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Abstract - Autism Spectrum Disorder (ASD) is a neurological disorder. A Person with ASD always faces challenges in 

communicating socially and is involved in repetitive behaviors. Accurate and timely diagnosis is essential for efficient assistance 

and action. This paper presents the ensemble machine learning methodology to classify ASD in both toddlers and adults. Four 

distinct algorithms, Gradient Boosting (GB), Histogram Boosting (HB), Extreme Gradient Boosting (XGB) and Adaptive 

Boosting (ADB), are used. Explorative data analysis is performed to show the impact of behavioural features and individual 

characteristics on ASD in toddlers and adults. Quantitative analysis demonstrates that XGB outperforms with classification 

accuracy, log loss and F1-score, precision and recall. The findings indicate that the ensemble machine learning methodology 

has great potential to improve the diagnostic procedures for ASD, possibly resulting in an earlier and more accurate diagnosis 
of the condition.  

Keywords - Ensemble machine learning, Boosting algorithms, Autism classification, Parametric analysis, Quantitative 

assessment, Toddlers and Adults. 

1. Introduction  
Autism Spectrum Disorder (ASD) is a complicated 

neurodevelopmental disorder that impacts behavior, social 

interaction, and communication. Since ASD is becoming more 
common, it is critical to create reliable and effective diagnostic 

instruments. ASD symptoms typically fall into two groups and 

can range in severity from mild to severe. The first is social 

contact and communication, which makes it hard to keep up a 

conversation, read social cues, and build relationships. The 

second is characterized by limited interests and repetitive 

actions, which lead to recurrent behaviors, insistence on 

routines, and extreme interest in particular subjects or pursuits. 

Although ASD is usually identified in the early stages of 

childhood, symptoms can last a person's entire life. 

Conventional diagnostic techniques mostly rely on behavioral 
evaluations and clinical knowledge, and they are frequently 

subjective and time-consuming.  

 

Machine Learning (ML) plays an important role in the 

diagnosis and classification of ASD [1, 2]. Akter et al. 

proposed ML models for early diagnosis of ASD, emphasizing 

the importance of timely intervention [3]. Parikh, Li, and He 

utilized optimized ML models combined with personal 

characteristic data to improve the diagnosis of ASD. Their 

approach highlights the potential of personalized data to 

enhance the accuracy of ML models [4]. Thabtah and Peebles 

introduced a new ML model based on rule induction for 

autism detection. This model stands out for its interpretability, 

making it easier for clinicians to understand and trust the 

diagnostic process [5]. Thabtah conducted a comprehensive 

review of ML applications in ASD behavioral research, 

suggesting future directions to improve the effectiveness and 

applicability of ML in this field [6, 8]. Stevens et al. utilize 
unsupervised ML techniques to find and analyze behavioral 

phenotypes in ASD, emphasizing the role of unsupervised 

learning in uncovering hidden patterns in behavioral data [7].   

 

Khan et al. propose a neural network approach combined 

with sequential feed-forward selection for ASD classification, 

showcasing the advancements in neural network 

methodologies for this application [9]. Chaidi and Drigas 

reviewed the application of ML in the context of emotional 

expression and understanding in individuals with ASD, 

highlighting the potential of ML to address the social and 

emotional challenges associated with ASD [10]. Rahman et al. 
examine various ML methods for feature selection and 

classification in ASD, providing insights into effective 

techniques for managing ASD data and improving 

classification accuracy [11]. Zheng, Deng, and Wang apply 

logistic regression models to the classification of ASD, 
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demonstrating the efficacy of these models in processing 

clinical and behavioral data for diagnostic purposes. They 

reported an accuracy of 89.7%, showcasing the robustness of 

simpler models in certain scenarios [12]. 

   
ML models, such as support vector machine [13], deep 

learning [14], logistic regression [15], random forest [16], and 

neural network [17], have achieved high accuracy rates, 

ranging from 85% to 95% for the classification of ASD. ML 

approaches have been successfully applied for ASD 

classification in both todllers and adults.  

 
For instance, models tailored to pediatric populations 

demonstrated robust performance, while those designed for 

adult populations also showed promising results with accuracy 

of 95% and 93% [18-21]. Parlett-Pelleriti et al. reviewed the 

use of unsupervised ML in ASD research, highlighting its 

potential to uncover hidden patterns and phenotypes in ASD 

data without predefined labels [22].   

 
Simeoli et al. conducted a systematic review of ML for 

motion analysis in early ASD detection, reflecting the growing 

integration of movement data in diagnostic models [23]. 

Aarthi and Kannimuthu provide a comprehensive analysis of 

various ML algorithms used in ASD research, offering a 

detailed comparison of their performance and applicability 

[24]. Jayanthi et al. investigate the use of ML for monitoring 

the mental health status of individuals with ASD, showcasing 

the potential of ML to support ongoing mental health 
assessments and interventions. The survey demonstrated that 

the accuracy ranged from 85% to 95% depending on the ML 

algorithm and the dataset used. The review emphasized the 

importance of feature selection and data preprocessing in 

achieving high accuracy [25].  

 
Survey shows that the accuracy of ML models for ASD 

classification is generally high, with many studies reporting 

accuracies above 90%. However, the choice of algorithm, the 

quality of the dataset, and the specific features used are critical 

factors that influence the overall performance of these models. 

Continued research and development in this area are likely to 

yield even more accurate and robust models in the future. 

There is a need to develop ML models that are specifically 

tailored for early detection in infants and toddlers. There is a 

growing demand for interpretable and explainable ML models 

that provide accurate classifications and explain which factors 

contribute more to ASD diagnosis.  
 

This can help medical professionals and caregivers 

understand and trust ML based recommendations. Section 2 

gives the methodology adapted for ASD classification along 

with a detailed analysis of features contributing to ASD in 

toddlers and adults. Section 3 presents the discussion of 

simulation results. The research’s findings are concluded in 

Section 4.  

 
Fig. 1 Percentage of ASD and Non-ASD cases in Toddlers dataset 

 
Fig. 2 ASD and Non-ASD scores 

2. Materials and Methods  
The methodology employed for the prediction of autism 

disorder using ensemble boosting algorithms is discussed in 

this section, along with a detailed analysis of parameters 

contributing to ASD in toddlers and adults.  

2.1. Dataset Description 

Toddler’s datasets contain ten behavioural features. For 

the reference study, the dataset was collected from Kaggle 

[26]. In total, there were 1054 instances in the dataset and 17 

attributes, including class variables. From Figure 1, an 

estimation can be made that around 69.1% of toddlers are 

affected by ASD. 

2.1.1. Attributes 

There are 10 Questions within Q-Chat-10 named as A1 to 

A10. The possible answers to these questions are “Always, 

Usually, Sometimes, Rarely and Never”, which are recorded 
as “1” or “0”. For A1-A9, the responses like Sometimes / 

Rarely / Never is recorded as “1”. For A10, the responses 

Always / Usually / Sometimes are recorded as “1”. A score of 

more than 3 in Q-chat 10 for any individual has a possibility 

of ASD. The distribution of ASD and Non-ASD scores for 

A1-A10 chat is shown in Figure 2. 
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2.1.2. Ethnicity 

Ethnicity significantly impacts ASD cases, influencing 

prevalence, diagnosis, and access to treatment. Minority 

children often face delays in diagnosis due to cultural 

differences, language barriers, and healthcare biases. Access 

to specialized ASD services is limited for these groups, 

compounded by socioeconomic factors and lack of insurance. 

Cultural perceptions and stigma can deter families from 

seeking help, leading to underreporting. Figure 3 shows that 

Native Indian and Pacifica ethnicity are more prone to ASD. 

 

 
Fig. 3 Percentage of ASD cases by ethnicity 

 

 
Fig. 4 Number of ASD cases by gender 

 

2.1.3. Sex  

Sex plays a significant role in ASD cases, affecting 

prevalence, diagnosis, and manifestation of symptoms. Boys 

are diagnosed with ASD more frequently than girls. This 

discrepancy is thought to be influenced by both biological and 

social factors. Biologically, there may be genetic and 

hormonal differences that contribute to the higher prevalence 

of ASD in boys. Certain genetic mutations and the influence 

of sex hormones like testosterone might play a role in this 

disparity. However, the exact mechanisms remain an active 

area of study. Figure 4 shows that males are more prone to 

ASD in comparison to females. 

 

2.1.4. Jaundice 

Neonatal jaundice, characterized by high bilirubin levels 

in newborns, has been investigated for its potential link to 

ASD.  
 

Some studies suggest that severe or prolonged jaundice 

might increase the risk of developing ASD due to the 

neurotoxic effects of elevated bilirubin, which can damage 

brain tissues involved in social behaviour, communication, 

and repetitive behaviours. The newborn period is critical for 

brain development, and conditions affecting the brain during 

this time could influence neurodevelopmental outcomes. 

Figure 5 shows that toddlers having jaundice are more prone 

to ASD in comparison to normal toddlers. 
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Fig. 5 Impact of jaundice on ASD 

 

 
Fig. 6 ASD cases by family members 

 

2.1.5. Family Member 

ASD is influenced by genetics, with studies showing a 

strong hereditary component. Specific genetic mutations and 

family patterns indicate that genetics play a significant role. 

However, ASD also involves a complex interaction with 

environmental factors, meaning it is not solely a genetic 

disease but rather a condition influenced by both genetic and 

environmental elements. Figure 6 shows that most of the 

children with ASD around the world do not have their family 
members with ASD, which means ASD is not a genetic 

disease. 

 

2.1.6. Age 

The impact and management of ASD in toddlers vary 
with age. Figure 7 shows that toddlers aged 36 months have 

the most ASD cases around the world.  

 

Early signs, noticeable from 12 to 18 months, include lack 

of eye contact and delayed speech, and early diagnosis allows 

for crucial early interventions. From 18 to 36 months, 

symptoms like repetitive behaviours and difficulty with social 

interactions become more apparent, necessitating intensive 

therapies. 

 

2.1.7. Q-Chat-10-Score 
Q-CHAT-10 is a screening tool for the assessment of the 

risk of ASD. It consists of 10 questions that assess 

communication skills and behaviours associated with ASD. 

Their Qchat-10 score influences the impact of ASD in 

toddlers, a screening tool used to assess risk for ASD.  

 

A higher score indicates a higher chance of ASD, 

prompting earlier diagnosis and intervention. Toddlers with 

elevated scores may exhibit more pronounced symptoms, such 

as limited social interaction and communication challenges. 

Figure 8 shows that the toddlers with a Qchat-10-Score value 

greater than 3 have ASD.

 

 
Fig. 7 ASD cases in Toddlers as per age in months 
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Fig. 8 ASD cases by Qchat-10 Score 

 
Fig. 9 ASD cases for adults born with jaundice based on gender 

 

The adult dataset also has ten behavioural features (AQ-

10-Adult) and ten individual characteristics. For the reference 

study, the dataset was collected from Kaggle [27]. In total, 

there were 704 instances in the dataset, and 20 features were 

the same as toddlers. In the adult dataset, 29.55% of the 
population has ASD, and 70.44% are non-ASD. 

 

2.1.8. Jaundice 

The jaundice data is analyzed while birth based on gender 

in the dataset. Studies have shown that almost 6-7 times more 

(in adults) of non-jaundice were born with ASD positive. 

Infants born jaundiced have a tenuous connection to ASD. 

Additionally, it has been shown that boys are more likely than 

girls to have ASD (by about 4-5 times). However, we observe 

a smaller ratio in adults. It is depicted in Figure 9. 

 
2.1.9. Age 

The age distribution of adults with ASD typically shows 

a higher prevalence in younger age groups, reflecting 

increased diagnosis rates in recent years due to greater 

awareness and improved diagnostic practices. Some 

individuals may not be diagnosed until adulthood, leading to 

variability in diagnosis ages. The majority of individuals with 

ASD are between the ages of 20 and 30. Adults have a 

decreasing number as they get older. As illustrated in Figure 

10, adults with autism develop coping mechanisms to 

facilitate a better aging process.  

 
Fig. 10 ASD cases in adults as per age 

 

 
Fig. 11 Gender specific country wise ASD cases in adults 

 

2.1.10. Country of Residence 

The impact of ASD on adults can vary significantly 

depending on their country of residence due to differences in 

healthcare systems, availability of support services, cultural 

attitudes, and economic resources. In countries with robust 

healthcare and social support systems, adults with ASD may 

have better access to diagnostic services, leading to improved 

quality of life. Whereas, in countries with limited resources 

for mental health, individuals with ASD might face greater 
challenges in accessing necessary services, receiving proper 

diagnosis, and integrating into society. The developed nations 

that are most impacted are, in fact, the US, Canada, Australia, 

and the UK. On the other hand, we can clearly distinguish the 

female population from the male population, as depicted in 

Figure 11. 

  

2.1.11. Ethnicity 

The impact of ASD on adults varies with ethnicity due to 

differences in cultural perceptions, healthcare access, 

diagnostic practices, and socioeconomic factors. Cultural 
attitudes towards ASD can affect whether individuals seek or 

receive a diagnosis and support, with some ethnic groups 

facing stigma or misconceptions. Access to healthcare also 

plays a significant role, as minority groups may encounter 

barriers such as language differences, lack of culturally 

competent care, and financial constraints, leading to 

disparities in diagnosis and treatment. ASD cases for white 

and European country-wise distribution are plotted in Figure 

12. The US, UK, Australia, NZ, and Canada have the highest 

number of positive ASD.  
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Fig. 12 Count of ASD cases for white and European ethnicities in adults 

 

 
Fig. 13 ASD cases with respect to ethnicity 

 

It is observed from Figure 13 that adults of White and 

European descent are most likely to have an ASD, followed 

by Black and Asians. But then also, it is difficult to conclude 

any genetic relevance for ASD positive.  

 

2.2. Data Preprocessing 

ASD data is first pre-processed for further processing. 

Out of 16 features in the dataset, sex, ethnicity, jaundice, and 

family with ASD features are categorical, which are converted 

to numerical using label encoding. There were no null cases in 
the dataset. Hence, all the samples of the dataset are used for 

experimentation. Data splitting is done for training (80%) and 

testing (20) for the application of ML algorithms. The standard 

scaling is also used to normalize all the features on the same 

scale.  

 

2.3. Machine Learning (ML) Algorithms 

Ensemble ML algorithms are techniques that combine 

multiple models to improve the performance, robustness, and 

generalization of predictions. This involves bagging, boosting, 

stacking, voting and blending. In this paper, four popular 

boosting ML algorithms, Gradient Boosting (GB), Histogram 
Boosting (HB), Extreme Gradient Boosting (XGB) and 

Adaptive Boosting (ADB), are used. These are described 

below. 

 
2.3.1. Gradient Boosting (GB) 

GB is an ensemble ML technique used for classification 

and prediction that sequentially builds models. The advantage 

of GB is that it provides the highest accuracy using an 

optimized loss function on different types of data with insight 

into feature importance [29]. Given an input-output pair (x, y), 

the initial prediction for GB using loss function L is  

𝐹0(𝑋) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑐

∑𝐿(𝑦𝑖 , 𝑐)

𝑛

𝑖=1

 (1) 

The next step is computing the residuals for M number 

of iterations using  

𝑟𝑖
𝑚 = −[

𝜕𝐿(𝑦𝑖,𝐹(𝑋𝑖))

𝜕𝐹(𝑋𝑖)
]
𝐹(𝑋)=𝐹𝑚−1(𝑋)

   for 𝑚 = 1𝑡𝑜𝑀 (2) 

The weak learner ℎ𝑚(𝑋) is fitted to the residuals 𝑟𝑖
𝑚 and 

the model is updated using,  

𝐹𝑚(𝑋) = 𝐹𝑚−1(𝑋) + 𝜈ℎ𝑚(𝑋) (3) 

 

Where, 𝜈 is the learning rate. 

 

2.3.2. Extreme Gradient Boosting (XGB)  

XGB is a sophisticated gradient boosting approach 

optimised for speed and efficiency. The advantage of XGB is 

that it provides regularization to prevent overfitting and 

handles missing data. The objective function in XGB includes 

both the loss function and the regularization term given by  

𝜙(𝜃) =∑𝐿(𝑦𝑖 , 𝑦̂𝑖)

𝑛

𝑖=1

+∑𝛺(𝑓𝑘)

𝐾

𝑘=1

 (4) 

Where, n is total training samples, K is the number of 

trees, 𝜃 represents all the parameters of the model (including 

the weights and structure of the trees) and 𝑦̂𝑖 is the predicted 

output at 𝑖𝑡ℎ instance. 𝛺 is the regularization term to prevent 
overfitting [30].  

2.3.3. Adaptive Boosting (ADB) 

AdaBoost assigns weights to each training instance. 

Initially, all weights are equal. In each iteration, it trains a 

weak learner and adjusts the weights of misclassified 

instances, increasing the influence of hard-to-classify points. 
Initially, all training instances are assigned equal weights. If 

there are n instances, each instance is initially assigned a 

weight 𝑤𝑖 =
1

𝑛
. The weak learner ℎ𝑡 is trained on the weighted 

training data, and its performance is evaluated using a 

weighted error rate.  

𝑒𝑡 =∑𝑤𝑖 . 𝐼(𝑦𝑖 ≠ ℎ𝑡(𝑋𝑖))

𝑛

𝑖=1

 (5) 

Where, I is the binary function that returns 1 for incorrect 

prediction and 0 otherwise. The weak learner's weight 𝛼𝑡 is 

calculated using 

𝛼𝑡 =
1

2
𝑙𝑛 (

1 − 𝑒𝑡
𝑒𝑡

) (6) 

and weights of the training instances are updated using  
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𝑤𝑖+1 = 𝑤𝑖 . 𝑒𝑥𝑝 (𝛼𝑡 . 𝐼(𝑦𝑖 ≠ ℎ𝑡(𝑋𝑖))) (7) 

These weights are normalized by dividing the sum of all 

weights [31].  

 

2.3.4. Histogram Boosting (HB) 
HB is an efficient implementation of GB that uses 

histogram-based algorithms. Instead of using the raw feature 

values, it first bins the feature values into discrete bins 

(histograms). This binning process reduces computational 

complexity and memory usage. The key steps in histogram 

boosting are Data Binning, Gradient Calculation, Split 

Finding and Tree Building. Given a feature 𝑥, we define 𝐾 

bins as 

𝐵𝑘 = {𝑥|𝑏𝑘−1 ≤ 𝑥 ≤ 𝑏𝑘}, 𝑘 = 1,2, . . . . . . . . . 𝐾, where 𝑏𝑘 
are the bin edges.  

For each bin,  𝐵𝑘 compute the sum of gradients 𝐺𝑘 and 

Hessians 𝐻𝑘 (second-order gradients) as 𝐺𝑘 = ∑ 𝑔𝑖𝑖∈𝐵𝑘
, 𝐻𝑘 =

∑ ℎ𝑖𝑖∈𝐵𝑘
 ,  

Where, 𝑔𝑖  and ℎ𝑖 are the gradient and Hessian for 

instance 𝑖, respectively. For a potential split at the bin 𝑠 , the 

gain is calculated as  

𝐺𝑎𝑖𝑛 =
𝐺𝑙𝑒𝑓𝑡
2

𝐻𝑙𝑒𝑓𝑡 + 𝜆
+

𝐺𝑟𝑖𝑔ℎ𝑡
2

𝐻𝑟𝑖𝑔ℎ𝑡 + 𝜆

+
(𝐺𝑙𝑒𝑓𝑡 + 𝐺𝑟𝑖𝑔ℎ𝑡)

2

𝐻𝑙𝑒𝑓𝑡 +𝐻𝑟𝑖𝑔ℎ𝑡 + 𝜆
− 𝛾 

(8) 

Where, 𝐺𝑙𝑒𝑓𝑡 , 𝐻𝑙𝑒𝑓𝑡, 𝐺𝑟𝑖𝑔ℎ𝑡  and 𝐻𝑟𝑖𝑔ℎ𝑡 is the sum of 

gradients and Hessians, respectively, for the left and right 

child nodes. 𝜆is a regularization parameter. 𝛾 is a complexity 

parameter controlling the minimum gain for a split.  

Based on the best splits, the tree is constructed. Each 

internal node represents a split based on histogram bins, and 

each leaf node contains a value, which is the average of the 
target values of the instances falling into that leaf [32]. 

 

3. Results and Discussion  
This research investigated the efficacy of ensemble-

driven machine learning approaches for predicting ASD in 

toddlers and adults. The performance of four prominent 

algorithms, Extreme Gradient Boosting, Gradient Boosting, 

AdaBoost and Histogram-based Gradient Boosting, are 

compared.  

Two separate datasets were employed, one for toddlers 

and another for adults. Each dataset was evaluated using 

various performance metrics. The confusion matrix is 

generated for each dataset using these ML algorithms. Table 

1 shows the structure of the confusion matrix for the 
evaluation of ASD. 

 

Table 1. Confusion matrix for ASD 

 

Actual Output 

Patient with 

ASD 

Patient with No 

ASD 

Predicted 

Output 

Patient 

with ASD 

Correctly 

predicted ASD 

(TP) 

Incorrectly 

predicted ASD 

when there is no 

ASD (FP) 

Patient 

with No 

ASD 

Incorrectly 

predicted no ASD 

when it is ASD 

(FN) 

Correctly 

predicted no ASD 

(TN) 

Based on TP, TN, FP and FN, the following quantitative 

metrics are defined for ASD classification. 

 Accuracy: Proportion of correctly classified instances 

(both ASD and non-ASD) 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑁
. 

 Precision: Proportion of predicted ASD cases that were 

truly ASD Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 . 

 Recall: Proportion of actual ASD cases that were 

correctly identified Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑁
. 

 F1-score: Balances precision and recall by taking their 

harmonic mean 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
Precision×Recall

Precision+Recall
 .  

Log Loss: Measures the model's capacity to differentiate 

between ASD and non-ASD cases. Lower values indicate 
superior performance. 

 𝐿𝑜𝑔𝐿𝑜𝑠𝑠 = −
1

𝑁
(∑ (𝑦𝑖 𝑙𝑜𝑔(𝑝𝑖) + (1 − 𝑦𝑖) 𝑙𝑜𝑔(1 − 𝑝𝑖))

𝑁
𝑖=1 ),  

Here 𝑦𝑖 is the actual class labels for ASD for 𝑖𝑡ℎ sample 

and 𝑝𝑖 the predicted probabilities of class with ASD for 𝑖𝑡ℎ 
sample, N is the total number of samples in the dataset. 

The accuracy of ASD classification obtained using these 

four ML algorithms is given in Table 2. It is observed that all 

algorithms achieved high training accuracy (100% for most) 

on both datasets. This suggests that the models learned the 

training data well. Testing accuracy is generally lower than 

training accuracy, but it remains high (>95%) for all 

algorithms in both datasets. This indicates reasonable 

generalizability of the models to unseen data. XGB achieved 

the highest testing accuracy (97.63%) for the toddler dataset. 
There is a slight difference in performance between some 

algorithms on the toddler dataset compared to the adult 

dataset. For instance, HB performs better on the adult dataset 

(97.54%) compared to the toddler dataset (96.20%).  

 

Overall, Table 2 highlights the effectiveness of these ML 

algorithms for ASD prediction in both toddlers and adults, 

with XGB demonstrating the strongest performance on the 

toddler dataset based on testing accuracy. 
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Table 2. Accuracy of ASD classification using GB, XGB, ADB and HB 

ML algorithms 

 Toddlers Dataset Adults Dataset 

Algorithm Training  Testing  Training  Testing  

Gradient 

Boosting 
100% 97.63% 100% 97.54% 

Extreme 

Gradient 
Boosting 

100% 97.63% 100% 95.90% 

Adaptive 

Boosting 
100% 100% 100% 100% 

Histogram 

Boosting 
100% 96.20% 100% 97.54% 

 

Table 3. Comparative analysis of various quantitative metrics for ASD 

classification on Toddlers dataset 

Sr. 

No 
Algorithm Precision Recall F1-Score 

1.  
Gradient 

Boosting 
97.64% 97.63% 97.61% 

2.  
Extreme 
Gradient 

Boosting 

97.62% 97.63% 97.62% 

3.  
Adaptive 

Boosting 
100% 100% 100% 

4.  
Histogram 

Boosting 
96.20% 96.20% 96.20% 

Table 4. Comparative analysis of various quantitative metrics for ASD 

classification on Adults dataset 

Sr. 

No 
Algorithm Precision Recall F1-Score 

1.  
Gradient 

Boosting 
97.54% 97.54% 97.53% 

2.  

Extreme 

Gradient 

Boosting 

95.89% 95.90% 95.89% 

3.  
Adaptive 

Boosting 
100% 100% 100% 

4.  
Histogram 

Boosting 
97.54% 97.54% 97.53% 

 

Tables 3 and 4 show a comparative analysis of various 

quantitative metrics for ASD classification using four ML 
algorithms. XGB again emerges as a strong performer, 

achieving high and balanced scores (around 97%) for F1-

score, precision and recall in the toddler dataset. The 

performance of the algorithms can vary across the toddler and 

adult datasets. For example, GB and HB exhibit very similar 

metrics in the toddler dataset. However, Histogram-based 

Gradient Boosting achieves slightly better precision 

(identifying more true ASD cases out of the predicted ASD 

cases) and recall (capturing a higher proportion of all true 

ASD cases) in the adult dataset. ADB, despite achieving 100% 

accuracy (potentially due to overfitting), has much lower 

values in the other metrics compared to other algorithms, 
suggesting it might not be effectively distinguishing between 

classes. 

 
(a) 

 

 

(b) 
Fig. 14 Comparison of Log Loss obtained using XGB, GB, ADB and HB 

algorithm on (a) Toddlers dataset, and (b) Adults dataset. 

 

A comparison of Log Loss obtained using XGB, GB, 
ADB and HB algorithms for ASD classification is shown in 

Figure 14. As depicted in Figure, XGB outperformed other 

algorithms with the lowest log loss in both datasets (0.0810 

for adults and 0.0578 for toddlers). This indicates its superior 

ability to distinguish between classes in both age groups. GB 

has a slightly higher log loss compared to XGB in both 

datasets (0.0871 for adults and 0.0811 for toddlers). ADB 

achieved significantly higher log loss compared to all other 

algorithms in both datasets (0.5344 for adults and 0.5142 for 

toddlers). This suggests a much poorer ability to differentiate 

between classes, potentially due to overfitting. HB achieved 

the second-lowest log loss (0.0780) in the adult dataset, 
performing slightly better than GB. However, its performance 

in the toddler dataset (0.0803) was closer to GB. This 

highlights a potential dependence of this algorithm's 

effectiveness on the specific dataset characteristics. 

 

A comparison of AUC values obtained using XGB, GB, 

ADB and HB algorithms for ASD classification is shown in 

Figure 15. As expected, ADB AUC curves in both toddler and 

adult datasets likely stick very close to the x-axis (FPR). This 

indicates very poor discrimination between ASD and non-

ASD cases. A near-flat AUC curve for ADB suggests it might 
be performing no better than random guessing when 
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classifying ASD in both datasets. The AUC curves for the 

other algorithms (XGB, GB and HB) likely show more 

variation compared to AdaBoost.  

 
(a) 

 
(b) 

Fig. 15 Comparison of AUC values obtained using XGB, GB, ADB and 

HB algorithm on (a) Toddlers dataset, and (b) Adults dataset. 

The AUC curves for the toddler dataset exhibit more steps 

or changes along the horizontal axis (FPR). This indicates that 

the models are struggling to differentiate between some true 

positives and false positives, leading to more fluctuations in 

the AUC calculation.  

The AUC curves in the adult dataset show more 
significant changes along the vertical axis (TPR) indicating 

the models are more effective at correctly classifying true 

positives (identifying actual ASD cases) in the adult dataset 

compared to the toddler dataset. The reasons behind these 

observations could be due to inherent challenges in diagnosing 

ASD in toddlers compared to adults. Early signs of ASD might 

be more varied in toddlers, making it more difficult for the 

models to distinguish them from non-ASD cases.  

4. Conclusion 
In this paper, ensemble machine learning methods using 

Gradient Boosting (GB), Histogram Boosting (HB), Extreme 

Gradient Boosting (XGB) and Adaptive Boosting (ADB) 

algorithms are used for the classification of ASD in both 

toddlers and adults. XGB turned out to be the most effective 

algorithm, showing superior performance with F1-score, log 

loss, accuracy, precision, and recall.  

 

The exceptional performance of XGB, especially its 
decreased log loss in the adult and toddler datasets, highlights 

its potent ability to distinguish between cases with and without 

ASD. The AUC curves indicated possible differences in 

model performance across the toddler and adult datasets and 

graphically confirmed ADB's limitations.  

 

Results show that identifying ASD in toddlers may be 

more difficult than in adults, based on the variations in the 

shapes of AUC curves. Based on the quantitative assessment 

using all metrics, results demonstrate the stability and promise 

of XGB as a trustworthy technique for classifying ASD in a 

range of age groups. 
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