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Abstract - The IEEE 802.11af standard is a wireless local area network that operates in the television white space, requiring it 

to avoid inducing damaging interference to licensed users such as incumbent digital and television services. To achieve this, 

precise tools for estimating path loss are essential to prevent both underestimation and overestimation, which could either limit 

the coverage of White Space Devices (WSDs) or fail to adequately shield primary or licensed users from unwanted emissions 

produced by secondary WSDs. This paper examines and compares the performance of various models for path loss, including 

Free Space Path Loss (FSPL), relevant portions of Recommendation ITU-R P.1411-11, and the linear and logarithmic regression 

models, against field measurement data to identify the most suitable path loss estimation model. The findings indicate that the 

logarithmic regression model exhibits the Root-Mean-Square Error (RMSE) that has the best performance, with a mean 

estimation error of 5 dB across all experimental locations where measurements were conducted. Additionally, the study suggests 
that the path loss model for free space can effectively provide a conservative path loss estimate for all sites, with an average 

overestimation of 18 dB, thereby ensuring adequate protection for primary users against potential interference from secondary 

users. 

Keywords - IEEE 802.11af, Path loss, TV white space.  

1. Introduction  
Since its inception, the TV white space tests and 

deployment initiatives have gained momentum worldwide 

with varying applications like linking a far-flung community 

in Bhutan (Asia Pacific) to quality health care to streaming 

daily live recordings in a London zoo of animals on YouTube 

(Europe); to providing broadband connectivity to select 

schools within a 10 – kilometre radius in Cape Town, South 

Africa (Africa) interference-free to primary users of licensed 

spectrum. The technology has proven its ability to address the 

gap in the digital divide and accessibility to inexpensive 

internet connectivity especially in distant areas hardly or yet 

to be reached by broadband services [1].  

The Institute of Electrical and Electronics Engineers 
(IEEE) developed and issued in 2013 the IEEE 802.11af 

standard as a Wireless Local Area Network (WLAN) that is 

based on cognitive radio technology and operates in TV white 

space [2]. It permits unlicensed or primary users to 

opportunistically and dynamically use the unoccupied 

frequency in the TV band. In [3], the IEEE 802.22 as a 

backhaul and the IEEE 802.11af device were interfaced to 

demonstrate the possibility of extended internet coverage 

using these white space devices. The same devices were used 

both as Access Points (APs) and Stations (STAs) to implement 

a multi-hop network [4] successfully. This demonstrated the 

ability of this standard to create an Information and 

Communications Technology (ICT) network that is robust and 

easily deployable, especially in times of calamities. Further, in 
a suburban environment, devices compliant with IEEE 

802.11af standard successfully demonstrated Vehicle to 

Infrastructure communications (V2I) and Vehicle to Vehicle 

(V2V) communications [5, 6]. 

But just like any other TV white space devices, the 

operation of devices that follow the IEEE 802.11af 

specifications should ensure the protection of Primary 

Licensed Users (PUs) such as incumbent Digital TV (DTV) 

broadcast services at all times by not causing harmful 

interference to it. Figure 1 shows the basic concept of TV 

white space regulation and operation. A primary user, such as 

a TV broadcast station assigned to operate at channel k, has a 
predefined service contour that serves as a protected area of 

operation for the station. A TV white space secondary users 
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must not be permitted to operate inside this protected service 

contour until the 4 km to 31.2 km additional separation keeps 

out the distance that must be tracked from the edge of the safe-

guarded area [7]. To be able to comply with this requirement, 

an accurate model to predict path loss must be utilized to 

prevent overestimation that unnecessarily limits the regions 
where white space devices can operate or underestimate path 

loss that results in insufficient protection of primary users 

from destructive interference originating from WSDs. An 

IEEE 802.11af–compliant device must use path loss models 

that are essential in defining appropriate locations for access 

points that will ensure optimum coverage area. It also aids in 

assessing the hazards of interference that IEEE 802.11af - 

compliant devices may cause to licensed existing users. 

Fig. 1 TVWS device regulation basic concept [7] 

 

This study, conducted within the University premises, 

involved measuring propagation loss in a low-rise 
urban/suburban setting. The aim was to assess the 

effectiveness of various models for path loss, including Free 

Space Path Loss (FSPL), pertinent sections of ITU-R P.1411-

11 Recommendation, as well as linear and logarithmic 

regression models that were compared on the basis of field 

measurement data to define the model that can give the most 

accurate estimation of path loss. The findings revealed that the 

logarithmic regression model exhibited the Root-Mean-

Square Error (RMSE) that has the best performance, with a 

mean estimation error of 5 dB across all three test locations in 

the measurement campaign. Additionally, the study concludes 

that the path loss model for free space can reliably provide a 
conservative estimate for all sites, with an average 

overestimation of 18 dB, thereby ensuring adequate protection 

for primary users against potential interference risks from 

secondary TV white space devices. 

This paper is organized as follows: Section 2 discusses 

the literature review, and Section 3 details the experimental 

locations and measurement setup, with accompanying 

illustrations. This is followed by Section 4, which outlines the 

path loss models and associated calculations. Section 5 

examines and evaluates the results, while Section 6 concludes 

the study. 

2. Literature Review  
Path loss, also known as attenuation, refers to the decrease 

in strength of a radio frequency signal as it propagates from 

the transmitting source to the receiving destination through a 

communication channel, leading to diminished received signal 

power. This phenomenon is typically quantified in Decibels 

(dB). Several factors contribute to path loss, including 

transmitter power, gains of the antenna, frequency, and the 

transmitter-receiver distance [9]. Path loss prediction models 

serve as essential tools in the design and optimization of 

performance for most networks and applications. 

In reference [9], the parameters for the path loss model 

for both Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS) 
environments were derived through an indoor experiment 

conducted as part of the pilot program of the United 

Kingdom’s Office of Communications (Ofcom). This study 

also analyzed the measured path loss variation in indoor 

propagation utilizing IEEE 802.11af prototype devices and 

using log-normal and extreme value statistical distributions. 

Further, the same study examined the characterization and 

throughput estimation of the devices' performance. In 

reference [10], the potential interference-free coexistence 

among DTV receivers and IEEE 802.11af transmitters was 

investigated by determining the mandatory separation 
distance between the protected channel area and the TVWS 

device through the application of ITU-R P.1411-7 

recommendations. The latter specifies guidance on calculation 

techniques and data propagation for designing short-range 

outdoor radio communication systems and local networks 

within 0.3 to 100 GHz. Previous studies cited in references 

[12-15] utilized the same recommendation to compute the 

networks’ path loss. Specifically, references [14, 15] applied 

it to predict path attenuation for planning 802.11n networks 

operating in urban areas. 

In an agricultural area, to estimate large scale fading at 

433 MHz of transmitted radio signals along various routes, 
measurement campaigns were performed to acquire 

topographical profile and path loss data. Using the measured 

data, the models were then fitted [16]. Path loss estimation 

models based on the principle of and procedure in Machine-

learning were presented in [17]. On the other hand, [18] made 

use of environmental feature extraction of images taken from 

satellites to improve path loss prediction. A recent study used 

Artificial Intelligence techniques to model path loss for 

networks in diverse settings for cellular mobile [19]. 

Some studies used regression models to study and 

measure path loss or signal attenuation. Linear regression over 
networks with communication guarantees was studied in [20] 

while presented in [21] as an Access Point that served as a 

basis for indoor localization and used regression to investigate 

and quantify the amount of signal reduction triggered by the 

complex interior surroundings. Linear regression was also 

applied for Wireless Sensor Network time synchronization 
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[22]. To optimize a wireless sensor network for a smart city 

application, a study conducted in [23] presented a model that 

is based on linear regression. 

Based on the works mentioned above, it can be deduced, 

except for the study in [4], that not much attention has been 

given to path loss prediction models for low-power IEEE 
802.11af-based networks deployed outdoors. Considering that 

this network operates on a spectrum-sharing principle hence, 

interference with primary users must be avoided, and this 

matter must be addressed. This paper summarizes and 

evaluates the performance of some path loss models, including 

Free Space (FSPL), ITU-R P.1411-11 Recommendation, 

linear and logarithmic regression models, and compared them 

against the data obtained from field measurement to obtain the 

prediction model that best suits a network that conforms with 

the IEEE 802.11af standard and prototypes. 

3. Experimental Sites, NICT Devices and 

Measurement Setup  
3.1. Experimental Site  

 
Fig. 2 Aerial view of USC-Talamban Campus 

 

Figure 2 shows the aerial view of the University premises 

where the radio field tests were performed, and measurements 
were obtained. It is a private Catholic university located in 

Cebu City, Philippines that measures a land area of 

approximately 83 hectares. Only a limited number of 

buildings can be found inside its premises, while the 

remaining area is open vegetation. The building structures 

inside are mostly made of concrete bodies or frames, wooden 

doors and window glasses. These buildings have a height that 

normally runs from 15 m to 20 m. The hilly landscape makes 

it an appropriate representation of mountains and foliage in the 

middle of the AP and STA of a wireless network.   

The three selected experimental sites within the campus 

were chosen to reflect different suburban transmission 
environments. Location 1 (Loc1) is a dual street with a lane 

that measures 15 meters in width, bordered by a pedestrian 

road lined with residential houses and low-rise structures. On 

the left side are rows of trees extending approximately 100 

meters alongside a 5-story building. This location spans 

around 170 meters from the University's main gate to the first 

gate, although only about 150 meters were included in the 

research due to either dead zones or weak, intermittent signals 

within the first 20 meters. Location 2 (Loc2) features a 10-
meter road nestled amidst a row of trees, with minimal 

vehicular and pedestrian traffic. It extends for a total of 155 

meters. Lastly, Location 3 (Loc3) consists of a 20-meter road 

flanked by low-rise edifices on either side, surpassing the 

antenna height of both the AP and STA. This location spans 

approximately 290 meters. Across all sites examined in this 

study, there exists a direct Line-of-Sight (LoS) between the 

Access Point (AP) and Station (STA). 

3.2. NICT Prototype Devices and Measurement Setup 

The radio equipment utilized in this research, serving both 

as a transmitter and receiver, is the prototype manufactured by 

Japan’s National Institute of Information and 
Communications Technology (NICT), the IEEE 802.11af. 

This device conforms to the guidelines set by the European 

Telecommunication Standards Institute. 

The Physical (PHY) and Medium Access Control (MAC) 

parameters of the prototype are outlined in [2]. It features a 

maximum 20 dBm power output and possesses 30 x 23 x 20 

cubic cm dimensions. Figure 3 depicts both the front and rear 

views of the device. The available Modulation and Coding 

Scheme (MCS) ranges from index 0 to index 7, with 

achievable data rates for a single spatial stream detailed in 

[24]. However, for this study, only MCS0 is employed, 
utilizing BPSK modulation with a coding rate of ½.  

Figure 4 illustrates the measurement setup used 

throughout the conduct of this study. A 1.7 m-high AP was 

used as the transmitter with 20 dBm transmit power. The STA, 

with a height of 1.2 m, was configured similarly to that of the 

AP. An omnidirectional whip antenna with an isotropic gain 

of about 2.2 dB was used for both devices. An SMA-SMA RF 

cable was used to connect the antenna to the NICT device. The 

cable is assumed to have a cable loss of 1.0 dB. Throughout 

the measurement campaign, the channel bandwidth was set at 

6 MHz, centred at 593 MHz. This is equivalent to the 

Philippines’ UHF Channel 34. At each experimental location, 
the position of the Access Point was fixed while the Station 

was moved every 5 meters from the AP. At each position, the 

received signal power was measured in dBm, averaged in a 2-

minute duration, and then recorded. 

 

Based on the mentioned parameters, measurements were 

taken and then fitted to the free space model, to the appropriate 

sections of ITU-R P.1411 – 11 Recommendations, and the 

linear and logarithmic regression models to determine the path 

loss prediction method that best fits the gathered and recorded 

data. 
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Fig. 3 Front and rear view of the IEEE 802.11af Prototype built by NICT 

 
Fig. 4 Measurement setup illustration 

4. Path Loss Models and RMSE Computations  
The IEEE 802.11af standard operates on the principle of 

cognitive radio. As a WLAN function within a TV band, the 

utilization of path loss models becomes crucial. These models 

serve as essential tools for determining optimal locations for 
Access Points, thereby ensuring the widest possible signal 

coverage. By accurately predicting path loss, network 

planners can strategically deploy Access Points to maximize 

coverage while minimizing interference and signal 

degradation, thus enhancing the overall reliability and 

performance of the network. As a secondary device, it must 

also prevent destructive interference to prevailing licensed, 

primary users such as DTVs. Hence, precise path loss 

estimation models for white space devices become 

indispensable to avoid overestimation that will needlessly 

limit the regions where the white space devices can function 
or to prevent path loss underestimation that will fail to shield 

DTVs from damaging interference coming from WSDs. The 

following models for path loss were considered in this study:  

4.1. Measured Path Loss (MPL) Computation  

The measured strength of signal power is converted to 

measured path loss by means of Equation 1.  

   Measured Path Loss (dB) = PtdBm + GtdB + GrdB + PrdBm   (1) 

Where, PtdBm is the 20 dBm AP transmitter power fixed 

for all field experiments conducted in this study, PrdBm is the 

recorded signal power at the receiving STA,  GtdB and GrdB 

are the AP and STA antenna gain, respectively, which were 

both fixed at 2.2 dB isotropic. 

4.2. Path Loss Model in Free Space 

Free Space Path Loss (FSPL) is a popular prediction 

model for estimating the amount of signal power received 
when there is a clear, unhindered, direct path separating the 

transmitter from the receiver. Similar to many radio wave 

propagation models that are large-scale, the FSPL model 

estimates that received signal strength deteriorates in 

accordance with the Tx - Rx separation distance raised to some 

power. In free space, Friis's formula expresses the antenna 

received power originating from a transmitting antenna at a 

distance d as 

Pr(d) =  
PtGtGrλ2

(4π)2d2L
                                   (2) 

𝑃(𝑑) depends on various factors: 𝑃𝑡 denotes the 

transmitted power, 𝐺𝑡 and 𝐺𝑟 represent respectively the 

transmit and receive antenna gains. 𝑑 stands for the Tx – Rx 

separation, while 𝜆 represents the wavelength. Both 𝑑 and 𝜆 

are expressed in meters. Additionally, system loss not 

associated with propagation is denoted by 𝐿. 

The variance between the transmitted power and the 

received power is what constitutes path loss. Measured and 

expressed in Decibels (dB) as a positive quantity representing 
signal attenuation, it may or may not include antenna gains, 

but when excluded, the antenna gain is assumed to be of unity 

value. Equations 3 and 4 define two mathematical expressions 

for the free space path loss model as  

FSPL = 10log
Pt

Pr 
= −10log (

λ2

(4π)2d2)                    (3)   

  FSPL = 32.45 + 20logfMHz + 20logdKm     dB             (4) 

The received power Pr obtained from the Friis free space 

equation is valid only if obtained for distances d that are 
within the propagating antenna’s far field region [8]. 

 

4.3. ITU-R P.1411 – 11 Recommendation [11]  

The Recommendation is applied in the range spanning 0.3 

to 100 GHz, specifically for short-range outdoor propagation 

scenarios. It guides fundamental transmission loss models 
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tailored for NLoS and LoS conditions, as well as multipath 

models suitable for environments like street canyons and areas 

with over rooftops. Additionally, it addresses factors such as 

building entry loss, the count of signal components, fading 

effects, and polarization characteristics. Compatibility studies 

can also utilize this Recommendation. For this work, only 
Sections 4.1.2 and 4.3.1 were considered. 

 

4.3.1. Section 4.1.2 Line-of-Sight (LoS) path  

Three levels of station location are considered in ITU – R 

P.1411. Nevertheless, this study focuses on a specific scenario 

where the Access Point is positioned beneath the rooftop but 

overhead level, while the Station is situated at head level. This 

setup mirrors a micro- or pico-cellular network 

communication setting, typically found in low-rise urban or 

suburban areas, where signal transmission primarily occurs 

within street canyons. Consequently, the site-specific model 

outlined in Section 4.1.2 was utilized accordingly.  

With the two-ray plane model as the basis, Equation 5 

defines the approximate lower bound (LoSL) for signal 

transmission in the UHF range as follows. 

LOSL = Lbp + {
20 log10 (

d

Rbp
)         for d ≤ Rbp

40 log10(
d

Rbp
)         for d > Rbp

              (5) 

The breakpoint distance Rbp in meters is estimated using 
the formula 

Rbp ≈  
4HtxHrx

λ
                                        (6) 

Here, Hrx and Htx represent the receiving and 

transmitting antenna height, respectively, and λ denotes the 

wavelength. All measurements are in meters. Equation 7 

provides an approximate upper limit for Line-of-sight (LoSU) 

concerning distances shorter than, equal to, or greater than Rbp 

expressed as 

    LOSU = Lbp + 20 + {
25 log10 (

d

Rbp
)          for d ≤ Rbp

40 log10(
d

Rbp
)          for d > Rbp

       (7) 

At the breakpoint, 𝐿𝑏𝑝 represents the fundamental 

propagation loss calculated as: 

Lbp = 20 log10(
λ2

8πHtxHrx
)                         (8) 

The 20 dB in Equation 7 is the upper bound fading 

margin. 

4.3.2. Section 4.3.1 Site-General Model  

Section 4.3.1 presents the model designed for signal 

transmission between AP and STA terminals, positioned from 

beneath rooftop height to proximate street level. This model 

encompasses statistical data on location variability for LoS 

and NLoS areas. The model is derived from studies performed 

with antenna heights ranging from 1.9 to 3.0 meters above 

ground level, AP – STA separation extending up to 3 

kilometers, and is applicable within the frequency of 0.3 to 3 

GHz. The necessary parameters for this model include the 

frequency 𝑓 in Megahertz and the separation distance 𝑑 in 

meters between the devices. This research work only includes 
those with LoS links with the variability of location at a 

distance d (LoS(d,p)) defined in Equation 9 as: 

𝐿𝑜𝑆(𝑑, 𝑝) = 32.45 + 20𝑙𝑜𝑔10𝑓 + 20𝑙𝑜𝑔10 (
𝑑

100
) + ∆𝐿𝑜𝑆(𝑝)   (9) 

Given the location percentage p(%) and δ = 7 dB, the  

∆LoS(p) is given as: 

∆LoS(p) = 1.5624∆ ((√−2 ln (1 −
p

100
)) − 1.774)     (10) 

4.4. Regression Models [25], [26], [27] 

A statistical technique for approximating the relationships 

between one or more independent variables (also referred to 

as 'predictors' or 'explanatory variables') and a dependent 
variable (frequently termed the 'response' or 'outcome' 

variable) is known as Regression analysis while a regression 

model specifies a function that describes the correlation 

between these variables. Regression analysis is primarily 

applied for prediction or, forecasting or inferring causal 

relationships between the dependent and independent 

variables. It generates a mathematical model to describe the 

statistical correlation between variables. In this section, 

regression analysis is applied as a modelling technique to find 

a curve (or line) that best models or fits the data collected from 

real-world observations. In this study, linear and logarithmic 
models were considered in predicting path loss in dB.  

For both the linear and logarithmic regression models, the 

R2 value or the determination coefficient is computed. R2 

measures statistically how the fitted regression line accurately 

represents the measured or observed data. While the lower 

value of Root Mean Squared Error (RMSE) implies a 

regression model with higher accuracy, however, a higher 

value of R – squared is deemed necessary. In the linear 

regression model, R-squared is used to indicate how 

effectively the independent variables account for the 

variability in the dependent variable. It is the ratio of the sum 

of squares of residuals from the regression model (SSE) and 
the Total Sum of Squares (SST) of errors from the average 

model subtracted from 1. Mathematically, it is defined as 

               R2 = 1 −
SSE

SST
= 1 −

∑(yi−ŷ)2

∑(yi−y̅)2
                     (11) 

R2 ranges from 0 to 1, with values near 1 signifying a 
better fit of the regression model to the data. 

4.4.1. Linear Regression  

The most common form of regression analysis consisting 

only of one response or dependent variable y and one 

explanatory or independent variable x where the relationship 

between these variables is modeled using basic algebra is 
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simple linear regression. It does this by essentially fitting a 

best-fit line and observing how the data is spread around this 

line.  

If the population parameters, β0 and β1, are known, the 

simple linear  regression equation is written as : 

E(y) = β0 + β1x        (12) 

Where, for a given value of x, E(y) is the mean value of 

y; β0 is the y - intercept population parameter, and β1 is the 

slope population parameter. But in reality, population 

parameters are hardly available. Therefore, these parameters 

are estimated using sample data as follows: 

ŷ = b0 + b1x               (13) 

Where, b0 is the sample intercept that estimates the 

population intercept β0; and  b1 is the sample slope that 

estimates the population slope β1. 

The following formulas are used to solve for b0 and b1, 

respectively: 

b0 = y̅ − b1x̅       (14) 

b1 =
∑(xi−x̅)(yi−y̅)

∑(xi−x̅)2        (15) 

Where, x̅ is the mean of the independent or explanatory 

variable; xi is the i-th value of the independent variable; y̅ is 

the mean of the dependent variable; yi is the i-th value of the 

response variable (observed or measured value), and ŷi is the 

estimated (predicted) value of the dependent variable. 

4.4.2. Logarithmic Regression  

Logarithmic regression is commonly employed to model 
real-world phenomena exhibiting rapid initial growth or decay 

followed by a gradual slowdown over time.  

 

This regression type finds practical applications in 

various scenarios, such as measuring sound intensity, 

monitoring pH levels in solutions, predicting yields in 

chemical reactions, forecasting production levels of goods, 

and in numerous other contexts. When doing logarithmic 

regression analysis, the logarithmic function popularly used, 

and is used as well in this study, is defined as follows: 

ŷi = b0 + b1lnxi       (16) 

Where,  ŷi is the estimated loss in dB; b1 the coefficient 

that controls the rate of growth (b1 > 0) or decay (b1 < 0); 

xiis the distance in meters and b0 is the constant or y-intercept. 

Note that the line curve always passes through(1, b0). Note 

further that Equation 16 is a log transformation that involves 

the transformation of only the independent variable xi. This 

suggests that a 1% increase in the independent variable xi is 

linked to a linear change of b1 100⁄  or 0.01 x b1 units in the 

dependent variable ŷi. 

4.4.3. Root Mean Square Error (RMSE)  

In statistical prediction models, predicted values seldom 

exactly match actual outcomes, producing a difference 

between them known as the residual (or error). In this work, 

RMSE is used as a tool for evaluating the prediction models’ 

performance considered in this research work. It is the square 
root of the residuals or errors’variance that measures the 

deviation of the average error of recorded propagation loss to 

quantities estimated by the path loss model in free space, the 

appropriate sections of ITU – R P.1411, as well as values 

predicted by the linear and logarithmic regression models. If 

the primary purpose of the model is prediction, then RMSE is 

the most important criterion as it is a good indicator of how 

precise the model can predict the outcome. A better fitting 

model results from having a lower value of RMSE. To 

calculate RMSE, each error is squared and then averaged. 

Squaring ensures that errors in one direction do not offset 

errors in the other direction. Then, finally, the square root is 
computed. Mathematically, RMSE is calculated using 

Equation 17 below: 

 RMSE = √
∑ (yi−ŷi

n
i=1 )2 

n
                    (17) 

Where, yi is the recorded/observed path loss for each 

location i, where measurements were taken; ŷi is the 

propagation loss predicted per model per location i where 

measurements were taken. 

5. Results and Discussion  
5.1. Free Space Propagation Model (FSPL)  

As expected, in this path loss model, attenuation in dB 

increases with increasing distance between the AP and STA, 

and this is true for all test locations considered in this study, 

as shown in Figure 5. In all sites where there exists a LoS 

environment, propagating signals are reduced over distance 

according to the square power law closely following Friis’ free 
space path loss equation. Notice how in the same Figure 5 all 

the data points in each site were located above the orange line 

representing the FSPL graph. This means that FSPL 

underestimated path loss, resulting in RMSE values of 14.22 

dB (Location 1), 20.72 dB (Location 2), and 18.73 dB 

(Location 3) as listed in Table 1.  

In practical terms, an average underestimated path loss of 

18 dB translates to causing undue interference coming from 

IEEE 802.11af devices to existing licensed primary users. In a 

standard that operates on the concept of cognitive spectrum 

sharing, this scenario must be avoided at all times, making the 

use of FSPL as a path loss model ill-suited to ensuring 
protection to primary users. However, the primary usage of 

FSPL for the IEEE 802.11af device, as shown in the location 

of the various measured path losses, is its ability to provide 

sufficient lower bounds in all sites, which in turn ensures 

protection to licensed users operating on the same frequency 

as the WSDs.   
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Table 1. FSPL RMSE values (dB) for each location 

Path Loss RMSE (dB) 

Free Space 

Path Loss 

Location1 Location 2 Location 3 

14.22 20.72 18.73 

 
Table 2. ITU R.P. 1411 – 11 Section 4.1.2 RMSE values (dB) for 

each location 

Path Loss 
RMSE (dB) 

Location 1 Location 2 Location 3 

Section 

4.1.2 LoS 

lower 

10.26 15.81 8.30 

Section 

4.1.2 LoS 

upper 

13.70 6.39 19.61 

 

5.2. Recommendation ITU-R P.1411 – 11 Section 4.1.2 Line-

of-Sights (LoS) Path  

In calculating and graphing the plots of LoS lower bound 

(LoSL) and LoS upper bound (LoSU), the following 

parameters were used: AP height Htx = 1.7 m,  STA height 

Hrx = 1.2 m, and operating frequency f = 593 MHz Following 

Equation 6, the breakpoint distance Rbp is computed as 16.13 
m. At this breakpoint, the value of the basic transmission loss 

Lbp using Equation 8 is computed to be 45.89 dB. Subject to 

the distance d between AP and STA, the approximate lower 

bound (LoSL) and the estimated upper bound (LoSU) were 

computed using Equations 5 and 7, respectively. Note that 20 

dB is the fade margin of the upper bound. 

 

For Location 1 (Figure 6(a)), about 90% of the measured 

path losses lie above the LoSL fitted line with an RMSE value 

of 10.26 dB (Table 5), mostly due to underestimation, but this 

should be read alongside the LoSU fitted line that puts all data 
points below it with an overestimation RMSE value of 13.70 

dB (Table 5). Taken together, the LoSU upper bound can 

provide sufficient interference protection to existing licensed 

users. However, it can also result in needlessly restricting the 

regions where the WSDs can operate. In contrast, the LoSL 

lower bound has overestimated path loss in the 80 to 100 –

meter location from the AP. This translates to particular areas 

where primary users may not be adequately protected from 

interference from WSDs. 

The approximate lower bound LoSL in Figure 6(b) 

underestimated path losses by 15.81 dB, which is considerably 

high and has the effect of failure to provide interference 
protection to licensed users. On the other hand, the 

approximate upper bound LoSU overestimated by 6.39 dB, 

which is a relatively moderate value to limit areas where IEEE 

802.11af-based WSDs can operate. Both RMSE values for 

Location 2 are listed in Table 5. Notice, however, that beyond 

90 meters, both LoSL and LoSU correctly provide the 

appropriate lower and upper bounds for measured path losses. 

Based on Table 2 and Figure 6(c), Location 3 has the 

lowest approximate lower bound LoSL RMSE value of 8.30 

dB due mainly to underestimation and the highest 

approximate upper bound LoSU RMSE value of 19.61 dB this 

time, due to overestimation - the highest among the recorded 

LoSU RMSE values. The overestimation is worse at 205 – 
meters onward, averaging 25 dB prediction error, resulting in 

a very limited area where WSDs can operate, hence negating 

the intent of allowing spectrum sharing among primary and 

secondary users.  

 

Section 4.1.2 of the ITU Recommendation approximates 

LoSL and LoSU values in the context of WLAN in TV white 

space. It is supposed to give guidance for path loss estimation 

models that are accurate. The LoSL is assumed to give an 

optimum RMSE value that will underestimate path loss 

sufficient to protect primary users from damaging interference 

induced by WSDs. On the other hand, the LoSU should 
provide an optimum RMSE value that will overestimate path 

loss without imposing too many limitations on the areas where 

WSDs can operate. Based on the fitted data for each test site 

and as listed in Table 4, the optimal values for LoSL are 6.36 

dB (Location 1) and for LoSU 8.36 dB.  

5.3. ITU-R P.1411 - 11 Recommendation Section 4.3.1   
Recommendation Section 4.3.1, also known as the site-

general model, provides statistics on location variability 

within the Line-of-Sight (LoS) region. This model considers 

parameters such as the operating frequency 𝑓=593 MHz and 

the distance 𝑑 in meters, which can vary depending on the 

experimental site. For instance, at Location 1, distances range 

from 5 meters to 165 meters; at Location 2, the distance is 155 

meters; and at Location 3, it is 210 meters.  

 

Location variability explains the changes in long-term 

statistics observed from one path to another, influenced by 

factors like differences in terrain profiles or environmental 

variations along the routes. Typically expressed as a 

percentage from 1% to 99%, this indicates the portion of 

locations where the median field strength is projected to be 
less than or equal to the actual received field strength. Using 

Equation 10, ∆Los (p), which represents the Line-of-Sight 

location correction for a given location percentage (%), is 

computed with a standard deviation 𝛿=7 dB, resulting in 

values of 10.6 dB for (90%) and 20.3 dB for (99%). Given 𝑝 
and 𝑑, Equation 9 is then utilized to calculate the path 

attenuation LoS(𝑑,𝑝). 

 
Table 3. ITU R.P. 1411 - 11 Section 4.3.1 RMSE Values (dB) for 

Each Site 

Path Loss 
RMSE (dB) 

Location 1 Location 2 Location 3 

Section 4.3.1 

p (90%) 
6.19 11.05 10.18 

Section 4.3.2 

p (99%) 
9.23 6.15 7.13 
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Figure 7 shows the measured path loss distribution fitted 

with the curves of basic transmission path loss for 90% and 

99% locations variability predicted by the model in the LoS 

region. The dots represent measured data, and the purple and 

light blue lines show the results obtained by applying Section 

4.3.1 location percentages of 90% and 99%, respectively.  

For Location 1 (Figure 7(a)), the distribution of data 

points around the p(90%) model shows an underestimation of 

most data points, particularly noticeable beginning at 100 

meters, while overestimation is obvious in the range of 65 to 

95 meters for a 6.19 dB RMSE value. For the p(99%) location 

percentage, about 81% of the measured path losses were 

overestimated in 81% of the locations where the 

measurements were taken. The overestimation is from 2.3 dB 

to 16 dB, resulting in an RSME of 9.23 dB. 

Referring to Figure 7(b) for Location 2, the use of p(90%) 

location variability predicted an underestimation of path loss 

from more than 10 meters onward, ranging from 3 dB to 19 
dB, while overestimation ranges from 1 to 4 dB at distances 

lower than 10 meters. This results in an RSME of about 11.05 

dB due, in general, to underestimation.  

In the same figure, the use of p(99%) location variability 

provides a 64% underestimation of the measured path loss 

over the given span from 0.4 dB as the lowest to  9.6 dB as the 

highest. On the other hand, the same location variability 

provides a 36% overestimation ranging from 3 to 14 dB. 

RSME for this model is an overestimation of 6.15 dB.   

For the entire range of Location 3 (Figure 7(c)), all 

measured path losses for the p(90%) location variability model 
were underestimated by 0.1 dB to 11 dB for an 

underestimation RSME value of 10.18 dB. The p(99%) 

location percentage model has the observed path losses 

fluctuating in the fitted model. It overestimated from 1 to 65 

meters distance, underestimated from 70 to 180 meters and 

then overestimated again beginning at 185 meters. The RMSE 

value of 7.13 dB for this location percentage is mostly due to 

underestimation. Table 3 summarizes the results mentioned 

above. 

5.4. Linear and Logarithmic Regression Models 

The use of the Linear Regression model is always 

preceded by an indication of some degree of linearity between 

the independent variable (x, distance in meters) and the 

dependent variable (y, path loss in dB) in its scattered plots, as 

Figure 8 illustrates. Using Equations 15 and 16, the values of 

the sample intercept b0 and the sample slope b1 were obtained 

for each site or location, respectively. These values were then 

used to generate the regression model in Equation 14. Table 4 

summarizes the linear and logarithmic regression models and 

the corresponding values of their respective RMSE (dB) and 

R-squared (R2) for each site. 

Based on the linear regression model for Location 1, for 

every 5-meter increase in the distance xi, the path loss is 

expected to increase by 0.2615 dB. If the separation distance 

between the AP and STA is theoretically zero, the 

expected/predicted path loss is 54.237 dB. What the R2  value 
of about 84% suggests that 84% of the SST can be explained 

by utilizing the estimated regression model to predict path 

loss. The 16 %remainder is due to the error in the model itself.  

For Location 2, for the same increment in distance xi, the 

path loss is expected to increase by  0.2947 dB, and the 

expected path loss is 59.921 dB when the distance is zero. A 

72.28% of the SST can be expounded by using the estimated 

regression model to predict path loss. The remainder is due to 

the error. And for Location 3, for every 5-meter increase in the 

distance xi, the path loss is expected to increase by  0.0988 dB. 
If the distance is zero, the predicted path loss is 71.325 dB. 

For Location 3, the generated regression model can only 

explain only about 38% of the total sum of squares while a 

high 62% is due to the error in the regression model to estimate 

path loss itself. In general, for the same 5 – m increment in 

distance for all sites, the increase in estimated path loss is 

lowest at 0.1 dB in Location 3, while the increase in both 

Locations 1 and 2 is almost identical at 0.3 dB. However, the 

inherent path loss, that is xi = 0, or the separation distance 

between the AP and STA is theoretically zero, is largest at 

Location 3 with 71 dB, followed by Location 2 with 59 dB and 
Location 1 with 54 dB. In terms of goodness - of – fit criterion, 

the  R2 values obtained for Location 1 (87%) and Location 2 

(72%) can be considered a good fit, while an R2 value of 38%  

for Location 3 is considered a bad fit. 

Examining the distribution of data points representing 

measured path losses in all experimental sites in Figure 8 

clearly characterizes a logarithmic function that increases 

swiftly at first but then gradually slows as the distance 

increases. Hence, it is possible to fit a linear model with a log-

transformed independent variable to come up with an 

Equation 17. Equation 17 should be interpreted as a 1% 

increase in the independent variable xi increases the dependent 

variable ŷi by (b1/100) units. In essence, a proportional change 

in the independent variable leads to a consistent change in the 
dependent variable. Based on the said equation, the derived 

logarithmic regression models for each site are tabulated in 

Table 4, including also its corresponding RMSE and R2 

values. 

The logarithmic regression model for Location 1 means 

that a 1% increase in the distance xi would increase the 

estimated path loss ŷi by 
10.315

100
 or 0.10 dB. For Location 2, 

since b1 is 12.375, then the estimated path loss is expected to 

increase by 0.12 dB and finally, an increase of 0.09 or roughly 

0.10 dB for predicted path loss for the location 3 whose  b1 is 

equal to 9.611 is expected. It is safe to say that for all sites, 

roughly a 0.1 dB loss is expected. 
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                                                     (a)                       (b)                         (c) 

Fig. 5 Graph of Measured Path Loss (MPL) with free space path loss: (a) Location 1, (b) Location 2, and (c) Location 3. 

 
                            (a)                 (b)                             (c) 

Fig. 6 Graph of Measured Path Loss (MPL) with ITU-R P. 1411-11 Sec. 4.1.2 loss lower and upper bounds: (a) Location 1, (b) Location, 2 and                             

(c) Location 3. 

 
           (a)              (b)           (c) 

Fig. 7 Graph of Measured Path Loss (MPL) with ITU-R P. 1411-11 Sec. 4.3.1 p(90%) and p(99%): (a) Location 1, (b) Location 2 and (c) Location 3. 

 
       (a)                                (b)                 (c) 

Fig. 8 Graph of Measured Path Loss (MPL) with linear and logarithmic regression models: (a) Location 1, (b) Location 2, and (c) Location 3. 
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Table 4. Regression model equations, RMSE (dB) and R2 values for each location 

 

 

If the separation distance between the AP and STA is 

theoretically zero, the inherent attenuation for Locations 1, 2 
and 3 are 35, 34 and 42 dB, respectively. As can be deduced 

from the results, just like in the linear regression models, 

Location 3 still provides the largest inherent path loss at 42 

dB. Looking at the R2 values or Coefficient of Determination 
listed in Table 4 for Logarithmic regression models, all of 

them provide a relatively good fit, with Location 2 indicating 

the best fit with R2 value of 95%, which means that only 5% 
can be attributed to the error in the model itself. For Location 

1, the estimated regression model can explain about 87% of 

the total sum of squares to estimate path loss. The remainder 

of 13 % is due to the error. For Location 3, about 22% is due 

to the error in the regression model to predict path loss itself, 

while 78% of the variability can be explained by using the 

generated regression equation. 

6. Conclusion  
This study conducts experimental field tests in three 

different RF environments inside a suburban University 

campus to determine the appropriate model for path loss for 

an IEEE 802.11af–based wireless LAN. Measurements were 

taken and then fitted to the FSPL model, to the appropriate 

sections of ITU-R P.1411 – 11, and the linear and logarithmic 

regression models to determine the prediction model that best 
fits the path loss. As Table 5 shows, the best RMSE value is 

given by logarithmic regression models that gave a mean 

estimation error of 5 dB for all test locations studied and 

whose values of R2 or Coefficient of Determination provides 
a relatively good fit, with Location 2 indicating the best fit 

with R2 value of 95%, which means that only 5% can be 
attributed to the error in the model itself. However, while 

lower values of the RMSE indicate better fit, these values 

should also be interpreted in the context of an IEEE 802.11af–

based network that operates on a spectrum sharing principle; 
hence, interference to primary users must be avoided. An 

overestimating path loss model can lead to limiting the 

coverage areas where white space devices can operate and an 

underestimating model will lead to failure in protecting 

primary users from destructive interference emitted by IEEE 

802.11af devices. In this framework, the study also concludes 

that the FSPL model can accurately provide a lower bound 

path loss for all sites with an average overestimation of 18 dB, 

ensuring adequate protection to primary users from unwanted 

interference that may come from IEEE 802.11af devices. 

Further, based on the fitted data for each test site and as can 

be verified from Table 5, the use of Section 4.1.2 approximate 
lower (LoSL) and upper (LoSU ) bounds as well as Section 

4.3.1 of ITU – R.P. 1411 -11 as prediction models for path loss 

are invariably site - dependent. 
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Table 5. Summary of RMSE values (dB) for each site for each path loss model 

Experimental 

Locations 

Path Loss Model RMSE (dB) 

FSPL 
Section 4.1.2 

LoS Lower 

Section 4.1.2 

LoS Upper 

Section 4.3.1 

p(90%) 

Section   

4.3.1 p(99%) 

Linear 

Regression 

Logarithmic 

Regression 

Location 1 14.22 10.26 13.70 6.19 9.23 
5.8 

(R2=0.8451) 

5.26 

(R2=0.8723) 

Location 2 20.72 15.81 6.39 11.05 6.15 
8.93 

(R2=0.7228) 

3.65 

(R2=0.9534) 

Location 3 18.73 8.30 19.61 10.18 7.13 
8.41 

(R2=0.3803) 

6.33 

(R2=0.7772) 
 

 

Path Loss 
RMSE (dB) 

Location 1 Location 2 Location 3 

Linear Regression 
ŷi = 54.237 + 0.2615xi 

RMSE->    5.8 

(R2=0.8451) 

ŷi = 59.291 + 0.2947xi 
8.93 

(R2=0.7228) 

ŷi = 71.235 + 0.0988xi 
8.41 

(R2=0.3803) 

Logarithmic 

Regression 

ŷi = 34.727 + 10.315 ln(xi) 

RMSE->    5.26 
(R2=0.8723) 

ŷi = 33.881 + 12.375ln (xi) 

3.65 
(R2=0.9534) 

  ŷi = 41.949 + 9.6116ln (xi) 

6.33 
(R2=0.7772) 
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