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Abstract - The use of deep learning for creating music has been receiving a lot of interest nowadays due to its capacity for 

innovation and originality. This paper investigates how well hybrid networks that combine Gated Recurrent Units (GRU) and 

Long Short-Term Memory (LSTM) units perform music-generating tasks. Improving the model's ability to identify long-term 

relationships and maintain context while generating musical sequences is the aim of the proposed hybrid architecture. It 

accomplishes this by fusing the benefits of LSTM and GRU units. Comprehensive experiments are conducted on multiple music 

datasets to evaluate the performance of the hybrid GRU-LSTM networks in generating musical compositions. The quality of 
created music sequences is evaluated using performance measures like overall musicality, harmonic consistency, and melody 

coherence. Expert musicians also conduct qualitative assessments to offer insights into the creative and artistic elements of the 

developed compositions. When compared to current LSTM-based models, the results show how well the hybrid GRU-LSTM 

networks perform in generating high-quality music sequences with better coherence, consistency, and inventiveness. 

Furthermore, the study investigates the effects of various coaching strategies and design features on the performance of hybrid 

networks. All things considered, by exploring novel architectures and strategies for applying deep learning techniques to 

enhance the uniqueness and quality of generated music, this research enhances the field of music creation. The findings shed 

light on how hybrid GRU-LSTM networks might encourage innovation in the sector and raise the bar for music production 

skills. 

Keywords - Creativity, Deep Learning, Gated Recurrent Units, Hybrid networks, Harmonic consistency, Long Short-Term 

Memory, Music composition, Melody coherence, Quality assessment. 

1. Introduction  
The synthesis of music is a fascinating new area in 

artificial intelligence that has significant ramifications for 

human-machine partnerships and the creative industries. By 

exploring the hybridization of GRU and LSTM networks, this 

research aims to improve the capabilities of automated music 

creation systems and explore the complexities of music 
composition [1]. The aim of creating more intricate and 

illuminating musical compositions is the main motivation 

behind this study. RNNs that are now in use, such as GRU and 

LSTM networks, are excellent at capturing temporal 

dependencies, which makes them suitable for jobs involving 

sequential input. Every architecture, though, has advantages 

and disadvantages of its own. In order to create a hybrid model 

that takes advantage of the memory retention powers of 

LSTMs for lengthier musical structures and the efficiency of 

GRUs for learning short-term dependencies, it is necessary to 

combine the complementing qualities of these two types [2]. 
The ability to write engaging tunes programmatically becomes 

increasingly important as the demand for varied and high-

quality music keeps growing. The aim of this study is to 

investigate the unique contributions made by GRU and LSTM 

components in the hybrid architecture. This will provide 

insight into how their synergistic interaction can improve the 

quality of musical sequences that are generated [3].  

 

In order to generate music automatically, this study sets 

out on an exciting journey to maximise the synergies of hybrid 

GRU-LSTM networks. Seek to push the limits of AI-

generated music by examining their collaboration potential, 

which offers more originality as well as transparency in the 

creation process. The results of this research have the potential 
to add to the growing body of knowledge on AI-augmented 

artistic expression as they move through this multidisciplinary 

terrain [4]. In the age of digital devices, music is one of the 

most widely used forms of pleasure. Music is seen as a product 

of human ingenuity that conveys thoughts and feelings via the 

use of melodies, harmonies, and rhythmic patterns. Numerous 

genres of music exist, including folk, blues, jazz, rock, pop, 

etc. Smartphones have characteristics that allow music to be 
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played both offline and online; consuming music has become 

simpler in the age of technology.  

 

In contrast to earlier times, there is an abundance of 

digital music available today, making it time-consuming and 

exhausting to go through it all [5]. Music recommendations 
are an attribute of music streaming services like Spotify and 

Pandora. These characteristics can assist in obtaining a list of 

suitable songs from well-known music collections based on 

already-heard music. The system of recommendation is 

crucial to sustaining the digital streaming music industry. 

Music suggestions are made by comparing similarities 

between songs or by favouring an individual over others [6].  

 
To create customized suggestions for the requirements of 

various audiences, changes are required. As a result, the 

personalized recommender system for music is more intricate 

than the standard recommender network. To extract the music 

characteristics, it is essential to take into account customer 

requirements in their entirety and integrate music feature 

identification and sound processing techniques. The goal of 

this study is to put into action a personalized recommended 

framework, which is important both in terms of application 

and academic value. A study strategy is centered on studying 

how comparable the elements of an audio signal are to 

achieving the goal. This method can be referred to as content-

based music recommendations because it bases its suggestions 
on the consumer's prior listening history. An understanding of 

the resemblance metric, which is utilized to compare audio 

data, is necessary for this strategy [7]. 

 

There are different ways to express musical information, 

including sheet music, audio signals, and symbolic 

representation. This work has adopted a symbolic 

representation of music. The first contributory work 

represents the music in alpha-numeric symbols and then 

converts them into a wave file using a synthesizer. The music 

in the subsequent two contributed compositions is in the 
Musical Instrument Digital Interface (MIDI) format [8]. 

 

1.1. Research Gap 

In the field of music generation using deep learning 

techniques, the Research Gap lies in the following areas: 

 

Hybrid Architectures: There is a lack of exploration and 

development of hybrid deep learning architectures that 

effectively combine different models, such as GRU and 

LSTM networks, to enhance the quality and creativity of 

generated music compositions. 

 
Long-Term Dependency Capture: Existing deep learning 

models may struggle to effectively capture long-term 

dependencies in music sequences, leading to limitations in 

coherence and continuity in generated compositions. 

 

Context and Coherence Maintenance: There is a need to 

improve the capability of deep learning models to maintain 

context and coherence in music generation tasks, ensuring that 

generated compositions flow naturally and maintain musical 

structure and integrity. 
 

Quality and Creativity Evaluation: Current evaluation 

metrics and techniques may not accurately assess the quality, 

creativity, and musicality of generated compositions, 
particularly in capturing aesthetic and creative aspects. 

 

User Experience Enhancement: There is a gap in focusing 

on enhancing the user experience by generating personalized 

and customized music compositions tailored to individual 

preferences, thereby increasing user engagement and 

satisfaction. 
 

Complex Musical Structures: Limited exploration and 

synthesis of complex musical structures, including melodies, 

harmonies, rhythms, and arrangements, using deep learning 

models beyond existing composition methods. 

Collaboration and Co-creation Facilitation: There is a 

need to facilitate collaboration and co-creation among 

musicians, composers, and AI systems, providing a platform 

for interaction, experimentation, and interdisciplinary 
collaboration in music composition. 

 

Pushing Boundaries of Artistic Expression: The 

exploration of new artistic concepts, ideas, and forms of 

musical expression using deep learning models is limited, with 
opportunities to push the boundaries of artistic expression in 

music composition remaining largely unexplored. 
 

Advancing Research and Innovation: There is a gap in 
contributing to advancing research and innovation in the 

music-generating industry by developing novel deep-learning 

techniques, architectures, and evaluation methodologies that 

improve the quality, creativity, and coherence of generated 

music compositions. 
 

2. Related Works  
Enhanced music generation has its roots in the early 

experiments with computer-generated music, dating back to 

the mid-20th century. Early pioneers like Alan Turing and Max 

Mathews explored the potential of computers to create musical 

compositions, laying the foundation for algorithmic music 
generation. Over the decades, advancements in computer 

science, artificial intelligence, and digital signal processing 

have propelled the field forward. The introduction of neural 

networks and deep learning in the late 20th and early 21st 

centuries marked a significant milestone, allowing for more 

sophisticated and realistic music generation. Techniques such 

as Recurrent Neural Networks (RNNs), Long Short-Term 

Memory (LSTM) networks, and, more recently, Generative 

Adversarial Networks (GANs) have been employed to model 

and generate complex musical patterns, capturing the intricate 

structures of rhythm, melody, and harmony. The recent surge 
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in enhanced music generation can be attributed to the 

integration of these advanced neural network architectures 

with large-scale datasets and powerful computational 

resources. Researchers have developed models that not only 

mimic human composers but also innovate by blending styles, 

instruments, and genres in novel ways. Notable projects like 
OpenAI's MuseNet and Google's Magenta have demonstrated 

the potential of AI to generate high-quality music that can be 

indistinguishable from human-created compositions. The 

focus has also shifted towards creating more interactive and 

user-friendly tools, enabling musicians and producers to 

collaborate with AI in real time. This symbiotic relationship 

between human creativity and artificial intelligence is driving 

the evolution of music, offering new possibilities for artistic 

expression and reshaping the landscape of music production 

and consumption. 

 

A software program and algorithm known as a 
recommender system makes suggestions for products that are 

likely to capture the audience's attention. Recommendations 

are connected to various types of usage, such as purchasing 

products, listening to music, or recently reading news [9]. 

However, after Apple acquired Beats Music, the production of 

music commodities shifted. Over the past few years, the music 

industry has transitioned from commodity sales to a 

subscription and streaming-based revenue model. This new 

business approach has made electronic music more accessible 

than ever before [10]. 

 
Recurrent Neural Networks (RNNs) are a part of the feed-

forward neural network family, differing from traditional 

feed-forward networks by transmitting data in time 

increments. This capability allows the network to learn from 

both recent and past data [11], making it particularly adept at 

handling sequences, especially temporal series. RNNs, 

however, faced a learning issue known as the vanishing 

gradient problem due to the difficulties in estimating gradients 

with Back-Propagation Through Time (BPTT). This problem 

could lead to gradients becoming excessively reduced or 

amplified. BPTT is a back-propagation method used to 

estimate the gradients for each phase on an unrolled graph 
[12]. In RNNs, the outputs from the hidden layer (ht+1) re-

enter as inputs for calculating subsequent values, allowing the 

system to utilize both past and present information and learn 

from sequences, even periodic ones. The Digital Audio 

Workstation (DAW) is the industry-preferred method for 

recording, modifying, learning, and mixing in contemporary 

audio production. Musical instruments or synthesizers 

connected to a DAW can be played individually [13].  

 

Computational compositional techniques include 

generative grammars, Markov models, artificial neural 
networks, and transition networks. RNNs have historically 

struggled with learning issues due to the challenges of 

estimating gradients via BPTT, leading to problems such as 

vanishing gradients caused by overly minimizing or 

amplifying consequences. The BPTT method uses reverse 

propagation to determine the gradient for each step in an 

unfolded graph. The initial LSTM unit has undergone several 

minor adjustments since its introduction, and the version 

currently in use includes block input, a single cell with the 
Constant Error Carousel, a single gate (input, hidden, and 

output), an output activation function, and peephole 

connectors [14]. Music can effectively communicate emotions 

through the imaginative use of sound and timing. Composing 

music involves creatively assembling the parts or elements of 

music to produce an original piece. Music varies in style and 

convention across different cultures, with Indian classical 

music and Western music being two notable categories, each 

with unique histories, traditions, and musical characteristics. 

The literature identifies two commonly used approaches for 

generating artificial music: data-based learning methods and 

metaheuristic methods. Data-based methods are often 
employed for music imitation, transcription, and generating 

similar musical sequences, effectively capturing the 

characteristics and patterns in the training datasets. 

Metaheuristics, on the other hand, are used for creative 

exploration of the musical search space and the generation of 

new musical compositions, adhering to specific rules or 

guidelines. This work proposes methods for music 

composition that merge the qualities of both approaches, 

considering the exploration of the musical search space, 

adherence to musical guidelines, and capturing the 

characteristics of musical data. 
 

3. Proposed Methodology 
One of three emotions tension, grief, or tenderness was 

entrusted to each of the 1,160 songs in the dataset used in this 

study's investigation. The dataset was taken straight from the 
Diptanu repository. By applying the Adam optimizer and 

sparse categorical volatility on the validation set, these models 

were evaluated after being trained on the training set. The data 

about musical styles greatly influence the model's capacity to 

pick up particular styles. The following portion introduces the 

music generation model SCTG.  Figure 1 depicts the SCTG 

model's general architecture. The ultimate goal was to choose 

which structure, based on its testing set performance and 

precision, would be evaluated on the testing set. Figure 2 

displays the dataset label transmission. As the internal 

principle of LSTM and GRU models is an entryway, use them. 
The data that is kept and that is discarded can be managed by 

these entrances. After comparing the methods, it is determined 

that the hybrid model outperforms the SVM model, which 

gains a precision of 60.8% for text classification, with an 

accuracy of 82.6%. Since this decline pertains to a sample with 

a single label, employ sparse categorical entropy for the 

calculations. In this instance, don't utilize many labels—just 

one, as the Adam optimizer lowers the cost of the loss function 

compared to other optimizers and has a quicker computation 

time.  
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Fig. 1 Proposed methodology 
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Fig. 2 Distribution of dataset 

 
Table 1. Dataset description 

Data Source Description Examples 

MIDI Databases 
Collections of MIDI files that provide detailed information on 

musical compositions, including notes, timing, and dynamics. 

Lakh MIDI Dataset, Classical 

Archives 

Audio 

Recordings 

High-quality audio recordings of music are used for training models 

to understand timbre, instrumentation, and production techniques. 

YouTube Music Dataset, Free 

Music Archive 

Sheet Music 

Digitized versions of musical scores that provide structured 

information on musical pieces, including melody, harmony, and 

arrangement. 

MuseScore, MusicXML 

datasets 

Lyric Databases 
Collections of song lyrics that help in understanding the relationship 

between textual content and musical composition. 
MetroLyrics, LyricWiki 

Genre-Specific 
Datasets 

Curated collections of music from specific genres are used to train 
models on the characteristics and nuances of different musical styles. 

GTZAN Genre Collection, 
Million Song Dataset 

Performance 

Data 

Data capturing live performances, including tempo variations, 

expressive timing, and dynamics, are used to add realism to 

generated music. 

MAESTRO Dataset (piano 

performances), Live Music 

Archive 

Cultural Music 

Archives 

Collections of traditional and folk music from various cultures to 

ensure diversity and inclusion in music generation models. 

Smithsonian Folkways, 

Global Music Archive 

User Interaction 

Data 

Data from user interactions with music platforms, including playlists, 

likes, and skips, are used to personalize and adapt music generation 

models. 

Spotify Million Playlist 

Dataset, Last.fm dataset 

Music Theory 

Databases 

Structured datasets that include information on music theory, such as 

chord progressions, scales, and harmonic analysis. 

Hooktheory Trends, 

TonalHarmonyAnalysis 

3.1. Data Sources 

Table 1 describes the data sources collectively providing 

a rich and diverse foundation for training and enhancing music 
generation models, enabling the creation of complex and 

contextually rich musical compositions. 

3.2. Pre-Processing  

3.2.1. Tokenization and Normalization 

For text-based data like lyrics and music theory: 
 

Tokenization: Splitting text into tokens (words or 

symbols).  

Tokens=Tokenize(Text) (1) 

Normalization: Converting tokens to a standard form 

(e.g., lowercasing, removing punctuation).  

Normalized Tokens=Normalize(Tokens)  (2) 

3.2.2. Audio Feature Extraction 

For audio recordings: 

Mel-Frequency Cepstral Coefficients (MFCC): Common 

audio features extracted from recordings.  
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MFCC(t) = ∑ log(𝑋(𝑛)) cos [
𝑡(𝑛−0.5)𝜋

𝑁
]𝑁

𝑛=1      t = 1,2,…k     (3) 

Where X(n) is the magnitude spectrum of the audio signal, 

N is the number of metal bands, and K is the number of MFCC 

coefficients. 

3.2.3. MIDI Data Processing 

For MIDI files: Note Representation: Extracting note 

information (pitch, velocity, duration).  

Note=(Pitch,Velocity,Start Time,End Time)       (4) 

3.3. Data Integration 
3.3.1. Combining Different Modalities 

For integrating MIDI, audio, and text data, need to align 

them on a common timeline or framework: 

Alignment: Synchronize MIDI events and audio features.  

Aligned Data=Align(MIDI Data, Audio Features)  (5) 

Concatenation: Combine feature vectors from different 

sources.  

Combined Features=Concat(MIDI Features, Audio Features, 

Text Features).                                   (6)  

3.3.2. Feature Vector Construction 

Creating a unified feature vector for model input:  

FV=[MIDI Features, MFCC, Lyrics Embeddings]     (7) 
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3.4. Hybrid Model 
An investigation strategy that included training, 

examination, and validation of datasets was used in the 

initiation and pre-processing of the data to generate sliding 

window data. Moreover, the investigation's structure and 

hyperparameters are utilized for the dataset's forecasting 
procedure. The methodology served as the foundation for both 

the structure of the model and the hyperparameter 

configurations. Two layers of convolution, two pooling 

layers, two GRU layers, one LSTM layer, one smoothing 

layer, three dense layers, and two layers for dropouts make up 

the model employed in this work. There are 192 neurons in the 

GRU layer and 128 in the LSTM layer. The quantity of layers 

in the present investigation is one of the enhanced hyper 

parameters. The lay process of the layer acts as the catalyst 

mechanism. The layer's function of activation is linear. 

Describe the actions and modifications that every component 

makes as it processes the input information in order to produce 
a mathematical illustration of this design. Here's a summary of 

it: proportion of the input components to be changed during 

training, assisting in preventing over-fitting. The dropout 

operation is a technique used in training; it is not strictly 

mathematical.  Furthermore, the framework created using this 

analytical approach was applied to forecast data from the test 

dataset. 

The investigation of automatic music generation focuses 

on the model's interpretive capability. The objective is to 

create a model that exhibits interpretive capacity and can 

appropriately represent the sequence information. As an idea, 
include style data in the final product component relying on 

the linear Transformer. The style description function, when 

combined with the model's output attributes, has the ability to 

alter the pattern's overall output. Figure 3 displays the 

composition of the simulation. Maximum Likelihood 

Estimation (MLE) is then used to restrict the procedure. It is 

not possible to optimize this training method performs badly 

and exhibits exposure bias when dealing with lengthy 

sequences like music sequences. The biased goal of a GAN 

can be introduced to successfully ease this problem. Both the 

interpretive capacity and the structural knowledge concerning 

the music-generating model are improved by the 
discriminator. In Figure 4, the discriminator's structure is 

displayed.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Architecture of style-conditioned patch discriminator 
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Fig. 5 The training and sampling pipelines of MeLoDy using the proposed system

The DPD model in MeLoDy is conditionally trained using 

the semantic tokens u1...uTST, which are produced by the LM 

during inference time and acquired from the SSL model during 

training, as shown in Figure 5. Tests show that controlling the 

music's semantics with token-based discrete constraints and 

allowing the diffusion framework to learn the embedding 

vector for each of the tokens on its own can greatly increase 

the consistency of production.
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4. Results and Discussion 
For the study, information was used from the website 

investing.com. The temporal span of the data collection is 

1645 days, with August 1, 2020, being the beginning and 

September 29, 2023, being the finish. The initial price and final 

price are the values of the data parameters that were employed 

in the analysis. The investigation employed five distinct 

inaccuracy indicators in all. The RMSE, MAE, MAPE, and R2 

error coefficients are these ones. Each simulation has been 

created, trained, and assessed using a specific set of data. In 

Table 2 Simulation's performance throughout training is 

displayed. The technique outperformed the other three 

prediction methods (CNN, LSTM, and GRU) in terms of 
predicted value matching rate and proximity to the actual 

value. The MAE should decrease with improving forecasting. 

The RMSE value should decrease with increasing prediction 

precision. R-squared (R2) values can range from zero to one. 

R2 approaching signifies that the readings are quite similar to 

one another. However, the observational outcomes for each of 

the frameworks are shown in Figure 6.  

The results from the hybrid technique are the most 

accurate and exact, with Root Mean Squared Error (RMSE) 

and Mean Absolute Error (MAE) levels of 0.1089 and 

1.4789, respectively, and an R2 value of 0.9991, which is quite 

close to 1. The MAE, RMSE, and MAPE values drop whilst 

the R2 value rises when matching the hybrid approach to the 
LSTM technique.  

Figure 7 shows that this hybrid approach improves 

accuracy while in training and validation. 

 
Table 2. Performance measures 

Model 

Type 

Performance metrics 

F1-Score Accuracy Precision Recall 

LSTM 0.32872 0.62107 0.41871 0.37398 

CNN 0.26312 0.62107 021404 0.34444 

Hybrid 

Model 
0.73364 0.73515 0.73425 0.73291 

 
Fig. 6 Test outcomes of Music time vs. cost by using the proposed system 

 

 
Fig. 7 Accuracy of the proposed model 
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Fig. 8 Loss of proposed model 

Figure 8 illustrates how overfiting occurs in deep learning. 

When the number of validation sets exceeds that of training 

sets, overfiting takes place. Overfitting in machine learning 

was caused by numerous variables. The absence of sufficient 

training data is the cause of the primary component. The 

second component, which may also contribute to the 

overfitting issue, is the selected rate of dropout and learning. 

The third element relates to model complexity; an overfitting 

issue with an easier model can arise from a complicated one. 
Pre-processing the data is the fourth component that may 

contribute to an overfitting issue. A variety of methods can 

overcome the overfitting graph. The second step is to apply 

appropriate regularization. To get around the overfitting graph, 

the data might be fed into the models after a suitable 

regularization, like L1 or L2 regularization. Last but not least, 

during the training phase, a dropout can be used to 

momentarily eliminate random neurons from the model. 

Nevertheless, a comparison of the evaluation as well as 

training data reveals that the combined model outperforms the 

other methods in both testing and training. The model's ability 

to effectively forecast the data is indicated by the lowest 

RMSE, MAE, and MAPE values in both training and 

testing. An elevated R2 score suggests that a significant 

amount of the dataset's difference can be explained by the 
model. Out of the three models (CNN, LSTM, and GRU), the 

LSTM model exhibits superior performance in both scenarios. 

Original and Generated dataset Note length and its density are 

shown in Figures 9(a) to 9(d). 
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(b) 

 

  
 (c)  

  
(d) 

Fig. 9(a) Original data note length, (b) Original data note density, (c) Generated data note length, and (d) Generated data note density.
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Conversely, the GRU model performs the worst during 

testing and training. These results show that because a hybrid 

design neither overfits nor underfits, it is typically affordable 

and balanced. Comparing the LSTM model's training and 

testing results to those of the other models reveals that it 

performs admirably in both domains. While the RMSE, MAE, 
and MAPE values are incredibly low, the R2 value is 

substantial.  

The CNN model works brilliantly, while the GRU model 

performs better with the highest error rates and lowest R2 

values in both instances. This suggests that the GRU model is 

the least suitable model for this dataset. The LSTM and CNN 

findings show that both models are consistent with the dataset 

and do not have any problems with overfitting or underfitting, 

even if their efficiency is lower than that of the hybrid model. 

5. Conclusion 
In conclusion, there is a tonne of room for creativity, 

innovation, and creative expression in the field of deep 

learning approaches for music generation. To solve current 

issues and optimise the potential of deep learning models in 

producing imaginative and high-calibre music compositions, a 

few crucial areas still need more research and development. 

First, in order to raise the calibre and inventiveness of 

generated music compositions, hybrid deep learning 
architectures that successfully blend several models such as 

GRU and LSTM networks must be investigated and 

developed. Capturing long-term dependencies, preserving 

context and coherence, and synthesising intricate musical 

structures should be the core goals of these hybrid systems.  

Additionally, in order to precisely evaluate the level of 

creativity, musicality, and quality of generated compositions, 

extensive evaluation metrics and procedures are required. 

Expert musician qualitative evaluations should be 
incorporated into these evaluation processes in order to capture 

artistic and creative elements beyond the conventional metrics 

of loss and accuracy. 

Additionally, in order to improve user happiness and 

engagement, personalised and customised music compositions 

should be created based on individual tastes. This will increase 

user engagement. In order to promote experimentation and 

multidisciplinary collaboration in music composition. This 

entails democratising the process of writing music and 

enabling cooperation and co-creation amongst musicians, 

composers, and AI systems.  

All things considered, the development of innovative deep 
learning algorithms, architectures, and assessment 

methodologies calls for concentrated efforts to advance 

research and innovation in the field of music generation. Fully 

utilise deep learning models to produce imaginative and high-

calibre music compositions, advancing the field of music 

composition and encouraging novel forms of artistic 

expression by filling in research gaps and expanding the 

parameters of artistic expression. 
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