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Abstract - Image classification has evolved greatly in recent years, owing to the development of machine learning algorithms 

and the availability of large-scale image datasets. Convolutional Neural Networks (CNNs) have profoundly impacted the field 

of image classification due to their ability to learn hierarchical representations directly from pixel data. Unlike traditional 

machine learning algorithms, which rely on handcrafted features, CNNs can extract information hierarchically through 

multiple convolutional and pooling layers. Initially, compared various feature extraction techniques such as Histogram of 

Oriented Gradients (HOG), Local Binary Pattern (LBP), Scale Invariant-Future Transform (SIFT), Speeded-Up Robust 

Features (SURF), and wavelet domains like Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) with 

standard classifiers. In order to improve the results, design a novel CNN model for image classification tasks, with an emphasis 

on hyperparameter optimization, data augmentation, dropout regularization, and efficient data loading. Experimental results 

on benchmark datasets show that our proposed CNN model outperforms baseline models, with an improving accuracy of 

76.00%. These findings demonstrate the usefulness of our approach in advancing the state-of-the-art forward in image 
classification task. 

Keywords - Image classification, Feature extraction, Convolutional neural network, Data augmentation, Efficient data loading.

1. Introduction  
Rice, as the preferred staple food for a substantial portion 

of the world’s population, is essential to maintaining global 

food security. However, a number of diseases that pose rice 
farming must be recognized and controlled quickly in order 

to avoid yield losses. In recent years, advances in computer 

vision, machine learning, and remote sensing technologies 

have transformed the field of rice plant disease identification. 

These technologies provide non-destructive, quick, and cost-

effective ways to diagnose illnesses in rice plants, allowing 

for prompt treatments to reduce crop losses and boost 

agricultural production. 

 

This study provides an overview of the most recent 

advances in rice plant disease detection strategies, including 

the utilization of image processing techniques, deep learning 
algorithms, and Unmanned Aerial Vehicles (UAVs). It also 

addresses the field’s challenges, possibilities, and future 

directions, with the goal of helping to improve sustainable 

agriculture and food security projects around the world. 

 

Image feature extraction is significant in computer vision 

because it transforms raw pixel data into structured 

representations that improve efficiency, robustness, and 

compatibility with machine learning models. It reduces 

dimensionality, improves interpretability, and facilitates 

tasks like classification and detection across a variety of 

conditions. This study conducts a comparative analysis of 

feature extraction techniques for image classification tasks 

using Convolutional Neural Networks (CNNs), Scale-

Invariant Feature Transform (SIFT), and Histogram of 

Oriented Gradients (HOG), among others. Furthermore, we 

explore the effectiveness of several classifiers when 

combined with these feature extraction strategies, which 
include both classic machine learning algorithms and deep 

learning models. 

 

Data augmentation and hyperparameter tuning are 

important strategies for optimizing image classification 

algorithms. Data augmentation enhances the training dataset 

by introducing transformations such as rotations, flips, and 

zooms, which diversity the data observed by the model. This 

method improves model robustness, allowing it to generalize 

more well to new data and lowering the danger of overfitting. 

Furthermore, data augmentation is especially useful when 

labeled data is limited, maximizing the utility of available 
samples without requiring further annotation efforts. 

Hyperparameter tuning, on the other hand, is concerned with 

optimizing parameters that the model does not directly learn, 

such as learning rates, batch sizes, and network designs. This 
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iterative method entails experimenting with various settings, 

training the model, and assessing performance metrics using 

validation data. Practitioners may greatly improve model 

performance by fine-tuning hyperparameters based on 

individual tasks and datasets, ensuring optimal accuracy and 

efficiency in image classification. 
 

By conducting a rigorous comparative analysis, we aim 

to provide insights into the strengths and weaknesses of 

different image feature extraction techniques and classifiers. 

Our findings will be useful for researchers, practitioners, and 

stakeholders working on the development and deployment of 

image classification systems across diverse domains. 

 

2. Related Works 

Recent advancements in computer vision have 

significantly influenced various domains, including human 

detection, texture classification, and large-scale image 

recognition. Dalal and Triggs [1] proposed HOG for human 

detection, providing a robust method for capturing local 

object appearance and shape. Lowe [2] introduced Scale-

Invariant Feature Transform (SIFT), enabling distinctive 

image feature extraction across different scales and 

orientations. 
 

Ojala, Pietikäinen, and Maenpaa [3] developed Local 

Binary Patterns (LBP) for texture classification, offering a 

computationally efficient approach invariant to gray-scale 

and rotation. These traditional methods laid the foundation 

for subsequent advancements in deep learning architectures. 

Simonyan and Zisserman [4] introduced Very Deep 

Convolutional Networks (VGG) for large-scale image 

understanding, demonstrating the efficacy of deep learning in 

learning hierarchical representations. 

 

He et al. [5] offered Deep Residual Learning, addressing 
the challenges of training deeper networks by introducing 

residual connections. These works collectively highlight the 

evolution of computer vision methodologies from traditional 

feature-based approaches to deep learning paradigms, driving 

progress in various applications such as object recognition 

and image classification. 

 

Over the past few years, there has been a paradigm shift 

in computer vision towards more sophisticated architectures 

and methodologies. Szegedy et al. [6] introduced the 

Inception architecture, redefining the design principles for 
Convolutional Neural Networks (CNNs) by incorporating 

multiple parallel convolutional pathways. This approach 

aimed to improve computational efficiency while 

maintaining high accuracy in image recognition tasks. 

 

Building upon this, Tan and Le [7] proposed 

EfficientNet, a novel scaling method that balances model 

depth, width, and resolution to optimize overall efficiency 

and performance. Dosovitskiy et al. [8] further expanded the 

horizon with transformers, a class of models originally 

developed for natural language processing but adapted 

successfully for image recognition tasks. This pioneering 

work demonstrated the potential of leveraging self-attention 

mechanisms for capturing long-range dependencies in 

images. In parallel, the concept of radiomics emerged, 
emphasizing the extraction and analysis of quantitative 

features from medical images as data beyond mere visual 

representations [9]. This holistic approach has led to 

significant advancements in medical imaging analysis and 

diagnosis. 

 

Additionally, attention mechanisms have gained 

prominence in the deep learning community, with Vaswani 

et al. [10] proposing the Transformer model, which relies 

solely on attention mechanisms for feature extraction and 

classification, showing promising results in various domains 

beyond natural language processing. Together, these 
innovations underscore the diverse range of approaches 

reshaping the landscape of computer vision, from 

reimagining neural network architectures to harnessing the 

power of attention mechanisms and quantitative image 

analysis techniques. 

 

Concurrently, novel architectures like MobileNetV2, 

introduced by Sandler et al. [11], have pushed the boundaries 

of convolutional neural networks (CNNs) by incorporating 

inverted residuals and linear bottlenecks, thereby improving 

model efficiency without compromising accuracy. 
 

Huang et al. [12] proposed densely connected 

convolutional networks, which establish direct connections 

between all layers within a block, enabling feature reuse and 

augmenting information flow throughout the network. 

Furthermore, Redmon et al. [13] presented You Only Look 

Once (YOLO), a unified real-time object detection system 

that processes images in a single pass, demonstrating 

remarkable efficiency and accuracy in detecting objects of 

interest. These pioneering works collectively underscore the 

importance of comparative evaluations and the continuous 

innovation in designing architectures that address key 
challenges in computer vision, such as feature extraction, 

classification, and real-time object detection. 

 

Recent years have seen amazing progress in the fields of 

computer vision and machine learning, thanks to ground-

breaking research projects. Russakovsky et al. [14] 

established a seminal milestone with the ImageNet Large 

Scale Visual Recognition Challenge, catalyzing progress in 

image classification and object recognition. Lin et al. [15] 

introduced focal loss as a pivotal technique for enhancing 

dense object detection, contributing to the refinement of 
object detection systems. 

 

Shoaib Muhammad et al. [16] provided valuable insights 

into the application of machine learning for crop disease 
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detection, showcasing the transformative potential of these 

technologies in agricultural science. Jones and Wang [17] 

conducted an extensive review of deep learning 

methodologies for plant disease finding, underscoring the 

significance of leveraging advanced computational 

techniques in agricultural informatics. 
 

Meanwhile, Saleem et al. [18] focused on optimizing 

convolutional neural network architectures specifically for 

crop disease classification, with a case study centered on rice 

plants, highlighting the importance of tailored solutions for 

addressing domain-specific challenges in agriculture. These 

studies collectively underscore the profound impact of 

machine learning and deep learning approaches in 

revolutionizing various aspects of plant disease detection and 

agricultural practices.  

 

Shamsuzzaman [19] investigated the potential of transfer 
learning in the domain of crop disease detection, shedding 

some light on the advantages and difficulties of this strategy 

in agricultural technology. Their research emphasizes how 

crucial it is to use pre-trained models and information transfer 

from relevant fields in order to improve the efficiency of 

agricultural disease detection systems.  

 

Liu  et al. [20] delved into scalable machine learning 

solutions tailored for precision agriculture, offering insights 

into the development of scalable and efficient algorithms to 

address the unique challenges of large-scale crop monitoring 
and management. 

 

Additionally, Sandler et al. [11] introduced 

MobileNetV2, a novel architecture featuring inverted 

residuals and linear bottlenecks, which has occurred as a 

significant advancement in the arena of computer vision, 

mainly in the context of mobile and embedded systems. 

Using the 320-image Rice-leaf-disease dataset from Kaggle, 

Ahmad et al. developed an Xception model using transfer 

learning specifically for rice disease identification [21].  

 

The study’s notable performance measurements showed 
that the Xception model maintained a robust validation 

accuracy of 90% and reached 93% accuracy in training. The 

Xception model regularly outperformed VGG16, 

MobileNetV2, and EfficientNetV2 in studies involving 

disease categorization.  

 

Based on evaluation metrics, the model performed well, 

with an accuracy of 0.89. Using leaf image analysis, Nandi 

Sunandar and Joko Sutopo used Artificial Neural Networks 

(ANN) to classify different forms of illnesses in rice plants 

[22]. Their study used training data from the UCI Machine 
Learning Repository, which included 24 records for testing 

and 56 records for training, to reach an 83% accuracy rate in 

disease detection. 

 

Furthermore, Huang et al. [23] proposed densely 

connected convolutional networks, presenting a powerful 

framework for feature extraction and representation learning, 

thus contributing to the development of robust and effective 

deep learning models for various computer vision tasks.  

 
Collectively, these studies underscore the pivotal role of 

advanced machine learning and deep learning techniques in 

addressing critical challenges in agricultural technology, 

ranging from crop disease detection to precision agriculture 

and model optimization for resource-constrained 

environments. 

 

3. Materials and Methods  
3.1. Major Contributions 

Predictive modeling still faces numerous issues in the 

field of rice plant disease detection, according to the literature 

currently under publication. These difficulties include the 

interpretability of models, dynamic system behavior, 

complex and noisy real-world data, and a lack of labeled data.  

Overcoming these challenges will require 

interdisciplinary collaboration and innovative thinking in 

order to produce trustworthy and transparent prediction 

models. Our research focuses on the following plans are as 
follows: 

1. To detect rice plant diseases, various feature extraction 

techniques were compared using an optimal classifier. 

2. Following the comparison, in order to improve the 

prediction rate, apply cosine and wavelet platforms. 

3. After that, applied several deep learning and transfer 

learning models for accuracy improvisation. 

4. To improve the prediction rate, lastly design a novel 

convolutional neural network model with appropriate 

optimization algorithms. 

 

3.2. Proposed Model 
3.2.1. Dataset Description 

Initially, the dataset rice plant disease detection dataset 

downloaded from Kaggle [5] was used in this work for the 

experiments. It contains 120 images of multiple classes of 

rice diseases, such as blast, bacterial leaf blight, and sheath 

blight, among others. A sample dataset for rice plant disease 

detection is shown in Figures 1 and 2.  

 

It depicts Brown Spots, bacterial leaf blight, and leaf 

smut. Each class has 40 images. It is possible that data 

augmentation techniques were employed to increase the 
dataset’s diversity and robustness. All things considered, the 

dataset is a helpful resource for developing and testing 

machine learning models for the identification and 

categorization of illnesses affecting rice plants. 
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Fig. 1 Rice plant disease detection dataset samples 

 

 
Fig. 2 EDA dataset exploratory data analytics 

3.2.2. Preprocessing 

Preprocessing assures that machine learning models can 

accurately distinguish between healthy and diseased plants 
by enhancing features, reducing noise, and normalizing input 

images. Here, we used a variety of preprocessing techniques 

like noise reduction, image segmentation, and contrast 

enhancement over the rice plant disease detection dataset. 

Preprocessing techniques improve the detection process by 

concentrating on pertinent features and not only setting up 

images for analysis but also raising the overall accuracy of 

rice plant disease identification. 

 

3.2.3. Feature Extraction Methods with Classification 

Concentrate several feature extraction strategies over the 
rice plant disease detection dataset after completing the 

preprocessing processes. Feature extraction plays a crucial 

part in image classification, as it goals to capture 

discriminative information from images that facilitate 

effective classification.  

 

Initially explore several popular feature extraction 

methods, Histogram-based Techniques: Histogram of 

Oriented Gradients (HOG), Color Histograms, Discrete 

Wavelet Transform (DWT), Discrete Cosine Transform 

(DCT), Scale-Invariant Feature Transform (SIFT), Speeded-

Up Robust Features (SURF), Local Binary Patterns (LBP). 
For each feature extraction method, utilize a Random Forests 

classifier and performance is measured using the 

conventional measure called accuracy. 

Histogram of Oriented Gradients (HOG) 

HOG is frequently used for applications involving object 

recognition and image categorization. It captures the local 

shape and texture information by computing histograms of 

gradient orientations in localized regions of the image. HOG 

descriptors are effective in scenarios where the spatial 
arrangement of gradients is essential for discrimination. HOG 

creates tiny cell divisions in the image. It calculates gradient 

orientations (angles) and magnitudes for every cell. Next, 

these gradients are assembled into bigger blocks. A feature 

vector of 36 points is gathered from every block. 

 

Local Binary Patterns (LBP) 

LBP focuses on texture information in images and is 

commonly used for texture classification tasks. It describes 

the local texture patterns by comparing the intensity of a 

central pixel with its neighbors, resulting in binary patterns’ 

descriptors that are robust to changes in illumination and 
contrast, making them suitable for various texture-based 

classification tasks.  

If a local binary pattern has no more than two 0-1 or 1-0 

transitions, it is referred to as “uniform.” By using uniform 

patterns, the feature vector length for a single cell is shortened 

from 256 to 59. The 58 consistent binary patterns map to 

distinct numbers, enabling a more straightforward and 

rotation-invariant descriptor. 

Scale-Invariant Feature Transform (SIFT) 

It detects and describes key points in images that are 

invariant to rotation, scale and illumination changes. It 
computes 128 feature vectors of key point descriptors based 

on gradient information in local image patches around key 

points. SIFT descriptors are effective for tasks requiring 

robustness to viewpoint changes, such as object recognition 

and image stitching. 

Speeded-Up Robust Features (SURF) 

It is an enhancement of SIFT designed for faster 

computation while maintaining similar performance. It uses 

integral images and box filters to accelerate key point 

detection and descriptor computation. SURF descriptors are 

suitable for real-time applications and scenarios where 

computational efficiency is critical.  

SURF uses a precomputed integral image to approximate 

the determinant of the Hessian blob detector in an integer 

manner, which allows it to identify points of interest. Based 

on the sum of the wavelet responses surrounding the point of 

interest, the SURF feature descriptor is a 64-dimensional 

vector.   

The following are the results of our feature extraction 

technique, classification, and performance calculations made 

with the aid of the methods mentioned above. 
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Table 1. Feature extraction performance analysis 

Feature Extraction 

Model 

Train 

accuy (%) 

Test  accuy  

(%) 

HOG 0.66 0.41 
LBP 0.75 0.41 

SIFT 0.87 0.54 

SURF 0.81 0.66 

 

 

Fig. 3 Performance analysis for different feature extraction techniques 

Table 1 and Figures 3 and 4. provide a brief comparative 

study of different feature extraction techniques with a 

Random forest classifier for the rice plant disease detection 

dataset. We have compared various feature extraction 

techniques like HOG, LBP, SIFT and SURF in terms of uy. 

The experimental outcomes inferred that the Histogram of 
Oriented Gradients (HOG) algorithm had reached the lowest 

performance at accuy 41.00 %, whereas the Speeded-Up 

Robust Features (SURF) algorithm showed a somewhat high 

accuy of 66.00%. 

 

Fig. 4 Model accuracy using different feature extraction techniques 

3.3. Transform Domain with Classification 
Here, we have focused on the transform domain for rice 

plant disease identification in an effort to improve accuracy. 

So, the traditional and efficient transform domain-based 

algorithms such as DCT and DWT are employed in this work. 

3.3.1. Discrete Cosine Transform (DCT) 
DCT has garnered significant attention for its ability to 

represent image data in the frequency domain efficiently. By 

decomposing rice plant images into frequency components, 

DCT facilitates the extraction of essential features related to 

disease symptoms and plant health.  

This work provides a comprehensive overview of the 

application of DCT in rice plant disease detection, 

highlighting its advantages, challenges, and potential for 

enhancing disease diagnosis accuracy and efficiency. 

3.3.2. Discrete Wavelet Transform (DWT) 

It is a prevailing signal processing technique that 

decomposes an image into different frequency bands using 
wavelet functions. From the perspective of rice plant disease 

recognition, DWT can be applied to analyze the texture and 

structural characteristics of rice plant images, which are 

essential for identifying disease-related patterns.  

The image (𝑛) is successively filtered and down-sampled 

to obtain approximation coefficients 𝑐𝐴 and detail 

coefficients 𝑐𝐷 at different scales. These coefficients capture 

image characteristics such as texture, edges, and structural 

information at different scales.  

This process results in a multi-resolution representation 

of the image, capturing both global and local image features. 

The classifier learns to distinguish between healthy and 

diseased rice plants based on the characteristic patterns 

present in the feature space.  

This understanding facilitates the optimization of DWT 

parameters and the development of efficient classification 

algorithms tailored to the problem domain. After applying the 

DCT and DWT separately, we have obtained the results using 

a random forest classification algorithm and its results are 

displayed in Table 2. 

Table 2. Cosine and wavelet transform accuracy comparison 

Models Classifier 

Train 

 accuy  

(%) 

Test  

accuy  

(%) 

Discrete Cosine 

Transform (DCT) 
Random Forest 0.66 0.75 

Discrete Wavelet 

Transform (DWT) 
Random Forest 0.66 0.41 
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Fig. 5 Cosine and wavelet transform accuracy comparison 

 

Fig. 6 DCT and DWT with different accuracy comparison 
 

Table 2 and Figures 5 and 6. provide a brief 

comparative study of different wavelet domain techniques 

with different classifiers for the rice plant disease detection 
dataset. We have compared transform domain techniques like 

DCT and DWT in terms of uy. 

The experimental outcomes inferred that though both 

transforms had obtained 66.00% training accuracy, the DWT 

algorithm reached the lowest performance with accuy 41.00 

%, whereas the DCT technique showed a somewhat high 

accuy 75.00% test accuracy. 

3.4. CNN and Transfer Learning Model Analysis 
A particular kind of deep neural network called CNNs is 

made especially for handling structured grid data, like picture 
data. They employ convolutional layers to detect patterns 

within an image, enabling hierarchical feature learning.  

Transfer learning, on the other hand, involves leveraging 

pre-trained models on vast datasets to tackle new tasks 

efficiently by fine-tuning them on smaller, domain-specific 

datasets. 
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Fig. 7 Architecture for CNN 

 

Mathematically, CNNs utilize convolution operations, 

activation functions like Rectified Linear Unit (ReLU), 

pooling layers, and fully connected layers to process image 
data. Let us denote: 

 

 𝐼 as the input image, 
 𝑊 as the weights of the convolutional filters, 
 𝑏 as the bias terms, 
 𝑓 as the activation function (e.g., ReLU), 
 𝑃 as the pooling operation, 
 𝐹 as the fully connected layer with weights 𝑊𝑓 and 

biases 𝑏𝑓, 
 𝑦 as the predicted output. 

From Equations (1) to (3), the forward pass of a CNN 

involves convolving the input image with the filters, applying 

the activation function, performing pooling to downsample 

features, and finally, passing the flattened output through 

fully connected layers to obtain predictions: 

 

 
 

 
                        

 
 

Transfer learning adds another layer of mathematical 

sophistication by adapting pre-trained models. Let 𝑀 be a 

pre-trained CNN model with parameters Θ, and 𝐷 be a 

dataset of rice plant images with corresponding disease 

labels. By fine-tuning 𝑀 on 𝐷, the new model learns to 

minimize a loss function 𝐿 defined over the dataset 𝐷: 

 

 
 

Equation (4). This optimization process adjusts the 

parameters Θ of the pre-trained model better to suit the 

characteristics of rice plant disease images, resulting in a 

highly accurate and efficient disease detection system. 

Through this mathematical framework, CNNs and transfer 

learning models synergize to empower precision 
agriculture, enabling timely and accurate identification 

of diseases in rice plants, ultimately enhancing crop 

management and ensuring food security. 
 

Table 3. Performance analysis CNN with transfer learning models 

Model 
Training   

accuy  (%) 
Test 

 accuy (%) 

CNN 0.56 0.50 

VGG16 with CNN 0.75 0.50 

ResNet50 with CNN 0.72 0.58 

InceptionV3 with CNN 0.94 0.66 

MobileNetV2 with CNN 0.80 0.66 

Xception with CNN 0.77 0.75 

 

Table 3 provides a brief comparative study of different 

transfer learning models with CNN for the rice plant disease 

detection dataset. We have compared various transfer 

learning models like VGG16 with CNN. ResNet50 with 

CNN, InceptionV3 with CNN, MobileNetV2 with CNN, 

Xception with CNN and CNN in terms of accuy. The 

experimental outcomes inferred that the basic CNN has 

reached the lowest performance with accuy of 50.00 %, 

whereas the Xception with CNN model has shown a 

somewhat high accuy  of 75.00 %. 

 

3.5. Optimized Convolutional Neural Networks 
The architecture of the Convolutional Neural Network 

(CNN) is designed specifically for image classification tasks, 

and it is furnished in Figure 8. It incorporates multiple 

convolutional layers with fluctuating filter sizes and depths, 

subsequently max-pooling layers for spatial downsampling 

and feature extraction. The architecture also includes fully 

Input 

Image 

Conv2D (64 filters, 

5x5, ReLU) 

MaxPooling2D 

(2x2) 
Flatten 

Dropout (dropout 

rate=0.5) 

Conv2D (32 filters. 

5x5, ReLU) 

Conv2D (128 

filters, 5x5, ReLU) 

MaxPooling2D 

(2x2) 

MaxPooling2D 

(2x2) 

Dense (512 units, 

ReLU) 

Dense (10 units, 

Softmax) 

Predicted Image 
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connected layers for high-level feature representation and 

classification. 
 

3.5.1. Convolutional Layers 

Convolutional layers apply filters to input data to extract 

features. A set of learnable weights represents each filter. The 

output feature map is obtained by convolving the input with 

the filters. Following the application of an activation function 

and filter convalescence, the output feature map is produced. 

Mathematically, the output feature map 𝑌Y of a 
convolutional layer can be expressed as: 
 

 
 

Where, 𝑋X is the input tensor, 𝑊W represents the filter 

weights, 𝑏b is the bias term, 𝑓f is the activation function, and 

𝑖i and 𝑗j represent the spatial dimensions of the output feature 

map. 

3.5.2. Max Pooling Layers 

It uses the maximum value inside each pooling window 

to downsample the feature maps. In doing so, the feature 
maps’ spatial dimensions are decreased, yet their most 

notable traits are maintained. Mathematically, the output of a 

max pooling operation can be expressed as: 

 

where 𝑠s is the stride of the pooling operation and 𝑚m and 

𝑛n iterate over the pooling window. 

Fully Connected Layers 

Dense layers that are fully connected link each neuron in 

the layer below to every other neuron in the layer above. 

Mathematically, the output 𝑌Y of a fully connected layer can 

be calculated as: 
 

 
 

Equation (7), where 𝑋X represents the input vector, 𝑊W 

are the weights, 𝑏b is the bias term, and 𝑓f is the activation 

function. 

3.5.3. Dropout Regularization 

In order to avoid overfitting, dropout regularization 

randomly changes a portion of input units to zero during 

training. Mathematically, the dropout process can be 

expressed as: 
 

 
 

Equation (8), where 𝑋 is the input vector, Y is the output 

vector after dropout, and 𝑝p is the dropout probability. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
Fig. 8 Novel Convolutional Neural Network (CNN) architecture 
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The novelty lies in the customized architecture, 

optimized hyperparameters, utilization of data augmentation 

and dropout regularization techniques, and efficient data 

loading methods, all of which contribute to the improved 

performance and effectiveness of the CNN model for image 

classification tasks and are attached in Table 4. An 
implementation of CNN architecture can be summarized as 

follows: 

 

Table 4. Novel CNN model summary 

Layer (type) 

 

Output Shape 

 

Param # 

 conv2d_27 

(Conv2D) 

 

(None, 146, 146, 

32) 

 

2432 

 

max_pooling2d_27 

(MaxPooling 2D) 

(None, 73, 73, 32) 

 
0 

conv2d_28 

(Conv2D) 

 

(None, 69, 69, 64) 

 

51264 

 

max_pooling2d_28 

(MaxPooling 2D) 

 

(None, 34, 34, 64) 

 
0 

conv2d_29 

(Conv2D) 

 

(None, 30, 30, 

128) 

 

204928 

 

max_pooling2d_28 
(MaxPooling 2D) 

 

(None, 15, 15, 
128) 

 

0 

 

flatten_9 (Flatten) 

 

(None, 28800) 

 
0 

dense_18 (Dense) 
 

(None, 512) 
 

14746112 
 

dropout_9 (Dropout) 

 

(None, 512) 

 
0 

dense_19 (Dense) 

 

(None, 3) 

 
1539 

Optimized Hyperparameters 

The choice of hyperparameters, such as filter sizes, 

depths, and activation functions, is optimized for the task of 

image classification. These hyperparameters are selected 

based on empirical studies and experimentation to achieve 

optimal performance on the given dataset. 

Data Augmentation 

To diversify the training dataset, the algorithm 

incorporates data augmentation techniques. The model is 

strengthened and made less prone to overfitting by randomly 

transforming the input images through rotation, shifting, and 

flipping. 

 

Dropout Regularization 

To keep the model from overfitting, dropout 

regularization is used. Improved generalization performance 

results from the model learning more robust characteristics 

and being less dependent on individual neurons through the 
random drop of a portion of the neurons during training. 

 

Efficient Data Loading 

The code efficiently loads and preprocesses image data 

using the flow_from_directory method, which allows for 

easy integration with large-scale datasets organized into 

directories by class labels. This approach streamlines the 

data-loading process and improves the overall efficiency of 

model training. 

 

 

Fig. 9 Comparative analysis with existing models  
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Fig. 10 Comparative analysis for model performance 
 

Table 4 shows that the proposed CNN layers are 

organized around a series of specialized layers intended for 

the effective processing of visual input. Convolutional layers 

are among the essential parts. They apply filters to the input 

image to extract features like textures and edges. After that, 

these features are spatially down-sampled using pooling 

layers, which lowers computational complexity without 

sacrificing crucial information. Non-linearities are 

introduced by activation functions such as ReLU, which are 

essential for capturing intricate correlations in the data. The 

network’s fully connected layers combine the features that 
have been extracted for tasks like regression or classification. 

Because CNNs can automatically learn hierarchical 

representations of visual information, they are highly 

effective in tasks like object detection, segmentation, and 

image recognition, which makes them an essential tool in 

contemporary computer vision applications. 

 
Table 5. Enhanced CNN with other models comparative study 

Model 
Train 

 (%) 
Test  

(%) 

CNN 0.56 0.50 

VGG16 with CNN 0.75 0.50 

ResNet50 with CNN 0.72 0.58 

InceptionV3 with CNN 0.94 0.66 

MobileNetV2 with CNN 0.8 0.66 

Xception with CNN 0.77 0.75 

Novel CNN 0.78 0.76 

Ahmad et al. (2023) Xception 0.93 0.89 

Nandi & Joko (2024) ANN 0.86 0.83 

4. Results and Discussion  
Table 5 provides a brief comparative study of different 

transfer learning models with CNN for the rice plant disease 

detection dataset. We have compared various transfer 

learning models like VGG16 with CNN. ResNet50 with 

CNN, InceptionV3 with CNN, MobileNetV2 with CNN, 

Xception with CNN and CNN in terms of . The 

experimental outcomes inferred that the basic Xception with 

CNN has reached the lowest performance with  of 

75.00 %, whereas the Enhanced CNN model has shown a 

somewhat high  of 76.00 %. When we compared all 

the other models our proposed CNN model has given the 

greater accuracy of this problem. Though it has obtained a 

lower performance than the methods presented by Ahmad et 

al. (2023) using Xception and Nandi & Joko (2024) using 

ANN, the study presented an in-depth exploration of rice 

plant disease detection using Convolutional Neural Networks 

(CNNs) and optimization techniques. The same is graphically 

explained in Figures 9 and  10. However, this method 
extensively demonstrated the performance of the proposed 

method by various feature extraction methods and they were 

compared. It has been recorded that the novel CNNs has 

obtained a superior performance. Our novel CNN 

architecture, optimized with hyperparameters, data 

augmentation, and dropout regularization, achieved 

promising results in accurately identifying rice plant diseases. 

5. Conclusion  
Finally, our study offers a thorough examination of 

methods for detecting rice plant diseases, with an emphasis 
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on Convolutional Neural Networks (CNNs) and optimization 

techniques for image classification. Conducted a comparative 

analysis of several feature extraction techniques and 

classifiers, emphasizing the improved performance that can 

be obtained using deep learning-based methods, especially 

CNNs. With the use of dropout regularization, data 
augmentation, and hyperparameter optimization, our 

suggested CNN architecture produced a superior result of 

76.00%, outperforming the results of the other feature 

extraction techniques, and showed encouraging results in the 

accurate identification of rice plant illnesses. Though it has 

obtained a significant performance, it has given less 

performance than the existing methods presented by Ahmad 

et al. (2023) using Xception and Nandi & Joko (2024) using 

ANN.  

 

Several areas for improvement are noted for future work. 

First, by exploring attention processes inside the CNN 

architecture and fine-tuning its hyperparameters more, the 
model may be better able to extract and focus on pertinent 

features, which would increase classification accuracy. 

Furthermore, utilizing transfer learning strategies and adding 

new data modalities, such as spectrum imaging, may offer 

insightful information for reliable illness identification, 

especially in a variety of environmental settings.
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