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Abstract - The Internet of Things (IoT) is being used increasingly in the control and monitoring of air quality. Real-time data 

regarding air pollutants and other environmental parameters can be gathered by deploying IoT devices with sensors and 

connectivity capabilities. Rapid urbanization and industry cause increasingly serious problems with air quality. A pivotal 

challenge in the current Air Quality Monitoring (AQM) model is its limited spatial coverage and accuracy. In this paper, a novel 

AQM using the IoT (AIR-IoT ITINEARY) technique is proposed to gauge the atmospheric condition efficiently and instantly. 

Sensors are placed in the various traffic systems to collect environmental data and process it in the Real-Time Data Analytics 

Module (RTDM). DenseNet is used to predict the quality of air and is classified into three classes, namely pure and impure. If 

pollution levels exceed the threshold, it alerts the user and suggests an alternative route. The efficacy of the proposed AIR-IoT 

ITINEARY technique has been evaluated using assessment actions such as accuracy, time efficiency, precision, F1 score, RMSE, 

MAPE, and MAE. According to the comparison analysis, the proposed AIR-IoT ITINEARY technique’s accuracy rate is 10.08%, 
17.64%, and 34.34% higher than the existing IdleAir, SMOTEDNN, and ETAPM-AIT techniques, respectively. 

Keywords - Air pollution, DenseNet, Sensors, Internet of Things, Real-Time Data Analytics Module.  

1. Introduction  
IoT has transformed the field of air monitoring systems 

by bringing intelligent, networked technologies for gauging 

and analyzing air quality [1]. IoT-based air monitoring 

systems combine state-of-the-art sensor technology with 
wireless connectivity to allow real-time data gathering and 

transfer to cloud-based platforms [2]. These interconnected 

sensors may detect particles, ozone, carbon monoxide, 

nitrogen dioxide, and particulate matter, among other air 

contaminants [3]. The vast and continuous data collection 

capabilities of these sensors allow for precise and 

comprehensive indoor and outdoor air quality monitoring [4]. 

Air pollution has become a serious issue worldwide, 

particularly in emerging countries, due to the rapid rise of 

manufacturing and urbanization [5]. Dangerous levels of 

NO2, ground-level O3, CO, particle matter, sulfur dioxide, 

volatile organic compounds, and carbon monoxide are 

associated with an increase in air pollution [6]. Industrial 

emissions and vehicular emissions are the key causes of air 

pollution [7]. When companies grow, they emit a range of 

dangerous chemicals into the environment because they need 

fossil fuels for transportation, manufacturing, and electricity 

production [8]. Figure 1 shows the air pollution rate for the 

past and future few years. According to the graph, air pollution 

due to vehicles increases rapidly. The most important 

pollutants are vehicles, industries, waste burning, and dust and 

construction. Year by year, the usage of vehicles increases, 

and air pollution also increases. Nowadays, vehicles are one 

of the mandatory things in daily life [9]. Vehicle emissions 

contaminants can cause respiratory issues, poorer atmospheric 

conditions, and the production of smog. 

In addition, the release of greenhouse gases resulting from 
industrial processes amplifies the effects of climate change, 

causing severe weather phenomena and disruptions to the 

ecosystem [10]. Climate change, which is connected to 

greenhouse gas emissions from air pollution, exacerbates the 

issue. Consequently, there is an increased frequency of 

catastrophic weather occurrences and ecological imbalances 

[11, 12]. To overcome these issues, a novel AIR quality 

monitoring using the IoT (AIR-IoT ITINEARY) technique 

has been proposed.  

To monitor air quality, the majority of the methods use 

DL algorithms such as DNN [14], Elman Neural Network 

[13], LSTM AI [17], Autoencoder and LSTM [21]. However, 
these existing techniques have some drawbacks, like less 
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accuracy, increased energy consumption, high network load, 

and computational complexity. Several features influence the 

effectiveness of the current AQM systems. To overcome these 

problems, the AIR-IoT ITINEARY method has been proposed 

to overcome the existing techniques problems. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1 Air pollution rate 

The primary ideas of the paper are enumerated below: 

 The novel RTDM technique combines with the densenet 

algorithm to predict the high efficiency of the air pollution 

threshold value. 

 Initially, sensors in the traffic system collect the 

environmental data and transmit it to the IoT gateway. It 

processes the data and gives it to the RTAM. 

 In the real-time data analytic module, the PCA technique 

is used to extract the features, and it is transmitted to 

DenseNet to predict the quality of the air, like pure and 
impure. Again, predicted data is given to the RTAM. 

 RTAM gives the predicted data to the data storage, where 

all the data about the quality of the air is stored, and to the 

center. If the value of polluted air is above the fixed 

threshold value, it gives an alert and suggests the route to 

the user. 

 The effectiveness of the suggested AIR-IoT ITINEARY 

model is contrasted with other related strategies. The 

outcomes of the analyses were performed in accordance 

with a thorough set of evaluation criteria. 

The subsequent sections of this research are explained 
below: Segment 2 examines the study of the review. Segment 

3 describes the suggested model in great depth. Segment 4 is 

the result and discussion, and Segment 5 is the conclusion. 

2. Literature Survey  
Several studies have utilized several techniques to 

monitor the quality of air in real-time. The following section 

covers a few of the current evaluation approaches, along with 
their disadvantages, as follows: 

In 2022, Asha P. et al. [13] suggested an Artificial 

Intelligence-based Environmental Toxicology for AQM 

systems facilitated by the IoT (ETAPM-AIT). To assess the 

efficacy of the suggested ETAPM-AIT model, a 

comprehensive series of simulation analyses is conducted, and 

the outcomes are reviewed after 5, 15, 30, and 60 minutes. 

In 2022, Haq, M.A. [14] suggested the novel air pollution 

classification model, SMOTEDNN. The primary performance 

issue arises from rigorous pre-processing of the data and 

comprehensive hyperparameter optimization. In terms of 

accuracy, the exclusive model SMOTEDNN performed well, 

with a score of 99.90%. 

In 2022, Jabbar, W.A. et al. [15] suggested the 

implementation of an outdoor-based LoRaWAN-IoT-AQMS. 

By contrasting the LoRaWAN-IoT-AQMS results with 

experimental data from the innovative Aeroqual AQM 

apparatus, the results are verified. 

In 2022, Alvear-Puertas, V.E. et al. [16] suggested the 
expansion of a conveyable, high-tech AQM system that can 

assess local air pollution. Provide a suitable IoT architecture 

with an edge-based time series database, MQTT, and a 

lightweight messaging protocol. The IoT nodes utilized to 

infer air quality had a performance rate of more than 90% in 

terms of pertinent data.  

In 2022, Zhu Y. et al. [17] suggested an enhanced, 
inexpensive, IoT-based IAQM system that uses AI to generate 

suggestions. The LSTM AI technique is used to forecast future 

CO2 levels based on the collected CO2 data. The suggested 

method can predict the equilibrium level of CO2 with an error 

margin of 5.5%. 

In 2023, Guerrero-Ulloa, G. et al. [18] suggested IdleAir, 

an inexpensive IoT-based model for AQM. IdeAir was 

designed to detect the levels of hazardous gases in indoor 
environments and, in response, trigger alerts and messages, 

unlock doors, or activate fans. IdeAir was developed using the 

TDDM4IoTS technique. Early results show that IdeAir is 

running with a high degree of acceptance. 

In 2021, M. Zareb. et al. [19] suggested an intelligent 

fuzzy-based indoor AQM system based on the IoT. The 

suggested system's main drawback is that, when utilizing 

several sensors, it could use a lot of energy. The results of the 
experiment demonstrate how effective the recommended 

strategy is for tracking and enhancing indoor air quality. 

In 2023, Paithankar, D.N. et al. [20] presented a novel 

method for constructing an IoT-powered AQM system. The 

portal monitoring nodes may run constantly on solar power or 

batteries and are made to be easily deployed. The studies' 

findings demonstrate that the suggested strategy is able to 
precisely track atmospheric conditions and reveal some of the 

trends in changes in atmospheric quality. 
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In 2023, Wei, Y. et al. [21] suggested a hybrid deep 

learning methodology to identify abnormalities from 

sequential data analysis, merging Autoencoder and LSTM. 

The proposed concept was tested using a CO2 historical 

dataset from a real-world deployment. The experimental 

results demonstrated that, in comparison to existing models of 
a similar nature, the suggested model works better and has a 

detection accuracy of 99.50% for abnormal CO2 readings. 

3. Materials and Methods  
In this section, a novel AIR quality monitoring using the 

IoT (AIR-IoT ITINEARY) technique has been proposed to 

monitor atmospheric quality continuously. Initially, sensors in 

the traffic system collect the environmental data and transmit 

it to the IoT gateway. It processes the data and gives it to the 

real-time data analytic module (RTAM). The RTAM feature 

extraction process is done using the PCA technique.  

The feature-extracted data is transmitted to the DenseNet 

to predict the quality of the air. Again, predicted data is given 

to the RTAM, which is transferred to the data storage, where 
all the data about the quality of the air is stored and to the 

control center. In the control center, it checks the value of pure 

and impure air. If the value of impure is above the fixed 

threshold value, it gives an alert, suggests the route to the user, 

and passes the information to the pollution control authority. 

The overall workflow of the suggested AIR-IoT ITINEARY 

methodology is given in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig. 2 Proposed AIR-IoT methodology 

3.1. Data Collection 

The traffic System employs various sensors, including 

PM (Particulate Matter), VOC (Volatile Organic 

Compounds), O3, and NO2 sensors, to collect pollution data 

from urban areas. PM sensors are utilized to measure PM 

concentration in the air; VOC detectors are utilized to detect 
VOCs present in the environment; O3 Sensors are used to 

monitor ozone (O3) levels; and NO2 Sensors are used to 

measure nitrogen dioxide (NO2) concentration. An IoT 

Gateway, which is linked to these sensors, sends the gathered 

data to a Real-Time Data Analytics Module. 

3.2. Real-Time Data Analytics Module 

It works in tandem to gather information on different 

pollutants, including NO2, CO, PM, O3, and SO2. This 

module does the feature extraction of the sensor data. Sensor 

data frequently comes in raw and noisy formats, making it 

unsuitable for direct analysis or for inclusion in machine 

learning algorithms. In feature extraction, key patterns and 

data from the measurements are extracted from the raw sensor 

data and converted into a more concise and comprehensible 

representation. Features of Datus collected from the sensors 
are extracted in the real-time data analytic module. The PCA 

is used for extracting features from the sensor information. 

3.2.1. Principal Component Analysis  

PCA is a unique methodology for reducing feature 

dimensional aspects. However, it is limited to complex feature 

spaces due to its linear nature. To address this, standard PCA 

is extended to nonlinear dimension reduction. Once features 

are normalized, PCA starts to be a helpful method. To 

minimize dimensionality in huge datasets, it finds the 
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covariance matrix's eigenvectors with the largest eigenvalues. 

The definition of PCA algebraic is as follows: Calculate the 

mean of C for the data outline C as follows: 

𝜃 = 𝑀(𝐶)                (1) 

Determine C's covariance as follows: 

𝐶𝑈 = 𝐶𝑜𝑣(𝐶) = 𝑀[(𝐶 − 𝜃)(𝐶 − 𝜃)𝑇       (2) 

Count the eigenvalue 𝜃𝑖, and eigenvector 𝑏1, 

𝑏2,……...𝑏𝑁, i= 1, 2……F of the covariance 𝐶𝑜𝑉. For the 

Covariance, the equation is solved CoV; 

𝑉𝑘 =  
∑ 𝜃𝑓

𝐿
𝑗=1

∑ 𝜃𝑓
𝑁
𝑗=1

                       (3) 

Information regarding a more compact measurement 

subspace can be found by selecting the first L eigenvalue that 

achieved the desired mutual range, which should be 83% 
larger than the size of the major segments. 

𝑔 =  𝑋𝑡 − 𝑉                     (4) 

Where 𝑉 is the first data set to be knotted, and 𝑡 represents 

the transfer matrix. Operating the main L eigenvector 

independently from 𝑛 to 𝐾 (𝐾 ≪ 𝑛).) increases the number of 

variables or measurements.  

| 𝜃𝑙 − 𝐶0𝑉| = 0    (5) 

However, 𝑙 for having dimensions that are more than 

𝐶𝑜𝑉, gives the identity matrix the benefit of the doubt. 

Determine the 𝜃𝑓 Eigenvalues of the component 𝐿 by 

calculating the percentage of data that is accounted for by the 

first component. 

3.3. DenseNet 

Densely Connected Convolutional Networks is a deep 

learning architecture that provides layers with dense 

connections. It is especially useful for solving the vanishing 

gradient issue and promoting feature reuse across the network. 
Through direct information flow from early layers to later 

layers made possible by these dense connections, deeper 

networks, greater gradient flow, and enhanced feature 

propagation are all made possible.  

The network elements that comprise DenseNet are several 

dense blocks. The DenseNet Block can be represented as 

given in Equation (6). 

𝑦𝑙+1 = 𝐸𝑙([𝑦0, 𝑦1, … . , 𝑦𝑙])     (6) 

Here, [𝑦0, 𝑦1, … . , 𝑦𝑙] represents the concatenation of the 

feature map from each layer that came before it. The 

transformation 𝐸𝑙(∙) typically consists of a series of 

operations, such as batch normalization, then a non-linear 

activation function (ReLU, for example), and then a 

convolution operation, which is given in equation (7) 

𝐸𝑙(𝑦) = 𝑅𝐸𝐿𝑈(𝐵𝑁(𝑀𝑙 × 𝑦))              (7) 

Here, 𝑀𝑙 represents the weights of the convolution 

operation, × stands for batch normalization, represents the 

convolution procedure, and stands for the Rectified Linear 

Unit activation function (ReLU).  

The output of DenseNet is classified into two classes: 
pure and impure. These data are again sent back to the real-

time data analytic module, where they are transferred to the 

data storage and control center. The information is stored in 

the data repository for the purpose of future use. 

3.3.1. Algorithm 

Densenet Algorithm 

Input: Batch size B, Maximal iteration step n, 

Compression ratio r, and a pre-trained densenet DN  

Output: The densenet with the highest compression ratio 

1. Determine the amount of actions performed by 

the agent, A, based on the compression ratio, r 

2. Perform step=1 to n iterations 

3. A set of matrices is given, 𝑚 =
{𝑚01, 𝑚02, . . . , 𝑚0𝐵}, which represents B 

uncompressed Densenets DN  

4. When a=1 to A do 

5. The initial state of m is encoded by the encoder 

network as 𝑇 = {𝑇𝑎1, 𝑇𝑎2 , . . . , 𝑇𝑎𝐵} 
6. After receiving the state T as input, the policy 

network zeroes a path in m to create a new 𝑚 =
{𝑚𝑎1, 𝑚𝑎2, . . . , 𝑚𝑎𝐵} 

7. To get the incentive O, the dense networks 

denoted by m are tested on the validation set. 

8. O updates both the policy network and the 

encoder network 

9. End for 

10. End for 

3.4. Control Centre 

In the control centre, it checks the value of pure and 
impure air. When a process deviates from its expected 

operating range, these thresholds are predetermined 

boundaries or levels that are used to initiate particular actions 

or alerts.  

A control center's principal objective is to make sure that 

processes remain within reasonable bounds, maintain 

efficiency, and guard against problems or breakdowns. If the 

value of impure is above the fixed threshold value, it gives an 

alert suggests a route to the user, and passes the information 

on to the pollution control authority. 
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3.5. Bioaerosol Sampling 

 The MAS-100 air sampler, a 400-hole impactor plate 

with several jets with a 100 L/min flow rate and an optimal 

efficiency suction pump that constantly observes airflow, was 

the sampling apparatus utilized. The resultant air stream is 

directed onto a 90 mm-diameter agar surface in a typical Petri 
dish. This device can collect up to 1000 L per run, sense the 

air flow entering the device, and adjust the aspirated air to a 

steady flow of 100 L/min. On the agar surface, the airborne 

bacteria impaction speed is roughly 11 m/s, or stage 5 of the 

traditional six-stage Andersen-impactor. 

4. Results and Discussion   
Within this segment, the observational findings of the 

suggested AIR-IoT ITINEARY framework are studied, and 

effectiveness is discussed in terms of multiple performance 

measures.  

The proposed AIR-IoT ITINEARY framework is 

developed and assessed using the Python programming 

language along with libraries on a Windows operating system 

with an Intel Core i7 CPU and 16GB RAM. This investigation 

assesses the efficacy of the proposed strategy using the 
pollution dataset from the CityPulse EU FP7 Project. The 

proposed AIR-IoT model's effectiveness is contrasted with 

ETAPM-AIT [13], SMOTEDNN [14], and IdeAir [18]. 

4.1. Description of Dataset 

The CityPulse EU FP7 Project's pollution dataset, which 

has 8 features total, was used in the experiment. These features 

are ozone, carbon monoxide, particulate matter, sulphur 
dioxide, longitude, latitude, nitrogen dioxide, and timestamp. 

The 17568 samples in the dataset were taken at intervals of 

five minutes. The EPA's AQI standard is presented for each 

sample value. 

The performance of various levels of MAPE, RMSE, and 

MAE across the network is displayed in Figure 3. It shows that 

performance can be somewhat improved by adding extra 

nodes after each layer has 300 nodes. This model 

demonstrated the best performance. The recommended route 

in a low-pollution area is shown in Figure 4. The amount of 

pollution throughout the entire path for a user traveling from 

a source to a destination will be forecasted, and if the quantity 
is excessive, a warning will be displayed so the user can 

reroute his travel. The proposed map provides the user with an 

alternate path to the location where air pollution is at a 

minimum.

 

 

 

 

 

 

 

 

 

 
 

Fig. 3 Performance across different network levels (a) MAPE (b) RMSE, and (c) MAE. 

 
Fig. 4 Android application showing pollution less route 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5 Performance comparison in terms of accuracy 
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In Figure 5, the proposed AIR-IoT ITINEARY technique 

and the existing methods, such as ETAPM-AIT [13], 

SMOTEDNN [14], and IdeAir [18], are contrasted for 

accuracy using the CityPulse EU FP7 Project's pollution 

dataset. Accuracy is a crucial element that illuminates the 

evaluation of a particular classifier's performance. The 
accuracy of the AIR-IoT technique is increased by 10.08%, 

17.64%, and 34.34% as compared to the ETAPM-AIT, 

SMOTEDNN, and IdeAir methods.  

Figure 6 shows the performance comparison of the 

suggested AIR-IoT ITINEARY method and the existing 

ETAPM-AIT [13], SMOTEDNN [14], and IdeAir [18] 

methods in terms of F1-score, accuracy, and precision using 

the CityPulse EU FP7 Project's pollution dataset. The 

accuracy of the proposed AIR-IoT ITINEARY system is 

increased by 10.08%, 17.64%, and 34.34% and the precision 

is increased by 9.59%, 18.56%, 17.93% and the F1-score is 

increased by 8.79%, 16.96%, 36.85% as compared to the 
IdeAir, SMOTEDNN, and ETAPM-AIT methods, 

respectively. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 6 Performance of models on the dataset 

Figure 7 displays the time efficiency of the proposed AIR-

IoT ITINEARY technique and existing ETAPM-AIT [13], 

SMOTEDNN [14], and IdeAir [18] methods. Time efficiency 

refers to how quickly and effectively the system can gather, 

process, and disseminate information concerning air pollution 

levels. The proposed system's time of 13.87 milliseconds is 
relatively quick compared to ETAPM-AIT, SMOTEDNN, 

and IdeAir techniques, which take 21.45 milliseconds, 29.56 

milliseconds, and 15.39 milliseconds, respectively. It shows 

that the suggested technique takes less time to process 

compared to the existing methods. 

The normalized RMSE (NRMSE) rate of the suggested 

AIR-IoT model in comparison to alternative deep learning 

models is displayed in Figure 8. Many kinds of NRMSE exist. 

One way to calculate RMSE is to divide it by the variation 

between the real data's maximum and minimum values. 

NRMSE is a superior method for comparing models or 

datasets with different scales. The formula that was applied to 

compute it is, 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑀𝑎𝑥(𝐷𝑗)−𝑀𝑖𝑛(𝐷𝑗)
  

 

 

 

 

 

 

 

 

 

 
 

 
Fig. 7 Time efficiency performance evaluation 

Table 1. NRMSE rate comparison with alternative deep learning 

models 

Methods 100 200 300 400 500 

ETAPM-AIT 24.52 21.98 17.43 14.67 12.5 

SMOTEDNN 13.03 12.48 11.22 10.08 9.29 

IdeAir 12.21 10.82 11.65 9.92 9.09 

Proposed 8.20 7.9 7.61 7.01 6.19 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 8 Comparing performance with RMSE 

The coefficient of variation of the mean absolute error 

(CvMAE) rate between the proposed AIR-IoT model and 

other deep learning models is displayed in Figure 9. 

Consequently, the CvMAE rate can be decreased by utilizing 

the suggested AIR-IoT model. The CvMAE equation is: 

𝐶𝑣𝑀𝐴𝐸 =
𝑀𝐴𝐸

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛
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Table 2. Comparing the MAE rate to other models using deep learning 

Methods 1hr 2hr 3hr 4hr 5hr 

ETAPM-AIT 10.53 10.16 9.68 9.01 8.01 

SMOTEDNN 10.6 9.4 8.7 7.72 6.27 

IdeAir 8.91 8.14 7.62 6.85 5.69 

Proposed 8.35 7.94 7.49 6.67 5.43 

 

 

 

 

 

 

 

 

 

 
 

 
Fig. 9 Comparison of several models using CvMAE 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 10 Comparing performance using NMBF 

The Normalized Mean Bias Factor (NMBF) of the 

suggested AIR-IoT model compared with alternative deep 
learning models is displayed in Figure 10. NMBF assumes that 

observations represent the whole truth and is, therefore, more 

sophisticated than traditional metrics. 

5. Conclusion  
In this paper, a novel AIR quality monitoring using the 

IoT (AIR-IoT ITINEARY) technique has been proposed to 

measure air quality on a live basis. The quality of the 
atmosphere is predicted using the DenseNet Model, which 

classifies the quality into 2 classes: pure and impure. If 

pollution levels exceed the threshold, it alerts the user and 

suggests an alternative route. The proposed system's 

effectiveness is assessed using the CityPulse EU FP7 Project's 

pollution dataset. The proposed framework is developed and 

assessed using the Python programming language. MAE, 

RMSE, MAPE, Accuracy, Precision, F1-Score, and time 

efficiency measure the effectiveness of the suggested AIR-IoT 
ITINEARY methodology.  

According to the comparative analysis, the accuracy of 

the proposed AIR-IoT ITINEARY system is increased by 

10.08%, 17.64%, and 34.34% as compared to the IdeAir, 

SMOTEDNN, and ETAPM-AIT methods, respectively. 

Future research may concentrate on offering hyper-localized 

air quality predictions rather than merely city-wide or regional 

forecasts. This can entail creating models that consider 

localized human activity and microclimate conditions. 
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