
SSRG International Journal of Electronics and Communication Engineering Volume 11 Issue 7, 98-107, July 2024
ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V11I7P110 © 2024 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

A Novel Approach to Enhance the Performance of TCP

SACK on Wireless Links

Rahul Dhirendrabhai Mehta1, Hitesh Thakarshibhai Loriya2, Divyesh Rudabhai Keraliya3

1,3Electronics and Communication Engineering Department, Government Engineering College - Rajkot,

Gujarat Technological University, Gujarat, India.
2Electronics and Communication Engineering Department, L E College - Morbi,

Gujarat Technological University, Gujarat, India.

1Corresponding Author : rdmehta@hotmail.com

Received: 08 May 2024 Revised: 07 June 2024 Accepted: 07 July 2024 Published: 27 July 2024

Abstract - TCP has become one of the most prominent contributors to the TCP/IP protocol stack that drives the Internet. TCP

is known for offering reliable, connection-oriented services to Internet users. TCP carries around 85% of the Internet traffic,

which puts an immense responsibility on its shoulders to offer the utmost reliability and faster services. Unfortunately, the

protocol that was initially developed for wired networks gradually became unable to cope with the issues offered by growing

wireless networks and hence felt incompetent in providing quality services to competing Internet traffic. The researchers have

shown keen interest in making TCP equally adaptive and competent to the growing networks; hence, revisions in basic TCP

have started taking place. Over the decades of research, today's TCP has become completely different from its original version

and competent enough to perform far better in the presence of various wireless links. However, the area where TCP is still
lacking is the absence of intelligence to discriminate between the losses due to random errors and the losses due to congestion.

This research paper focuses on adding adequate intelligence to differentiate between the types of losses and act accordingly.

The proposed algorithm integrates unique modifications into an existing variant, TCP SACK, which passes the testing phase

and performs quite superior to the original and older versions. The simulations are performed on a standard Network Simulator

(ns-2), and plots are drawn from the traces of observations. Overall, the work is useful in enhancing the performance of SACK

TCP on wireless erroneous links by adding the intelligence to differentiate between types of losses and act accordingly.

Keywords - Congestion control, Fast recovery, Random loss, RTT, Selective ACKnowledgement (SACK), TCP.

1. Introduction
The Internet has grown massively in the last decades. This

tremendous growth is mainly due to the heterogeneous

networks, also known as mixed-mode networks. The

heterogeneous networks consist of wired and wireless

networks and links. Data reliability has become an essential

issue in these complex networks.

The reliability issues in the TCP/IP protocol stack are

handled by the most reliable transport layer protocol,

Transmission Control Protocol (TCP), which sits between the

application layer and the underlying connectionless and

unreliable IP layer. Due to the growth in various wireless

links, the up-gradation of TCP was also required. The reason

is that the TCP was initially designed for wired links, which

had the only cause, congestion, for the packet loss. However,

as the count of wireless networks has grown, there comes an

additional factor, Bit Error Rate (BER), causing the error and,

hence, packet loss over and above the existing reason for
packet loss, called congestion.

However, as we know, loss due to congestion is entirely

different from loss due to random errors, and remedies to

come out of each type of loss must be different. To deal with

this problem, researchers have shown a great interest in
modifying and revising TCP to adapt it to the growing modern

network requirements [1].

Various TCP revisions like TCP Tahoe, Reno, New Reno,

and many more came into existence to improve the

performance of existing TCP on heterogeneous networks. The

TCP SACK (Selective ACKnowledgement), one of the most

profound revisions of TCP, has impressed users and

developers with its unique policies to deal with
retransmissions, resulting in an excellent performance rise

compared to other TCP versions.

However, even after decades of extensive research,

unfortunately, the TCP has yet to find adequate intelligence to

find the cause of packet losses and act accordingly. This

research focuses on discriminating packet losses occurring

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:rdmehta@hotmail.com

Rahul Dhirendrabhai Mehta / IJECE, 11(7), 98-107, 2024

99

due to BERs, which cause random losses from a loss due to

congestion and then act accordingly [2]. Section 2 explains the

baseline TCP and major standard revisions of TCP. Section 3

describes the proposed modified scheme based on the base

algorithm. Section 4 discusses the topologies and parameters

used to test the proposed algorithm. Section 5 summarizes the
observations in tabular form with analysis and discussion.

Section 6 concludes the research work.

2. TCP Versions
TCP is a transport layer connection-oriented protocol that

provides reliable services to Internet users. It also has flow and

error control to recover from the losses. It uses process-to-

process communication for reliable data delivery [3]. A few
significant revisions done on the baseline TCP are discussed

below:

2.1. TCP Tahoe

TCP Tahoe has built-in Slow Start, Congestion

Avoidance, and Fast Retransmit mechanisms. The algorithm

performs well in the initial state. However, a slow start and

multiplicative decrease restrict the transmission rate in the

presence of congestion, which drops the congestion window

to one when the loss is detected, reducing overall transmission

flow [4].

2.2. TCP Reno
TCP Reno has an additional feature called Fast Recovery.

This TCP variant maintains the channel with packets after a

retransmission in case of one packet loss. Hence, a slow start

is avoided. TCP executes a fast recovery phase once three

duplicate acknowledgements are received. The lost packet is

retransmitted, and the congestion window is set to half of the

current congestion window instead of one, as was done in the

case of TCP Tahoe. This improves performance significantly

but suffers when multiple packet losses occur in a single data

window.

2.3. TCP New Reno

TCP New Reno has an additional integration of modified

fast recovery to handle multiple packet losses within a single

data window. It leaves a Fast Recovery phase once the last

packet is retransmitted. However, this needs to be more

efficient regarding bandwidth while retransmitting during fast

recovery [5].

2.4. TCP SACK (Selective ACKnowledgement)

High bandwidth data networks have a greater probability
of multiple packet loss in a single data window. Despite

recovering from losses without waiting for the expiration of

the retransmission timer, it still sometimes becomes hard to

stay away from the issues, reducing overall efficiency. In the

Selective ACKnowledgement scheme, the receiver sends an

acknowledgment with the SACK option enabled, which

contains the information about which data were received

correctly and in the correct order. So, the transmitter has to

resend only the missing data after getting the three duplicate

acknowledgements. The information helps calculate new

congestion windows and pump data effectively on the channel

to gain overall throughput [6].

3. Proposed Modification Scheme
The widespread literature survey depicts that various

proposed modifications have been implemented and tested in

integration with the baseline TCP on various network and link

parameters to gain performance. It is evident that only fast

retransmission is required in case of a random loss without

altering the current transmission flow, but unfortunately,

SACK TCP also adapts the strategy of retransmission and

transmission flow reduction. A loss due to congestion reflects

the current data jamming conditions of the network, which

have to be addressed with transmission flow reduction to

reduce severe congestion. It gives the network time and

support to release the highly occupied network resources.

Hence, there is a scope of research on adding intelligence that

can distinguish between causes of packet loss. The search for

a reference algorithm ended with discovering an algorithm

called 'Delayed Fast Recovery' (DFR), later considered a

reference algorithm. Further modifications are done to

improve the performance of TCP SACK on wireless networks

[7, 8].

3.1. Proposed Modification Scheme - Modified TCP SACK

The literature survey confirms that the random BERs

cause single scattered random packet loss without any more

frequent successive loss in the same data window. The Round

Trip Time (RTT) is considered one of the most fascinating

network parameters, which, if observed minutely, can reveal

helpful information about the current state of the network. In

this research, the RTT is observed with other network
dynamics. Efforts have been made to modify the existing TCP

SACK to perform even better in average throughput and delay.

In case of an increment in error rate, RTT also increases

because of the loss recovery procedures. Also, RTT increases

in case of congestion due to bottlenecks at intermediate

routers. However, the rate of change of RTT, i.e., deviation in

RTT, is entirely different in each case. It takes a much longer

time to release severe congestion compared to the recovery

from random arbitrary losses.

This insight helps differentiate between the causes of

packet losses and required subsequent actions. To identify the
severity of the congestion and random losses, RTT deviations

are categorized into specific tolerance levels, and decisions of

counter actions are triggered accordingly. In addition, the

second loss in a single data window is also treated as a random

loss if the RTT deviation is within the tolerance limit. This

action is applied to all the subsequent losses in a single data

window in case of transmission errors, which will also help

counter-attack bursty errors [9]. The extended flow chart

accommodating this strategy is shown in Figure 1.

Rahul Dhirendrabhai Mehta / IJECE, 11(7), 98-107, 2024

100

Fig. 1 Proposed modification algorithm flow chart

As shown in Figure 1, the proposed modification

algorithm flow chart explains the new strategy. The RTT is

continuously recorded, averaged out, and stored to get the

current status of the network. When a duplicate

acknowledgement is seen on the sender side, the RTT

tolerance level check is performed to determine whether it is

within the tolerance limit. If RTT is within the tolerance limit,

the protocol maintains its normal state. However, if the RTT

deviation is above the tolerance limit, flag S_M_LOSS is
checked, indicating Single or Multiple loss.

If the flag is enabled and three duplicate

acknowledgements are received, then it will consider this loss

a random loss due to BERs, and only fast retransmission of the

lost packet will be done based on the SACK information

received. However, suppose S_M_LOSS is disabled (which

happens in case of consecutive loss), and the duplicate count
is greater than 3. In that case, the fast recovery, which was

postponed, will be executed to recover from the loss,

considering this as a congestion loss, and the parameters will

be updated accordingly. The recovery will always be delayed

for all the losses for which RTT is within the tolerance limit

by considering all as random losses. However, if a loss occurs

with the RTT value above the tolerance limit, fast recovery is

immediately executed to help the network escape severe

congestion.

4. Simulation Topologies and Parameters
4.1. Simulation Topologies

Two different realistic scenarios are considered to test the

performance of modified TCP SACK. As shown in Figure 2,

the topology simulates the erroneous environment with no

congestion. In contrast, Figure 3 shows the topology for

simulating the effects of error and congestion, which is the

most realistic case.

All simulations are performed on Network Simulator (ns-

2) for 10 seconds to measure an initial response and for 100

seconds to observe the initial and sustained response of the

network and the protocol under test, i.e., to observe the effects

of small and large file size transfer scenarios. File Transfer

Protocol (FTP) is run on the application layer to generate the

required variable bit rate traffic that chooses TCP from the

transport layer [10]. The performance is measured in terms of

the number of packets delivered and the time taken to do the

Start

Normal State

Dupack?

RTT Deviation within Tolerance Limit?

No

Yes

Yes

No

S_M_Loss=true?
Yes

Dupack=3
No

Yes

Fast Retransmit

Last ack+1

No

Dupack>3

No

Yes

Yes
Dupack=3

No Execute Fast

Recovery

Fast Retransmit

Last ack+1

Pipe=maxseq-

last ack-3
Ack>=Recover or

Timeout?

Update Pipe Pipe=maxseq-

lastack-GAP+2

Fast Retransmit

Last ack+GAP

Execute Postponed

Fast Recovery

Rahul Dhirendrabhai Mehta / IJECE, 11(7), 98-107, 2024

101

same. Observations are tabulated and plotted for comparative

analysis.

Fig. 2 Simulation scenario – I (only error, no congestion)

Fig. 3 Simulation scenario – II (error and congestion)

4.2. Simulation Parameters

 Topologies: Topology-I - Simulating Errors only, no

Congestion. Topology-II - Simulating Errors and

Congestion all together.

 Simulation Time: 10 seconds for initial response and 100

seconds for sustained response.

 Packet Error Rates: 0.0, 0.00001, 0.0001, 0.001, 0.01

 TCP Agent: Original SACK TCP and Modified SACK

TCP (with RTT tolerance deviations 0%, 2%, 5%, 10%

and 20%).

 Performance Measurement: Instantaneous Throughput

vs. Time, Congestion Window vs. Time and Number of

Packets delivered.

5. Simulation Result Analysis and Discussion
Simulation outcomes of the Original TCP and Proposed

modifications for various RTT tolerance upper bounds are

listed in Tables 1 to 4.

The first column lists various error probabilities of Packet

Error Rates (PERs) observed on various standard wireless

links. The next column lists several packets transmitted for the

Original TCP SACK, and the following subsequent columns

tabulate the performance of the proposed modified TCP

SACK with various percentage RTT tolerances.

The parameter, number of fresh packets delivered to the

network, shows the condition of the sender, whether the sender

is busy resending and recovering from losses or sending fresh

packets, by discriminating between the type of loss and

resource demands of the respective types of losses. The

congestion window, the prime parameter, is observed and

controls the overall transmission flow [11].

5.1. Initial Response – Topology – I

An in-depth analysis of simulation outcomes and plots

reveals the following facts about data transfer quality: Table 1

shows the observations for the simulations performed on

Topology-I for original and modified SACK TCP with various

RTT tolerances. The presence of only errors and absence of
congestion with a simulation time of 10 seconds is considered

in this scenario.

As can be seen from the observations, in the cases of PER

0, 0.00001, and 0.0001, which show the cases of no error and

very few errors, respectively, there is no significant change in

the number of packets sent. Hence, original and modified

protocols perform equally well. However, as PER increases to

0.001 and 0.01, the significant change in the number of

packets sent drastically reduces by 62% and 226% for

respective PERs in the case of the original TCP SACK

compared to the modified one.

It is also observed that the reduction in performance in
the case of original TCP SACK reduces by 158% between

0.001 to 0.01 PERs. Modified SACK TCP also has the same

problem of performance reduction by 29% between 0.001 and

0.01 PERs. This shows that when there is no congestion, the

errors occurring causing PERs are very well recognized as a

loss due to random errors, and the treatment to fight with the

same, i.e., retransmission, is performed only. There is no sign

of transmission flow reduction, which saves overall network

performance and sustains it faster than the original SACK

TCP. The performance reduction is mainly due to the number

of retransmissions that restrict the transmission of new
packets.

The above result analysis is equally supported by the plot

shown in Figure 4. A 3-D plot is chosen to represent the effects

of various error rates on several packets delivered in the

presence of original and modified TCP SACK and in the

presence of various RTT tolerances. Variations of TCP SACK

are plotted on the X-axis, the number of packets delivered to

the network is on the Y-axis, and on the Z-axis, all error rates
are marked.

Observations and plots discussed above show the average

throughput of the protocol under test. In addition, the

instantaneous throughput variants and congestion window

alterations play an essential role in understanding and

justifying the overall performance of the original and modified

protocols and providing a platform for graphical comparisons.

Figure 5 shows a group of figures that compare the congestion

window and throughput patterns for original and modified

TCP SACK for a simulation time of 10 seconds and 0.001

S0 N1 R0
100 Mbps

10 msec 10 msec

100 Mbps

10 Mbps

1 msec

1 msec

2 Mbps

S0

1 msec

10 Mbps

N1

S1

R0

Rahul Dhirendrabhai Mehta / IJECE, 11(7), 98-107, 2024

102

error rates. The upper portion of the figure shows the

congestion window alterations, whereas the bottom half

shows throughput variations of respective original and

modified TCP SACK protocols. As can be seen from the

figures, the congestion window alterations are more frequent

for OTCP (Original TCP), and hence, its throughput is not

steady and is gradually falling. On the contrary, MTCP

(Modified TCP) shows a very rare congestion window

alteration, which causes a rise and smoother, steadier

throughput response [12-14].

Table 1. Packets delivered (only errors – 10 seconds)

Packet

Error Rates

(PERs)

Original

SACK

TCP

Modified

SACK TCP /

RTT

Deviation 0

Modified

SACKTCP /

RTT

Deviation 2

Modified

SACKTCP /

RTT

Deviation 5

Modified

SACK TCP /

RTT

Deviation 10

Modified

SACK TCP

/ RTT

Deviation 20

0.00 12213 12213 12213 12213 12213 12213

0.00001 12213 12213 12213 12213 12213 12213

0.0001 12213 12213 12213 12213 12213 12213

0.001 7182 11330 11680 11680 11680 11680

0.01 2775 7672 9046 9046 9046 9046

Fig. 4 Number of packets delivered (only errors – 10 seconds)

Fig. 5 CWND and throughput – 10S – 0.001 PER

0.01

0.001

0.0001

0.00001

0

0

2000

4000

6000

8000

10000

12000

14000

Original

Sack TCP

Modified

SACK

TCP

without

RT

Deviation

Modified

SACK

TCP RTT

Deviation

2

Modified

SACK

TCP RTT

Deviation

5

Modified

SACK

TCP RTT

Deviation

10

Modified

SACK

TCP RTT

Deviation

20

2774

7671
9045 9045 9045 90457181

11329 11679 11679 11679 11679

12212 12212 12212 12212 12212 12212

12212 12212 12212 12212 12212 12212

12212 12212 12212 12212 12212 12212

E
rr

o
r

R
at

es

N
u

m
b
er

 o
f

P
ac

k
et

s
D

el
iv

er
ed

Original & Modified SACK TCP

0.01 0.001 0.0001 0.00001 0

0
10
20
30
40
50
60
70
80

C
o

n
g

es
ti

o
n

 W
in

d
o

w

0 2 4 6 8 10 12
Time (Seconds)

Error-10s-0.001-OTCP_CWND

0
20
40
60
80

100
120
140
160

C
o

n
g

es
ti

o
n

 W
in

d
o

w

0 2 4 6 8 10 12
Time (Seconds)

Error-10s-0.001-MTCP_CWND

0
2000000
4000000
6000000
8000000

10000000
12000000
14000000

T
h

ro
u
g

h
p

u
t

(M
b

p
s)

0 2 4 6 8 10 12
Time (Seconds)

Error-10s-0.001-OTCP_T’PUT

0
2000000
4000000
6000000
8000000

10000000
12000000
14000000
16000000

C
o

n
g

es
ti

o
n

 W
in

d
o

w

0 2 4 6 8 10 12
Time (Seconds)

Error-10s-0.001-MTCP_T’PUT

180

Rahul Dhirendrabhai Mehta / IJECE, 11(7), 98-107, 2024

103

5.2. Sustained Response - Topology - I

The initial response has the effects of connection setup

and slow start phase of TCP connection setup phase. Once the

connection is established and sustained, it will maintain a

higher data rate as it will be running at the highest values of

its parameters. Table 2 shows the observations for a simulation
period of 100 seconds, which covers the effects of the initial

and sustained response of the protocol. The analysis reflects

the same observations as in the previous case but with higher

data rates. There is no distinct difference in the performance

for error rates of 0, 0.00001, and 0.0001. However, the

modified protocol performs better in the case of 0.001 PER by

38% and continues to rise higher with higher RTT tolerance.

The effect on performance can be higher with a higher error

rate of 0.01, which increases by 241% compared to the

original TCP SACK. Figure 6 graphically supports the results

discussed. Figure 7 shows the same response and pattern as

shown and discussed earlier for a 0.001 error rate with just an
addition of more frequent congestion window alterations and

throughput variations due to higher error rates and

transmissions. Still, in this scenario, MTCP also has fewer

congestion window alterations and sustains a higher

throughput than OTCP, confirming that modified TCP

performs better.

Table 2. Packets delivered (only errors – 100 seconds)

Packet

Error Rates

(PERs)

Original

SACK TCP

Modified

SACK TCP /

RTT

Deviation 0

Modified

SACK

TCP / RTT

Deviation 2

Modified

SACK

TCP / RTT

Deviation 5

Modified

SACK

TCP / RTT

Deviation 10

Modified

SACK

TCP / RTT

Deviation 20

0.00 124013 124013 124013 124013 124013 124013

0.00001 123593 123593 123593 123593 123593 123593

0.0001 120097 120097 120097 120097 120097 120097

0.001 86883 119833 120033 120183 120183 120183

0.01 28312 91848 96609 96609 96609 96609

Fig. 6 Number of packets delivered (only errors – 100 seconds)

0.01

0.001

0.0001

0.00001

0

0

20000

40000

60000

80000

100000

120000

140000

Original

Sack TCP

Modified

SACK TCP

without RT

Deviation

Modified

SACK TCP

RTT

Deviation 2

Modified

SACK TCP

RTT

Deviation 5

Modified

SACK TCP

RTT

Deviation

10

Modified

SACK TCP

RTT

Deviation

20

28310

91846
96608 96608 96608 9660886882

119832 120032 120182 120182 120182

120096 123596 123596 123596 123596 123596

123592 123992 123992 123992 123992 123992

124012 124012 124012 124012 124012 124012

E
rr

o
r

R
at

es

N
u

m
b
er

 o
f

P
ac

k
et

s
D

el
iv

er
ed

Original & Modified SACK TCP

Number of Packets Delivered (Only Errors - 100 Seconds)

0.01 0.001 0.0001 0.00001 0

Rahul Dhirendrabhai Mehta / IJECE, 11(7), 98-107, 2024

104

Fig. 7 CWND and throughput – 10S – 0.01 PER

5.3. Initial Response - Topology - II

In the case of Topology – II, which simulates the effects

of congestion and errors together, there is no significant

difference between the overall performance in the original and

the modified TCP SACK as there exists the loss due to
congestion with the loss due to error rates.

Hence, due to the integrated intelligence of discriminating

between a loss due to congestion and a loss due to random

errors, the effects of congestion take over the effects of

random loss, and fast recovery is immediately executed to deal

with the severe effects of congestion.

This shows the backward compatibility of the modified

algorithm, which turns off the modifications in case of

congestion loss and treats them accordingly. So, there is no

impact of increment in PER or RTT tolerances as the network

is dealing with actual congestion. One thing to be marked here

is that the modified TCP SACK performs equal to the original
TCP SCK in case of congestion.

In the case of 10 seconds of simulation time for a network

with congestion and errors acting together, there is only a rise

or fall in performance by just 0.13%, which is negligible. This

is because the detection of congestion immediately calls for

fast recovery, which suddenly reduces the transmission flow.
Hence, a modified TCP SACK acts similarly to the original

TCP SACK, so a performance rise cannot be expected. The

plot shown in Figure 8 compares the observations listed in

Table 3.

Figure 9 shows the higher congestion window alterations

and lower throughput in the case of 0.001 for the original TCP,

simulated for 100 seconds, showing the protocols' sustained

response. In contrast, modified TCP shows a better throughput

performance and rare congestion window reduction. In this

case, the congestion window reaches approximately 110 as it

takes more time to grow. In contrast, the congestion window

reaches a maximum value of around 70 due to staying in the
initial response period only. The same logic applies to the

maximum throughput capacity.

Table 3. Packets delivered (errors & congestion – 10 seconds)

Packet Error

Rates

(PERs)

Original

SACK TCP

Modified

SACK

TCP / RTT

Deviation 0

Modified

SACK

TCP / RTT

Deviation 2

Modified

SACK

TCP / RTT

Deviation 5

Modified

SACK

TCP / RTT

Deviation 10

Modified

SACK

TCP / RTT

Deviation 20

0.00 1648 1668 1665 1665 1669 1668

0.00001 1648 1668 1665 1665 1669 1667

0.0001 1648 1668 1665 1665 1669 1668

0.001 1667 1631 1661 1661 1661 1653

0.01 1632 1664 1664 1664 1664 1664

0
10
20
30
40
50
60

C
o

n
g

es
ti

o
n

 W
in

d
o

w

0 2 4 6 8 10 12
Time (Seconds)

Error-10s-0.001-OTCP_CWND

0
20
40
60
80

100
120

C
o

n
g

es
ti

o
n

 W
in

d
o

w

0 2 4 6 8 10 12
Time (Seconds)

Error-10s-0.001-MTCP_CWND

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000

T
h

ro
u
g

h
p

u
t

(M
b

p
s)

0 2 4 6 8 10 12
Time (Seconds)

Error-10s-0.001-OTCP_T’PUT

0
2000000
4000000
6000000
8000000

10000000
12000000

T
h

ro
u
g

h
p

u
t

(M
b

p
s)

0 2 4 6 8 10 12
Time (Seconds)

Error-10s-0.001-MTCP_T’PUT

Rahul Dhirendrabhai Mehta / IJECE, 11(7), 98-107, 2024

105

Fig. 8 Number of packets delivered (errors & congestion – 10 seconds)

Fig. 9 CWND and throughput – 100S – 0.001 PER

5.4. Sustained Response - Topology - II

The analysis of the observations listed in Table 4 reflects

the same thing as discussed earlier in the case of Table 3,

irrespective of simulation time. As seen, there is no significant

change in performance in any case, which concludes that the
congestion takes complete control over transmission flow. All

the actions taken will be to support the congestion clearance

policy. The plots shown in Figure 10 support the analysis.

Figure 11 shows the performance of the protocols in case of a

higher error rate of 0.01, simulated for 100 seconds. In the case

of OTCP, congestion window alterations are persistent, as in

previous cases, and hence, performance gets degraded. The

plots show that the maximum congestion window reaches

around 50 once and then maintains around 30 due to higher
error rates, and performance decreases drastically. In the case

of MTCP, congestion window reduction is rare and reaches a

maximum value of just above 200. Still, in all cases, MTCP

performs better than OTCP.

0.01

0.001

0.0001

0.00001

0

1610

1620

1630

1640

1650

1660

1670

Original

Sack TCP

Modified

SACK TCP

without RT

Deviation

Modified

SACK TCP

RTT

Deviation 2

Modified

SACK TCP

RTT

Deviation 5

Modified

SACK TCP

RTT

Deviation

10

Modified

SACK TCP

RTT

Deviation

20

1633

1665 1665 1665 1665 1665

1668

1632

1662 1662 1662

16541649

1669
1666 1666

1670 16691649
1669

1666 1666
1670 1669

1649

1669
1666 1666

1670 1669

E
rr

o
r

R
at

es

N
u

m
b
er

 o
f

P
ac

k
et

s
D

el
iv

er
ed

Original & Modified SACK TCP

Number of Packets Delivered (Errors & Congestion - 10 Seconds)

0.01 0.001 0.0001 0.00001 0

0
20
40
60
80

100
120

C
o

n
g

es
ti

o
n

 W
in

d
o

w

0 20 40 60 80 100 120
Time (Seconds)

Error-100s-0.001-OTCP_CWND

0
100
200
300
400
500
600

C
o

n
g

es
ti

o
n

 W
in

d
o

w

0 20 40 60 80 100 120
Time (Seconds)

Error-100s-0.001-MTCP_CWND

0
2000000
4000000
6000000
8000000

10000000
12000000
14000000

T
h

ro
u
g

h
p

u
t

(M
b

p
s)

0 20 40 60 80 100 120
Time (Seconds)

Error-100s-0.001-OTCP_T’PUT

0
2000000
4000000
6000000
8000000

10000000
12000000

T
h

ro
u
g

h
p

u
t

(M
b

p
s)

0 20 40 60 80 100 120
Time (Seconds)

Error-100s-0.001-MTCP_T’PUT

14000000
16000000

Rahul Dhirendrabhai Mehta / IJECE, 11(7), 98-107, 2024

106

Table 4. Packets delivered (errors & congestion – 100 seconds)

Packet

Error Rates

(PERs)

Original

SACK TCP

Modified

SACK

TCP / RTT

Deviation 0

Modified

SACK

TCP / RTT

Deviation 2

Modified

SACK

TCP / RTT

Deviation 5

Modified

SACK

TCP / RTT

Deviation 10

Modified

SACK

TCP / RTT

Deviation 20

0.00 16282 16245 16242 16246 16255 16227

0.00001 16282 16245 16242 16246 16255 16227

0.0001 16282 16245 16242 16246 16255 16227

0.001 16258 16245 16238 16249 16232 16241

0.01 16251 16251 16250 16242 16235 16211

Fig. 10 Number of packets delivered (errors & congestion – 100 seconds)

Fig. 11 CWND and throughput - 100S - 0.01 PER

0.01

0.001

0.0001

0.00001

0

16160

16180

16200

16220

16240

16260

16280

16300

Original

Sack TCP

Modified

SACK TCP

without RT

Deviation

Modified

SACK TCP

RTT

Deviation 2

Modified

SACK TCP

RTT

Deviation 5

Modified

SACK TCP

RTT

Deviation 10

Modified

SACK TCP

RTT

Deviation 20

16253 16253 16251
16244

16237

16213

16259
16246

16239
16250

16234
16243

16283

16246 16243 16247
16256

16228

16283

16246 16243 16247
16256

16228

16283

16246 16243 16247
16256

16228

E
rr

o
r

R
at

es

N
u

m
b
er

 o
f

P
ac

k
et

s
D

el
iv

er
ed

Original & Modified SACK TCP

Number of Packets Delivered (Errors & Congestion - 100 Seconds)

0.01 0.001 0.0001 0.00001 0

0
10
20
30
40
50
60

C
o

n
g

es
ti

o
n

 W
in

d
o

w

0 20 40 60 80 100 120
Time (Seconds)

Error-100s-0.001-OTCP_CWND

0
50

100
150
200
250

C
o

n
g

es
ti

o
n

 W
in

d
o

w

0 20 40 60 80 100 120
Time (Seconds)

Error-100s-0.001-MTCP_CWND

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000

T
h

ro
u
g

h
p

u
t

(M
b

p
s)

0 20 40 60 80 100 120
Time (Seconds)

Error-100s-0.001-OTCP_T’PUT

0
2000000
4000000
6000000
8000000

10000000
12000000

T
h

ro
u
g

h
p

u
t

(M
b

p
s)

0 20 40 60 80 100 120
Time (Seconds)

Error-100s-0.001-MTCP_T’PUT

14000000

Rahul Dhirendrabhai Mehta / IJECE, 11(7), 98-107, 2024

107

6. Conclusion
The Network Simulator (ns-2) tests and compares original

and modified SACK TCP performance under the effect of

significant network performance affecting parameters. As the

result analysis reflects, there is a high gain in the performance

in the case of modified SACK TCP compared to the original

one in case of only errors, as the modified algorithm accurately

detects the cause of packet loss and acts accordingly. Whereas,

in case of severe congestion, the only action that dominantly

leads the communication is Fast Recovery which causes

transmission flow reduction to fight against the effects of

congestion to release it as soon as possible. So, in case of

congestion with errors, when congestion dominates, both

algorithms perform equally well. The modified algorithm only

shows dominance in case of losses due to random errors,

whereas it shows equality with the existing SACK TCP to

support backward compatibility. The proposed algorithm has

the additional advantage of its simplicity and requirement of

modifications on the sender side only and has no dependency
on the receiver side. This concludes that the proposed

modified SACK TCP performs better in case of random losses

caused by BERs.

Acknowledgments
We would like to convey our sincere thanks to Dr. Nikhil

Kothari and Dr. C. H. Vithalani for their guidance and support.

References
[1] Maulin Patel et al., “TCP over Wireless Networks: Issues, Challenges and Survey of Solutions,” University of Texas, Dallas, pp. 1-23,

2001. [Google Scholar]

[2] C. Barakat, E. Altman, and W. Dabbous, “On TCP Performance in a Heterogeneous Network: A Survey,” IEEE Communications

Magazine, vol. 38, no. 1, pp. 40-46, 2000. [CrossRef] [Google Scholar] [Publisher Link]

[3] J. Postel, “Transmission Control Protocol,” Information Sciences Institute, University of Southern California, 1981. [Google Scholar]

[Publisher Link]

[4] Kevin Fall, and Sally Floyd, “Simulation-Based Comparisons of Tahoe, Reno and SACK TCP,” ACM SIGCOMM Computer

Communication Review, vol. 26, no. 3, pp. 5-21, 1996. [CrossRef] [Google Scholar] [Publisher Link]

[5] Andrei Gurtov et al., “The NewReno Modification to TCP’s Fast Recovery Algorithm,” RFC 2582, 1999. [Google Scholar] [Publisher

Link]

[6] M. Mathis et al., “TCP Selective Acknowledgment Options,” RFC 2018, 1996. [Google Scholar] [Publisher Link]

[7] N.J. Kothari, and K.S. Dasgupta, “Performance Enhancement of SACK TCP Protocol for a Wireless Network by Delaying Fast Recovery,”

2006 IFIP International Conference on Wireless and Optical Communications Networks, Bangalore, India, pp. 1-5, 2006. [CrossRef]

[Google Scholar] [Publisher Link]

[8] Nikhil J. Kothari, Bhavika M. Gambhava, and K.S. Dasgupta, “Adaptive Flow Control: An Extension to Delayed Fast Recovery,” 15th

International Conference on Advanced Computing and Communications (ADCOM 2007), Guwahati, India, pp. 620-625, 2007. [CrossRef]

[Google Scholar] [Publisher Link]

[9] Andrei Gurtov, and Sally Floyd, “Modeling Wireless Links for Transport Protocols,” ACM SIGCOMM Computer Communication Review,

vol. 34, no. 2, pp. 85-96, 2004. [CrossRef] [Google Scholar] [Publisher Link]

[10] Teerawat Issariyakul, and Ekram Hossain, Introduction to Network Simulator NS2, Springer, 2011. [CrossRef] [Google Scholar]

[Publisher Link]

[11] Matthew Mathis et al., “The Macroscopic Behavior of the TCP Congestion Avoidance Algorithm,” ACM SIGCOMM Computer

Communication Review, vol. 27, no. 3, pp. 67-82, 1997. [CrossRef] [Google Scholar] [Publisher Link]

[12] M. Allman, S. Floyd, and C. Partridge, “Increasing TCP’s Initial Window,” RFC 3390, 1998. [Google Scholar] [Publisher Link]

[13] W. Richard Stevens, “TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery Algorithms,” RFC 2001, 1997. [Google

Scholar] [Publisher Link]

[14] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control,” RFC 2581, 1999. [Google Scholar] [Publisher Link]

Appendix
Specific skill sets needed to be acquired to implement simulation setup and to obtain observations for this research are listed

in brief in this section: Linux OS installation and Setup, UNIX Commands, NS-2 Installation, Trace File Handling, TCL

Scripting, Code Modifications, and plotting various graphs.

file:///D:/SSRG/Paper%20Work%20July-2024/ECE/TCP%20over%20wireless%20networks:%20issues,%20challenges%20and%20survey%20of%20solutions
https://doi.org/10.1109/35.815451
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Barakat+C%2C+On+TCP+performance+in+a+heterogeneous+network%3A+a+survey&btnG=
https://ieeexplore.ieee.org/document/815451
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Transmission+control+protocol%2C%22+1981.&btnG=
https://www.ietf.org/rfc/rfc793.txt
https://doi.org/10.1145/235160.235162
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Simulation-based+Comparisons+of+Tahoe%2C+Reno+and+SACK+TCP&btnG=
https://dl.acm.org/doi/10.1145/235160.235162
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=RFC3782%2C+The+NewReno+modification+to+TCP%E2%80%99s+fast+recovery+algorithm&btnG=
https://datatracker.ietf.org/doc/rfc6582/
https://datatracker.ietf.org/doc/rfc6582/
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mathis+M%2C+TCP+selective+acknowledgment+options&btnG=
https://www.rfc-editor.org/rfc/rfc2018.html
https://doi.org/10.1109/WOCN.2006.1666618
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance+enhancement+of+SACK+TCP+protocol+for+a+wireless+network+by+delaying+fast+recovery&btnG=
https://ieeexplore.ieee.org/document/1666618
https://doi.org/10.1109/ADCOM.2007.57
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Adaptive+Flow+Control%3A+An+Extension+to+Delayed+Fast+Recovery&btnG=
https://ieeexplore.ieee.org/document/4426037
https://doi.org/10.1145/997150.997159
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Modeling+wireless+links+for+transport+protocols&btnG=
https://dl.acm.org/doi/10.1145/997150.997159
https://doi.org/10.1007/978-0-387-71760-9
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Modeling+wireless+links+for+transport+protocols&oq=Modeling+wireless+links+for+transport+protocols
https://link.springer.com/book/10.1007/978-0-387-71760-9
https://doi.org/10.1145/263932.264023
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+macroscopic+behavior+of+the+TCP+congestion+avoidance+algorithm&btnG=
https://dl.acm.org/doi/10.1145/263932.264023
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=M+Allman%2C+Increasing+TCP%E2%80%99s+initial+window&btnG=
https://www.rfc-editor.org/rfc/rfc3390.html
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Stevens%2C+TCP+slow+start%2C+congestion+avoidance%2C+fast+retransmit%2C+and+fast+recovery+algorithms&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Stevens%2C+TCP+slow+start%2C+congestion+avoidance%2C+fast+retransmit%2C+and+fast+recovery+algorithms&btnG=
https://datatracker.ietf.org/doc/rfc2001/
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Allman%2C+RFC+2581%3A+TCP+congestion+control&btnG=
https://www.rfc-editor.org/rfc/rfc2581

