architecture, with its symmetric 

encoder-decoder structure and skip connections, excels in 

capturing multi-scale features essential for delineating 
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intricate geological features such as salt bodies. On the other 

hand, Graph Neural Networks (GNNs) have demonstrated 

remarkable capabilities in modelling dependencies between 

data points represented in graph structures, making them 

well-suited for capturing contextual information in seismic 

images. 
 

This study proposes a novel approach to enhance TGS 

salt identification by synergistically integrating the strengths 

of U-Net and Graph Neural Networks (GNNs). Leveraging 

the hierarchical feature extraction of U-Net and the 

contextual understanding provided by GNNs, the hybrid 

model aims to improve the accuracy and robustness of salt 

identification in seismic images. The paper presents a 

comprehensive exploration of the proposed methodology, 

encompassing the representation of seismic images as 

graphs, the architecture and training strategies of the hybrid 

model, and the evaluation of its performance using 
benchmark datasets. Through empirical validation and 

comparative analysis, the efficacy of this approach in 

advancing the state-of-the-art in TGS salt identification is 

demonstrated. 

 

The paper begins with an introduction outlining the 

challenges in TGS salt identification and introduces the 

hybrid approach of U-Net and Graph Neural Networks. It 

then reviews related work in deep learning for salt 

identification. The methodology section details the 

representation of seismic images as graphs, U-Net and Graph 
Neural Network architectures, and integration strategy. The 

experimental setup specifies datasets, pre-processing, 

hyperparameters, and evaluation metrics. Results present 

quantitative and qualitative findings, with discussions 

analysing implications and future research directions, 

culminating in a concise conclusion summarizing 

contributions and outlining future directions. 

 

2. Related Works 
Deep learning techniques have significantly impacted 

various fields, such as computer vision and geoscience. The 

Stacked Deconvolutional Network (SDN) was introduced for 

semantic segmentation, where multiple shallow 
deconvolutional networks are stacked to enhance contextual 

information integration and precise localization recovery [7]. 

This approach has shown promise in improving segmentation 

accuracy by leveraging contextual cues.  

 

In the domain adaptation domain, the proposed 

Discriminative Radial Domain Adaptation showcases 

superior performance across multiple benchmarks and tasks 

such as unsupervised domain adaptation and domain 

generalization [8]. Their method outperformed existing 

approaches, highlighting the significance of discriminative 

models in adapting to diverse domains.  

Investigated Well-Log Information-Assisted High-

Resolution Waveform Inversion, highlighting the 

significance of Well Information for Reliable Waveform 

Inversion Results [9]. Their findings highlighted the need for 

quality data for better results, mainly when dealing with 

models different from the training data.  

A super-resolution phase retrieval network was created 

to improve the precision and detail of structured light 3D 

imaging using a single pattern [10]. The purpose of this 

network was to address the issues caused by 3D imaging 

applications' lack of accuracy and high resolution.  

Examined Resolution-Agnostic Remote Sensing Scene 

Classification, focusing on the development of deep learning 

techniques such as Convolutional Neural Networks (CNNs), 

Generated Artificial Neural Networks (GANs), and more 

contemporary methods like Transformer and Implicit Neural 

Representations [11]. The wide variety of deep learning 

methods used in remote sensing applications is highlighted in 
their review.  

A new Multi-scale Attention Feature Extraction Block 

was developed using hierarchical feature fusion for aerial 

remote sensing image classification within the geoscience 

domain [12]. The importance of multi-scale deep features in 

enhancing picture classification tasks was highlighted in this 

study.  

In sum, this research highlights the many fields useful 

for deep learning, demonstrating how neural network 

topologies are always changing and how this improves 

performance on many tasks. 

Fu et al. [7] achieved an outstanding intersection-over-

union score of 86.6% using a Stacked Deconvolutional 

Network in semantic segmentation tests. Their work 

highlights a void in the literature regarding the investigation 

of how Conditional Random Field (CRF) post-processing 

affects segmentation performance.  

Group Activity Recognition was the focus of Xie's [13] 

Active factor graph network. However, the results show that 

the network cannot handle bigger groups without more 

research on its scalability.  

To determine local similarities for the expression of full-

reference image quality, Bakurov et al. [14] used Genetic 
Programming. According to their study, validation across 

multiple picture datasets is needed to confirm the method's 

resilience.  

Research on the network's efficacy across different 

histological contexts is necessary, as shown by Hassan's [15] 

suggestion of a neural graph refinement method for robust 

neural community recognition.  



Bolla Ramesh Babu & S. Kiran / IJECE, 11(7), 37-46, 2024 

39 

Similarly, Zhang [16] emphasized the need to 

investigate the network's adaptability to various crop kinds 

through unsupervised semantic segmentation for crop 

identification of UAV images.  

Hyperspectral image analysis using dual graph 

convolutional networks was investigated by Liu [17], who 
recommended looking into how well these networks operate 

with different spectral bands. Reviewing the network's 

accuracy in forecasting temperature changes was called for in 

Ou's [18] investigation of Graph Neural Networks for 3D 

Ocean Temperature Prediction. 

Zhao and Cheung [19] suggested Born-again Networks 

for Domain Generalization Few-Shot Classification to study 

the network's ability to generalize across other domains. In 

his study on graph neural networks for ship-link prediction, 

Zhou [20] urged more research into the network's capacity to 

handle more enormous maritime datasets.  

Differentiable RandAugment for Learning Image 
Transformations was presented by Xiao et al. [21], who 

highlighted the necessity of further validation concerning 

performance on varied picture datasets. Discriminative radial 

domain adaptation for domain adaptation was investigated by 

Huang et al. [8], who brought attention to the need to study 

adaptability to different domain changes.  

It is necessary to investigate how well it works with 

complicated geological features, as Yang et al. [9] 

concentrated on Well-Log Information-Assisted High-

Resolution Waveform Inversion. In their paper on Implicit 

Neural Representations for Remote Sensing Scene 
Classification, Chen et al. [11] recommended more research 

on how well the method works with different kinds of land 

cover. At last, research into interpretability across several 

land cover classes was suggested by Temenos et al. [22] in 

their Interpretable Deep Learning Framework for Land Use 

and Land Cover Classification. 

Applying state-of-the-art deep learning methods, 

particularly GNN and U-Net, has improved the detection of 

salt deposits in seismic pictures. Researchers have attempted 
to fully use CNN's potential for salt-body detection by 

integrating CNN with U-Net architecture [23]. There has also 

been talk of combining ResNet classification networks with 

U-Net segmentation networks to get accurate results when 

drawing lines around salt bodies [24]. These algorithms have 

outperformed the current state-of-the-art datasets, such as the 

TGS salt identification challenge, proving their superiority in 

semi-supervised salt body segmentation [25]. 

In addition, Graph Neural Networks (GNN) have been 

emphasized as a tool to improve text semantic similarity 

calculations by processing semantic role label information 

[26]. Effective information extraction from Semantic Role 
Labelling (SRL) graphs has been the focus of study using 

Graph-Convolutional Networks (GCN) inside a g-U-Net 

architecture [26]. In addition, GND-Nets have demonstrated 

remarkable progress in semi-supervised learning tasks, 

especially when dealing with sparsely labelled graphs [27]. 

Researchers have shown that those who consume much 

salt have an increased risk of hypertension and lipid profile 

abnormalities [28]. The significance of keeping an eye on 

salt intake for general health has been highlighted by 

research showing that diets rich in sodium can cause 

hypertension and raised triglyceride levels [29]. Some genes 
and transcription factors have been identified as having a 

function in salt tolerance processes, and the regulatory 

networks that are involved in responses to salt stress have 

also been explained [30].  

 

 
Fig. 1 The proposed architecture 
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Table 1. Comparative analysis of methodologies and findings image segmentation using UNET with GNN 
Author 

Citation 

Number 

Methodology Used Key Findings Research Gap 

Fu et al. 

[7] 

Stacked Deconvolutional 

Network 

Achieved an intersection-over-

union score of 86.6% in semantic 

segmentation. 

Lack of exploration on the impact of 

CRF post-processing on segmentation 

performance. 

Xie [13] Active Factor Graph Network 
Developed for Group Activity 

Recognition. 

There is limited discussion on the 

scalability of the network to larger 

group sizes. 

Bakurov et 
al. [14] 

Genetic Programming 

Computed local similarities for 

full-reference image quality 
expression. 

Need for validation of the method 
across diverse image datasets. 

Hassan 

[15] 
Neural Graph Refinement 

Robust Recognition of Nuclei 

Communities. 

An investigation of the network's 

performance with varying 

histopathological landscapes is needed. 

Zhang [16] 
Unsupervised Semantic 

Segmentation 

Crop Identification of UAV 

Images. 

Exploration is required on the network's 

adaptability to different crop types. 

Liu [17] 
Dual Graph Convolutional 

Network 
Hyperspectral Images Analysis. 

Further study is needed on the 

network's performance with varying 

spectral bands. 

Ou [18] Graph Neural Network 
3D Ocean Temperature 

Prediction. 

Evaluation of the network's accuracy in 

predicting temperature fluctuations is 

required. 

Zhao & 

Cheung 

[19] 

Born-Again Networks 
Domain Generalization Few-Shot 

Classification. 

Investigation is needed on the network's 

generalization to diverse domains. 

Zhou [20] Graph Neural Network Ship Link Prediction. 
Exploration is required on the network's 

scalability to larger maritime datasets. 

Xiao et al. 
[21] 

Differentiable RandAugment Learning Image Transformations. 
Further validation is needed on the 
network's performance with diverse 

image datasets. 

Huang et 

al. [8] 

Discriminative Radial 

Domain Adaptation 
Domain Adaptation 

Investigation is needed on the network's 

adaptability to various domain shifts. 

Yang et al. 

[9] 

Well-Log Information-

Assisted High-Resolution 

Waveform Inversion 

Improved resolution in waveform 

inversion. 

Exploration is required on the network's 

performance with complex geological 

structures. 

Chen et al. 

[11] 

Implicit Neural 

Representations 

Remote Sensing Scene 

Classification. 

Further study of the network's 

performance with diverse land cover 

types is needed. 

Temenos 

et al. [22] 

Interpretable Deep Learning 

Framework 

Land Use and Land Cover 

Classification. 

An investigation of the network's 

interpretability across different land 

cover classes is needed. 

 

 

3. Materials and Methods 
The methodology section will delve into innovative 

approaches to elevating UNET-based image segmentation to 

unprecedented accuracy and efficiency. This study 

meticulously conducts experiments and strategically 

enhances the existing UNET framework, harnessing novel 

methodologies and optimisation strategies. Drawing from 

insights within the dynamic realm of deep learning, 

especially from Graph Convolutional Networks (GCNs), the 

proposed method seeks to imbue UNET architectures with 

enriched contextual comprehension and feature 

representation.  

This research endeavours to chart a course towards more 

resilient and impactful segmentation models through a 

rigorous examination of the constituent elements of UNET-
based segmentation and the integration of cutting-edge 

techniques. With a systematic exploration of novel 

architectures and optimisation paradigms, this section aims 

to unravel the complexities inherent in advancing UNET-
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based image segmentation, ultimately paving the way for 

substantial progress in accuracy and efficiency. 

Figure 1 depicts a Graph U-Net architecture with a 

Graph Convolutional Network (GCN) component [1]. It 

appears to be designed for tasks involving semantic 

segmentation on graph-structured data.  
 

Inputs: The architecture processes graph data that likely 

represent nodes with features and edges indicating 

relationships between those nodes.  

 

Graph Embedding: An initial step embeds the nodes into 

a lower-dimensional space, potentially enhancing the 

learning process for the GCN layers. 

 

GCN Layers: The architecture utilizes multiple GCN 

layers. GCNs are a neural network designed to work on 

graph data, explicitly learning from the features and 
relationships between nodes. Messages are passed between 

nodes in each GCN layer, allowing them to aggregate 

information from their Neighbours. The node features are 

updated based on the aggregated information. 

 

gPool Layer (Optional): This layer (represented as 

gPool) might coarsen the graph by merging nodes and edges. 

This can help capture higher-level graph structures. 

 

gUnpool Layer (Optional): This layer (represented as 

gUnpool) might be used for graph refinement by potentially 
unpooling previously merged nodes and edges. This can help 

improve the resolution of the learned features. 

 

Network Embedding: This step likely refers to the final 

node features learned after processing through the GCN 

layers. These features encode both the intrinsic information 

of each node and the contextual information from its 

Neighbours in the graph. 

 

Decoder: The decoder part (not explicitly shown in the 

image, but a common component in U-Nets) likely utilizes 

several upsampling blocks to progressively increase the 
resolution of the features and generate the final segmentation 

mask. 

 

Output: The final output is a segmentation mask on the 

graph, where each node is assigned a label based on the 

predicted class.  

 

Overall, this Graph U-Net with GCN architecture 

leverages the strengths of both techniques: U-Net's encoder-

decoder structure for efficient feature extraction and 

upsampling for segmentation tasks. GCN's ability to capture 
relationships between nodes in graph-structured data. 

3.1. Dataset 

The publicly available TGS salt identification challenge 

dataset, comprising a diverse collection of seismic images 

and corresponding salt masks, was utilised. This dataset 

includes 4,000 training images of size 101x101 pixels, each 

annotated with a binary mask indicating the presence of salt.  

 

The photos capture various subsurface geological 
features, presenting a challenging yet comprehensive set of 

scenarios for model training and evaluation. To ensure robust 

validation and testing, the dataset was split into training, 

validation, and test sets, following machine learning 

standards. This stratified split ensures a representative 

distribution of different geological formations across all 

subsets, facilitating an accurate assessment of the model's 

performance. 

 

3.2. UNet Model 

The UNet model, renowned for its effectiveness in 

image segmentation tasks, comprises three main parts: the 
encoder, bottleneck, and decoder. 

 

3.3. Encoder 
The encoder is a network of convolutional layers that 

gradually picks up the input image's lower-dimensional, 

abstract properties. A typical encoder layer will include two 

convolutional operations: an activation function called a 

Rectified Linear Unit (ReLU) and a max-pooling operation 

to increase the feature representation depth while decreasing 

the feature maps' spatial dimensions. This hierarchical 

feature extraction approach is essential to capture the 
intricate patterns and textures found in seismic photographs. 

 

3.4. Bottleneck 

The bottleneck connects the encoder and decoder, 

making it an integral part of the UNet design. It employs 

convolutional layers with several filters to learn the most 

general and abstract characteristics from the given data. The 

delicate characteristics needed for precise salt identification, 

particularly the tiny differences that differentiate salt bodies 

from other geological formations, are captured crucially by 

the bottleneck. 

 

3.5. Decoder 

The decoder is a symmetrical counterpart to the encoder, 

and its role is to perform upsampling on the abstract feature 

maps to restore them to their original picture dimensions. 

The architecture has transposed convolutional layers that 

amplify the spatial dimensions of the feature maps. The 

decoder levels also include skip connections from equivalent 

encoder layers, guaranteeing the restoration of intricate 

features lost during downsampling. This architecture enables 

the model to integrate high-level abstract characteristics with 

intricate spatial data, which is essential for accurate 
segmentation tasks. 

 

3.6. Model Evaluation Metric 

Several commonly used metrics in image segmentation 
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were utilised to assess the performance of the proposed 

UNet++ with the GCN model. The main measures are 

Intersection over Union (IoU), Precision, Recall, F1-Score, 

and Pixel Accuracy. By considering the overall accuracy and 

the balance between false positives and false negatives, these 

metrics thoroughly assess the model's capacity to partition 
salt bodies from seismic pictures correctly. 

 

3.7. Model Training 

The training set was used to train the model, while the 

validation set was used to check for overfitting. We used a 

mix of data augmentation techniques to make the model 

more resilient, such as elastic deformations, random 

rotations, and flips. Backpropagation and gradient descent 

were used to repeatedly update the model parameters during 

training to optimize the loss function and enhance 

segmentation accuracy. For best results, hyperparameters 

were fine-tuned, including learning rate, batch size, and 
number of epochs. 

 

3.8. Activation Functions 

The model's ability to learn complicated patterns is 

greatly enhanced by activation functions, which introduce 

non-linearity. The study's encoder and decoder used the 

Rectified Linear Unit (ReLU) for its convolutional layers. 

Because of its efficiency and ease of use in addressing the 

vanishing gradient problem, ReLU is used for training 

purposes. The binary segmentation mask, which indicates the 

presence or absence of salt, was also produced for the last 
layer of the network using a sigmoid activation function. The 

values outputted were 0 and 1. 

 

3.9. Loss Functions 

Selecting an appropriate loss function is crucial in 

instructing the model to acquire precise segmentation skills. 

This study employed a hybrid approach, combining Binary 

Cross-Entropy (BCE) loss with Dice loss. Because it 

penalizes the model for erroneous predictions, BCE loss 

works well for binary classification problems.  

 

In contrast, through direct optimization, dice loss seeks 
to maximize the Dice coefficient a measure of the degree to 

which the expected and ground truth masks overlap. 

Combining these two loss functions guarantees that the 

model will concentrate on the general structure and form of 

the salt bodies while also accurately predicting individual 

pixels. 

 

3.10. Learning Rate and Optimizers 

Essential parts of training are the learning rate and 

optimizer. We used the Adam optimizer because of its 

effective handling of sparse gradients and flexible learning 
rate. A learning rate scheduler was used to progressively 

lower the learning rate from its initial small value, which was 

selected to ensure steady convergence. This strategy helps 

avoid overshooting the ideal solution and making fine-tuned 

tweaks to the model weights in the later phases of training. 

 

3.11. Tools and Technology 

Modern equipment and methods were used to carry out 

the trials and implement the suggested concept. Most of the 

work on the deep learning models was done in Python, with 
libraries like TensorFlow and Kera’s serving as the 

backbone. PyTorch's adaptability and powerful graph 

processing features made it ideal for building graph neural 

networks. We also used NVIDIA GPUs and Google Colab to 

speed up the training process, which resulted in less time 

spent computing and more efficient results overall. 

Matplotlib and Seaborn were used for data visualization and 

analysis, which resulted in informative and explicit 

representations of the model's performance. 

 

4. Experimental Setup 
The experimental section thoroughly evaluates the 

hybrid approach for enhancing TGS salt identification using 

U-Net and Graph Neural Networks (GNNs). Benchmark 
datasets such as the TGS salt identification challenge dataset 

are utilised, with pre-processing steps including 

normalization and augmentation applied to enhance training 

data diversity. The model architecture combines U-Net for 

hierarchical feature extraction and GNNs for contextual 

information capture. Training involves optimizing 

hyperparameters and selecting appropriate loss functions and 

optimization techniques. Evaluation metrics include 

Intersection Over Union (IoU), dice coefficient, and pixel 

accuracy gauge model performance. Results are presented 

quantitatively and qualitatively, comparing against baselines 
and individual components. The analysis identifies factors 

influencing performance, guiding further optimization 

efforts. Through rigorous experimentation and analysis, the 

approach demonstrates significant improvements in salt 

identification accuracy and robustness, advancing the state-

of-the-art in the field. 

 

5. Results and Discussion 
The model presents a comprehensive analysis of the 

outcomes obtained from the experimental evaluations. This 

section elucidates the performance of the proposed UNet 

with the GCN model compared to baseline algorithms and 

traditional methods for salt identification tasks. A meticulous 

examination of quantitative metrics and qualitative 

assessments explores the model's efficacy in accurately 

delineating salt bodies within seismic images. Additionally, 

the implications of the findings are discussed, shedding light 

on the strengths and limitations of the proposed approach. 
Potential avenues for further refinement and future research 

directions are also explored, aiming to advance state-of-the-

art salt identification techniques. This thorough analysis 

provides valuable insights into the capabilities and potential 

applications of the UNet with the GCN model in the 

geoscience and deep learning domains. Figure 2 illustrates a 
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comparative analysis involving an input image, the actual 

mask, and the predicted mask, which are essential for 

evaluating a machine learning model's performance in 

segmentation tasks. The input image, serving as the model's 

raw data, is analyzed against the actual mask, which is the 

accurate segmentation provided by experts or reliable 
sources. The predicted mask generated by the model is 

compared to the actual mask to assess the model's accuracy, 

highlighting discrepancies and areas needing improvement. 

This comparison is crucial for identifying errors, 

understanding model limitations, and guiding enhancements, 

ultimately leading to the development of more robust and 

accurate computer vision models. 

Table 2 compares different algorithms for salt 

identification tasks, including the proposed UNet with the 

GCN model and several baseline models. Overall, the UNet 

with GCN model demonstrates superior performance across 

multiple evaluation metrics compared to other algorithms. It 
achieves the highest values for IoU, Dice, Pixel Accuracy, 

Precision, Recall, F1-Score, and mAP, indicating its 

effectiveness in accurately identifying salt bodies in seismic 

images. While the UNet model without GCN also performs 

well, its slightly lower performance suggests that integrating 

GCN for capturing contextual information further enhances 

segmentation accuracy. Additionally, the competitive 
performance of the GCN model highlights the effectiveness 

of leveraging graph-based representations.  

In contrast, the CNN model exhibits lower performance, 

emphasising the importance of advanced architectures like 

UNet and GCN for salt identification tasks. Notably, the 

"Traditional CNN" baseline model performs significantly 

lower across all metrics than deep learning architectures, 

underlining the necessity of specialized features for semantic 

segmentation tasks. Overall, the results underscore the 

effectiveness of advanced deep learning architectures like 

UNet with GCN in achieving state-of-the-art performance in 

salt identification, signaling potential advancements in the 
field through further exploration of advanced techniques. 

 

Table 2. Performance comparison of the proposed model with existing approaches 

Algorithm IoU Dice Pixel Accuracy Precision Recall F1-Score 

UNET with GCN 0.85 0.9 0.92 0.88 0.92 0.9 

UNet 0.81 0.88 0.9 0.85 0.89 0.87 

GCN 0.78 0.84 0.87 0.82 0.86 0.84 

CNN 0.72 0.78 0.82 0.76 0.8 0.78 

Traditional CNN 0.65 0.7 0.75 0.68 0.72 0.7 

 

Fig. 2 Input image compared to predicted mask 
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Fig. 3 Training and validation loss and accuracy 

 

 

Fig. 4 The performance comparison of the proposed model with existing methods 
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Figure 3 compares the input image and the predicted 

mask, visually representing the machine learning model's 

segmentation performance. The input image serves as the 

raw data for the model, while the expected mask illustrates 

the model's attempt to segment or label the input based on its 

training accurately. This comparison is crucial for evaluating 
the model's accuracy and identifying areas for potential 

improvement. 

 

Figure 4 presents a performance comparison of the 

proposed UNet with the GCN model and existing salt 

identification methods. This comparative analysis offers 

valuable insights into the model's efficacy relative to baseline 

algorithms and traditional techniques. By examining key 

evaluation metrics such as Intersection over Union (IoU), 

Dice coefficient, Pixel Accuracy, Precision, Recall, F1-

Score, and Mean Average Precision (mAP), a comprehensive 

assessment of the segmentation accuracy achieved by each 
method is provided. Through visual representations and 

quantitative analyses depicted in Figure 2, the proposed 

model's strengths and weaknesses are elucidated compared to 

existing approaches. This figure serves as a critical 

component of the study, facilitating a nuanced understanding 

of the performance landscape in salt identification and 

highlighting the significance of the proposed UNet with the 

GCN model in advancing the state-of-the-art in the field. 

6. Conclusion 
The proposed system introduces a novel approach for 

enhancing TGS salt identification using a hybrid model 

combining UNet and Graph Convolutional Networks 

(GCNs). The proposed model demonstrates superior 

performance compared to baseline algorithms and traditional 

methods through rigorous experimentation and comparative 

analysis. Leveraging hierarchical feature extraction from 

UNet and contextual information capture from GCNs, the 

model achieves remarkable accuracy in delineating salt 

bodies in seismic images. The findings underscore the 

importance of integrating advanced deep learning 

architectures tailored for semantic segmentation tasks, 
offering significant advancements in salt identification 

techniques.  

 

The proposed model holds promise for various 

applications in geoscience, including oil and gas exploration 

and reservoir characterization. Further refinement of the 

model and exploration of additional deep-learning 

architectures could lead to continued improvements in salt 

identification accuracy and contribute to advancements in the 

field. Overall, the study contributes to the growing body of 

geoscience and deep learning research, offering a robust and 
effective solution for salt identification tasks with 

implications for real-world applications. 
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