
SSRG International Journal of Electronics and Communication Engineering Volume 11 Issue 7, 98-107, July 2024 
ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V11I7P110      © 2024 Seventh Sense Research Group® 
          

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Original Article 

A Novel Approach to Enhance the Performance of TCP 

SACK on Wireless Links 

Rahul Dhirendrabhai Mehta1, Hitesh Thakarshibhai Loriya2, Divyesh Rudabhai Keraliya3  

1,3Electronics and Communication Engineering Department, Government Engineering College - Rajkot,  

Gujarat Technological University, Gujarat, India. 
2Electronics and Communication Engineering Department, L E College - Morbi,  

Gujarat Technological University, Gujarat, India. 

1Corresponding Author : rdmehta@hotmail.com 

Received: 08 May 2024 Revised: 07 June 2024 Accepted: 07 July 2024 Published: 27 July 2024

Abstract - TCP has become one of the most prominent contributors to the TCP/IP protocol stack that drives the Internet. TCP 

is known for offering reliable, connection-oriented services to Internet users. TCP carries around 85% of the Internet traffic, 

which puts an immense responsibility on its shoulders to offer the utmost reliability and faster services. Unfortunately, the 

protocol that was initially developed for wired networks gradually became unable to cope with the issues offered by growing 

wireless networks and hence felt incompetent in providing quality services to competing Internet traffic. The researchers have 

shown keen interest in making TCP equally adaptive and competent to the growing networks; hence, revisions in basic TCP 

have started taking place. Over the decades of research, today's TCP has become completely different from its original version 

and competent enough to perform far better in the presence of various wireless links. However, the area where TCP is still 
lacking is the absence of intelligence to discriminate between the losses due to random errors and the losses due to congestion. 

This research paper focuses on adding adequate intelligence to differentiate between the types of losses and act accordingly. 

The proposed algorithm integrates unique modifications into an existing variant, TCP SACK, which passes the testing phase 

and performs quite superior to the original and older versions. The simulations are performed on a standard Network Simulator 

(ns-2), and plots are drawn from the traces of observations. Overall, the work is useful in enhancing the performance of SACK 

TCP on wireless erroneous links by adding the intelligence to differentiate between types of losses and act accordingly. 

Keywords - Congestion control, Fast recovery, Random loss, RTT, Selective ACKnowledgement (SACK), TCP.  

1. Introduction 
The Internet has grown massively in the last decades. This 

tremendous growth is mainly due to the heterogeneous 

networks, also known as mixed-mode networks. The 

heterogeneous networks consist of wired and wireless 

networks and links. Data reliability has become an essential 

issue in these complex networks.  

The reliability issues in the TCP/IP protocol stack are 

handled by the most reliable transport layer protocol, 

Transmission Control Protocol (TCP), which sits between the 

application layer and the underlying connectionless and 

unreliable IP layer. Due to the growth in various wireless 

links, the up-gradation of TCP was also required. The reason 

is that the TCP was initially designed for wired links, which 

had the only cause, congestion, for the packet loss. However, 

as the count of wireless networks has grown, there comes an 

additional factor, Bit Error Rate (BER), causing the error and, 

hence, packet loss over and above the existing reason for 
packet loss, called congestion.  

However, as we know, loss due to congestion is entirely 

different from loss due to random errors, and remedies to 

come out of each type of loss must be different. To deal with 

this problem, researchers have shown a great interest in 
modifying and revising TCP to adapt it to the growing modern 

network requirements [1]. 

Various TCP revisions like TCP Tahoe, Reno, New Reno, 

and many more came into existence to improve the 

performance of existing TCP on heterogeneous networks. The 

TCP SACK (Selective ACKnowledgement), one of the most 

profound revisions of TCP, has impressed users and 

developers with its unique policies to deal with 
retransmissions, resulting in an excellent performance rise 

compared to other TCP versions.  

However, even after decades of extensive research, 

unfortunately, the TCP has yet to find adequate intelligence to 

find the cause of packet losses and act accordingly. This 

research focuses on discriminating packet losses occurring 
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due to BERs, which cause random losses from a loss due to 

congestion and then act accordingly [2]. Section 2 explains the 

baseline TCP and major standard revisions of TCP. Section 3 

describes the proposed modified scheme based on the base 

algorithm. Section 4 discusses the topologies and parameters 

used to test the proposed algorithm. Section 5 summarizes the 
observations in tabular form with analysis and discussion. 

Section 6 concludes the research work. 

2. TCP Versions 
TCP is a transport layer connection-oriented protocol that 

provides reliable services to Internet users. It also has flow and 

error control to recover from the losses. It uses process-to-

process communication for reliable data delivery [3]. A few 
significant revisions done on the baseline TCP are discussed 

below: 

2.1. TCP Tahoe 

TCP Tahoe has built-in Slow Start, Congestion 

Avoidance, and Fast Retransmit mechanisms. The algorithm 

performs well in the initial state. However, a slow start and 

multiplicative decrease restrict the transmission rate in the 

presence of congestion, which drops the congestion window 

to one when the loss is detected, reducing overall transmission 

flow [4]. 

2.2. TCP Reno 
TCP Reno has an additional feature called Fast Recovery. 

This TCP variant maintains the channel with packets after a 

retransmission in case of one packet loss. Hence, a slow start 

is avoided. TCP executes a fast recovery phase once three 

duplicate acknowledgements are received. The lost packet is 

retransmitted, and the congestion window is set to half of the 

current congestion window instead of one, as was done in the 

case of TCP Tahoe. This improves performance significantly 

but suffers when multiple packet losses occur in a single data 

window.  

2.3. TCP New Reno 

TCP New Reno has an additional integration of modified 

fast recovery to handle multiple packet losses within a single 

data window. It leaves a Fast Recovery phase once the last 

packet is retransmitted. However, this needs to be more 

efficient regarding bandwidth while retransmitting during fast 

recovery [5]. 

2.4. TCP SACK (Selective ACKnowledgement) 

High bandwidth data networks have a greater probability 
of multiple packet loss in a single data window. Despite 

recovering from losses without waiting for the expiration of 

the retransmission timer, it still sometimes becomes hard to 

stay away from the issues, reducing overall efficiency. In the 

Selective ACKnowledgement scheme, the receiver sends an 

acknowledgment with the SACK option enabled, which 

contains the information about which data were received 

correctly and in the correct order. So, the transmitter has to 

resend only the missing data after getting the three duplicate 

acknowledgements. The information helps calculate new 

congestion windows and pump data effectively on the channel 

to gain overall throughput [6]. 

3. Proposed Modification Scheme 
The widespread literature survey depicts that various 

proposed modifications have been implemented and tested in 

integration with the baseline TCP on various network and link 

parameters to gain performance. It is evident that only fast 

retransmission is required in case of a random loss without 

altering the current transmission flow, but unfortunately, 

SACK TCP also adapts the strategy of retransmission and 

transmission flow reduction. A loss due to congestion reflects 

the current data jamming conditions of the network, which 

have to be addressed with transmission flow reduction to 

reduce severe congestion. It gives the network time and 

support to release the highly occupied network resources. 

Hence, there is a scope of research on adding intelligence that 

can distinguish between causes of packet loss. The search for 

a reference algorithm ended with discovering an algorithm 

called 'Delayed Fast Recovery' (DFR), later considered a 

reference algorithm. Further modifications are done to 

improve the performance of TCP SACK on wireless networks 

[7, 8]. 

3.1. Proposed Modification Scheme - Modified TCP SACK 

The literature survey confirms that the random BERs 

cause single scattered random packet loss without any more 

frequent successive loss in the same data window. The Round 

Trip Time (RTT) is considered one of the most fascinating 

network parameters, which, if observed minutely, can reveal 

helpful information about the current state of the network. In 

this research, the RTT is observed with other network 
dynamics. Efforts have been made to modify the existing TCP 

SACK to perform even better in average throughput and delay. 

In case of an increment in error rate, RTT also increases 

because of the loss recovery procedures. Also, RTT increases 

in case of congestion due to bottlenecks at intermediate 

routers. However, the rate of change of RTT, i.e., deviation in 

RTT, is entirely different in each case. It takes a much longer 

time to release severe congestion compared to the recovery 

from random arbitrary losses.  

This insight helps differentiate between the causes of 

packet losses and required subsequent actions. To identify the 
severity of the congestion and random losses, RTT deviations 

are categorized into specific tolerance levels, and decisions of 

counter actions are triggered accordingly. In addition, the 

second loss in a single data window is also treated as a random 

loss if the RTT deviation is within the tolerance limit. This 

action is applied to all the subsequent losses in a single data 

window in case of transmission errors, which will also help 

counter-attack bursty errors [9]. The extended flow chart 

accommodating this strategy is shown in Figure 1. 
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Fig. 1 Proposed modification algorithm flow chart 

As shown in Figure 1, the proposed modification 

algorithm flow chart explains the new strategy. The RTT is 

continuously recorded, averaged out, and stored to get the 

current status of the network. When a duplicate 

acknowledgement is seen on the sender side, the RTT 

tolerance level check is performed to determine whether it is 

within the tolerance limit. If RTT is within the tolerance limit, 

the protocol maintains its normal state. However, if the RTT 

deviation is above the tolerance limit, flag S_M_LOSS is 
checked, indicating Single or Multiple loss.  

If the flag is enabled and three duplicate 

acknowledgements are received, then it will consider this loss 

a random loss due to BERs, and only fast retransmission of the 

lost packet will be done based on the SACK information 

received. However, suppose S_M_LOSS is disabled (which 

happens in case of consecutive loss), and the duplicate count 
is greater than 3. In that case, the fast recovery, which was 

postponed, will be executed to recover from the loss, 

considering this as a congestion loss, and the parameters will 

be updated accordingly. The recovery will always be delayed 

for all the losses for which RTT is within the tolerance limit 

by considering all as random losses. However, if a loss occurs 

with the RTT value above the tolerance limit, fast recovery is 

immediately executed to help the network escape severe 

congestion. 

4. Simulation Topologies and Parameters 
4.1. Simulation Topologies 

Two different realistic scenarios are considered to test the 

performance of modified TCP SACK. As shown in Figure 2, 

the topology simulates the erroneous environment with no 

congestion. In contrast, Figure 3 shows the topology for 

simulating the effects of error and congestion, which is the 

most realistic case. 

All simulations are performed on Network Simulator (ns-

2) for 10 seconds to measure an initial response and for 100 

seconds to observe the initial and sustained response of the 

network and the protocol under test, i.e., to observe the effects 

of small and large file size transfer scenarios. File Transfer 

Protocol (FTP) is run on the application layer to generate the 

required variable bit rate traffic that chooses TCP from the 

transport layer [10]. The performance is measured in terms of 

the number of packets delivered and the time taken to do the 
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same. Observations are tabulated and plotted for comparative 

analysis. 

 

 
 

 
Fig. 2 Simulation scenario – I (only error, no congestion) 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 Simulation scenario – II (error and congestion) 

4.2. Simulation Parameters 

 Topologies: Topology-I - Simulating Errors only, no 

Congestion. Topology-II - Simulating Errors and 

Congestion all together.  

 Simulation Time: 10 seconds for initial response and 100 

seconds for sustained response. 

 Packet Error Rates: 0.0, 0.00001, 0.0001, 0.001, 0.01 

 TCP Agent: Original SACK TCP and Modified SACK 

TCP (with RTT tolerance deviations 0%, 2%, 5%, 10% 

and 20%).  

 Performance Measurement: Instantaneous Throughput 

vs. Time, Congestion Window vs. Time and Number of 

Packets delivered. 

5. Simulation Result Analysis and Discussion 
Simulation outcomes of the Original TCP and Proposed 

modifications for various RTT tolerance upper bounds are 

listed in Tables 1 to 4.  

The first column lists various error probabilities of Packet 

Error Rates (PERs) observed on various standard wireless 

links. The next column lists several packets transmitted for the 

Original TCP SACK, and the following subsequent columns 

tabulate the performance of the proposed modified TCP 

SACK with various percentage RTT tolerances. 

The parameter, number of fresh packets delivered to the 

network, shows the condition of the sender, whether the sender 

is busy resending and recovering from losses or sending fresh 

packets, by discriminating between the type of loss and 

resource demands of the respective types of losses. The 

congestion window, the prime parameter, is observed and 

controls the overall transmission flow [11]. 

5.1. Initial Response – Topology – I 

An in-depth analysis of simulation outcomes and plots 

reveals the following facts about data transfer quality: Table 1 

shows the observations for the simulations performed on 

Topology-I for original and modified SACK TCP with various 

RTT tolerances. The presence of only errors and absence of 
congestion with a simulation time of 10 seconds is considered 

in this scenario.  

As can be seen from the observations, in the cases of PER 

0, 0.00001, and 0.0001, which show the cases of no error and 

very few errors, respectively, there is no significant change in 

the number of packets sent. Hence, original and modified 

protocols perform equally well. However, as PER increases to 

0.001 and 0.01, the significant change in the number of 

packets sent drastically reduces by 62% and 226% for 

respective PERs in the case of the original TCP SACK 

compared to the modified one.  

It is also observed that the reduction in performance in 
the case of original TCP SACK reduces by 158% between 

0.001 to 0.01 PERs. Modified SACK TCP also has the same 

problem of performance reduction by  29% between 0.001 and 

0.01 PERs. This shows that when there is no congestion, the 

errors occurring causing PERs are very well recognized as a 

loss due to random errors, and the treatment to fight with the 

same, i.e., retransmission, is performed only. There is no sign 

of transmission flow reduction, which saves overall network 

performance and sustains it faster than the original SACK 

TCP. The performance reduction is mainly due to the number 

of retransmissions that restrict the transmission of new 
packets. 

The above result analysis is equally supported by the plot 

shown in Figure 4. A 3-D plot is chosen to represent the effects 

of various error rates on several packets delivered in the 

presence of original and modified TCP SACK and in the 

presence of various RTT tolerances. Variations of TCP SACK 

are plotted on the X-axis, the number of packets delivered to 

the network is on the Y-axis, and on the Z-axis, all error rates 
are marked.  

Observations and plots discussed above show the average 

throughput of the protocol under test. In addition, the 

instantaneous throughput variants and congestion window 

alterations play an essential role in understanding and 

justifying the overall performance of the original and modified 

protocols and providing a platform for graphical comparisons. 

Figure 5 shows a group of figures that compare the congestion 

window and throughput patterns for original and modified 

TCP SACK for a simulation time of 10 seconds and 0.001 
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error rates. The upper portion of the figure shows the 

congestion window alterations, whereas the bottom half 

shows throughput variations of respective original and 

modified TCP SACK protocols. As can be seen from the 

figures, the congestion window alterations are more frequent 

for OTCP (Original TCP), and hence, its throughput is not 

steady and is gradually falling. On the contrary, MTCP 

(Modified TCP) shows a very rare congestion window 

alteration, which causes a rise and smoother, steadier 

throughput response [12-14]. 

Table 1. Packets delivered (only errors – 10 seconds) 

Packet 

Error Rates 

(PERs) 

Original 

SACK 

TCP 

Modified 

SACK TCP /  

RTT 

Deviation 0 

Modified 

SACKTCP /  

RTT 

Deviation 2 

Modified 

SACKTCP /  

RTT 

Deviation 5 

Modified 

SACK TCP /  

RTT 

Deviation 10 

Modified 

SACK TCP 

/  RTT 

Deviation 20 

0.00 12213 12213 12213 12213 12213 12213 

0.00001 12213 12213 12213 12213 12213 12213 

0.0001 12213 12213 12213 12213 12213 12213 

0.001 7182 11330 11680 11680 11680 11680 

0.01 2775 7672 9046 9046 9046 9046 

 

 
Fig. 4 Number of packets delivered (only errors – 10 seconds) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 5 CWND and throughput – 10S – 0.001 PER 
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5.2. Sustained Response - Topology - I 

The initial response has the effects of connection setup 

and slow start phase of TCP connection setup phase. Once the 

connection is established and sustained, it will maintain a 

higher data rate as it will be running at the highest values of 

its parameters. Table 2 shows the observations for a simulation 
period of 100 seconds, which covers the effects of the initial 

and sustained response of the protocol. The analysis reflects 

the same observations as in the previous case but with higher 

data rates. There is no distinct difference in the performance 

for error rates of 0, 0.00001, and 0.0001. However, the 

modified protocol performs better in the case of 0.001 PER by 

38% and continues to rise higher with higher RTT tolerance. 

The effect on performance can be higher with a higher error 

rate of 0.01, which increases by 241% compared to the 

original TCP SACK. Figure 6 graphically supports the results 

discussed. Figure 7 shows the same response and pattern as 

shown and discussed earlier for a 0.001 error rate with just an 
addition of more frequent congestion window alterations and 

throughput variations due to higher error rates and 

transmissions. Still, in this scenario, MTCP also has fewer 

congestion window alterations and sustains a higher 

throughput than OTCP, confirming that modified TCP 

performs better.

Table 2. Packets delivered (only errors – 100 seconds) 

Packet 

Error Rates 

(PERs) 

Original 

SACK TCP 

Modified 

SACK TCP /  

RTT 

Deviation 0 

Modified 

SACK 

TCP /  RTT 

Deviation 2 

Modified 

SACK 

TCP /  RTT 

Deviation 5 

Modified 

SACK 

TCP /  RTT 

Deviation 10 

Modified 

SACK 

TCP /  RTT 

Deviation 20 

0.00 124013 124013 124013 124013 124013 124013 

0.00001 123593 123593 123593 123593 123593 123593 

0.0001 120097 120097 120097 120097 120097 120097 

0.001 86883 119833 120033 120183 120183 120183 

0.01 28312 91848 96609 96609 96609 96609 

 

 
Fig. 6 Number of packets delivered (only errors – 100 seconds) 
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Fig. 7 CWND and throughput – 10S – 0.01 PER 

5.3. Initial Response - Topology - II 

In the case of Topology – II, which simulates the effects 

of congestion and errors together, there is no significant 

difference between the overall performance in the original and 

the modified TCP SACK as there exists the loss due to 
congestion with the loss due to error rates.  

Hence, due to the integrated intelligence of discriminating 

between a loss due to congestion and a loss due to random 

errors, the effects of congestion take over the effects of 

random loss, and fast recovery is immediately executed to deal 

with the severe effects of congestion.  

This shows the backward compatibility of the modified 

algorithm, which turns off the modifications in case of 

congestion loss and treats them accordingly. So, there is no 

impact of increment in PER or RTT tolerances as the network 

is dealing with actual congestion. One thing to be marked here 

is that the modified TCP SACK performs equal to the original 
TCP SCK in case of congestion. 

In the case of 10 seconds of simulation time for a network 

with congestion and errors acting together, there is only a rise 

or fall in performance by just 0.13%, which is negligible. This 

is because the detection of congestion immediately calls for 

fast recovery, which suddenly reduces the transmission flow. 
Hence, a modified TCP SACK acts similarly to the original 

TCP SACK, so a performance rise cannot be expected. The 

plot shown in Figure 8 compares the observations listed in 

Table 3.   

Figure 9 shows the higher congestion window alterations 

and lower throughput in the case of 0.001 for the original TCP, 

simulated for 100 seconds, showing the protocols' sustained 

response. In contrast, modified TCP shows a better throughput 

performance and rare congestion window reduction. In this 

case, the congestion window reaches approximately 110 as it 

takes more time to grow. In contrast, the congestion window 

reaches a maximum value of around 70 due to staying in the 
initial response period only. The same logic applies to the 

maximum throughput capacity. 

Table 3. Packets delivered (errors & congestion – 10 seconds) 

Packet Error 

Rates 

(PERs) 

Original 

SACK TCP 

Modified 

SACK 

TCP /  RTT 

Deviation 0 

Modified 

SACK 

TCP /  RTT 

Deviation 2 

Modified 

SACK 

TCP /  RTT 

Deviation 5 

Modified 

SACK 

TCP /  RTT 

Deviation 10 

Modified 

SACK 

TCP /  RTT 

Deviation 20 

0.00 1648 1668 1665 1665 1669 1668 

0.00001 1648 1668 1665 1665 1669 1667 

0.0001 1648 1668 1665 1665 1669 1668 

0.001 1667 1631 1661 1661 1661 1653 

0.01 1632 1664 1664 1664 1664 1664 
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Fig. 8 Number of packets delivered (errors & congestion – 10 seconds) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 CWND and throughput – 100S – 0.001 PER 

5.4. Sustained Response - Topology - II 

The analysis of the observations listed in Table 4 reflects 

the same thing as discussed earlier in the case of Table 3, 

irrespective of simulation time. As seen, there is no significant 

change in performance in any case, which concludes that the 
congestion takes complete control over transmission flow. All 

the actions taken will be to support the congestion clearance 

policy. The plots shown in Figure 10 support the analysis. 

Figure 11 shows the performance of the protocols in case of a 

higher error rate of 0.01, simulated for 100 seconds. In the case 

of OTCP, congestion window alterations are persistent, as in 

previous cases, and hence, performance gets degraded. The 

plots show that the maximum congestion window reaches 

around 50 once and then maintains around 30 due to higher 
error rates, and performance decreases drastically. In the case 

of MTCP, congestion window reduction is rare and reaches a 

maximum value of just above 200. Still, in all cases, MTCP 

performs better than OTCP. 
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Table 4. Packets delivered (errors & congestion – 100 seconds) 

Packet 

Error Rates 

(PERs) 

Original 

SACK TCP 

Modified 

SACK 

TCP /  RTT 

Deviation 0 

Modified 

SACK 

TCP /  RTT 

Deviation 2 

Modified 

SACK 

TCP /  RTT 

Deviation 5 

Modified 

SACK 

TCP /  RTT 

Deviation 10 

Modified 

SACK 

TCP /  RTT 

Deviation 20 

0.00 16282 16245 16242 16246 16255 16227 

0.00001 16282 16245 16242 16246 16255 16227 

0.0001 16282 16245 16242 16246 16255 16227 

0.001 16258 16245 16238 16249 16232 16241 

0.01 16251 16251 16250 16242 16235 16211 

 

 
Fig. 10 Number of packets delivered (errors & congestion – 100 seconds) 
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6. Conclusion 
The Network Simulator (ns-2) tests and compares original 

and modified SACK TCP performance under the effect of 

significant network performance affecting parameters. As the 

result analysis reflects, there is a high gain in the performance 

in the case of modified SACK TCP compared to the original 

one in case of only errors, as the modified algorithm accurately 

detects the cause of packet loss and acts accordingly. Whereas, 

in case of severe congestion, the only action that dominantly 

leads the communication is Fast Recovery which causes 

transmission flow reduction to fight against the effects of 

congestion to release it as soon as possible. So, in case of 

congestion with errors, when congestion dominates, both 

algorithms perform equally well. The modified algorithm only 

shows dominance in case of losses due to random errors, 

whereas it shows equality with the existing SACK TCP to 

support backward compatibility. The proposed algorithm has 

the additional advantage of its simplicity and requirement of 

modifications on the sender side only and has no dependency 
on the receiver side. This concludes that the proposed 

modified SACK TCP performs better in case of random losses 

caused by BERs. 
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Appendix 
Specific skill sets needed to be acquired to implement simulation setup and to obtain observations for this research are listed 

in brief in this section: Linux OS installation and Setup, UNIX Commands, NS-2 Installation, Trace File Handling, TCL 

Scripting, Code Modifications, and plotting various graphs. 
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