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Abstract - Due to the increasing rate of disease afflictions among people lately, the need for automatic illness diagnosis systems 

is more imperative. Most of the automatic illness diagnosis systems aim to support the physician in disease screening and 

decision-making. Furthermore, an immense amount of research is done on the human brain, a complicated and important organ, 

using imaging methods like Magnetic Resonance Imaging (MRI) to look at brain activity and uncover abnormalities. When 

compared to other imaging modalities, MRI stands out for its superior soft tissue contrast and safety profile. This research aims 

to develop a computer-aided disease diagnosis system to classify brain MRI images with high accuracy. The research 

significantly contributes to the following: developing an ensemble model based on deep learning and proposing a new feature 

selection technique that employs a framework of rank-based correlation and entropy. The framework’s final step uses an 

ensemble learning process to classify the extracted features. The stages of the suggested framework are as follows: (i) gathering 

and resizing images; (ii) deep feature extraction using the pre-trained networks; (iii) handcrafted feature extraction; (iv) serial 

feature concatenation; (v) finest feature selection using entropy and rank-based correlation and (vi) classification using a voting 

classifier. The suggested approach intends to improve the effectiveness and accuracy of brain disease diagnosis, opening the 

door for early detection and prompt intervention by integrating MRI imaging modality and AI algorithms. Experimental 

investigations conducted using MATLAB software demonstrate promising results in the preprocessing of MRI pictures and the 

detection of brain diseases through the proposed fusion model by achieving an accuracy of 89.87%. The findings of this study 

emphasize the significance of AI-based approaches in automated brain disease detection, offering a valuable contribution to the 

field of medical imaging and diagnostics. 
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1. Introduction  
The brain is the most valuable and intricate organ in the 

human body. Medical imaging methods to study brain activity 

and detect abnormalities include Positron Emission 

Tomography (PET), Computed Tomography (CT), and 

Magnetic Resonance Imaging (MRI). Among these, MRI 

provides the highest soft tissue contrast without using ionizing 

radiation. It utilizes a magnetic field and radio waves to 

generate highly detailed images of the brain and its structures. 

Moreover, MRI is a non-invasive and painless technique. In 

clinical practice, MRI is the most commonly used imaging 

method for the brain, offering significant advantages such as 

strong contrast between soft tissues. However, interpreting 

MRI scans remains a labour-intensive, time-consuming, and 

error-prone process in medical practice. 

Interpreting MRI scans is a tedious, time-consuming, and 

error-prone process in medical practice. Moreover, significant 

experience is required for the sensitive and accurate detection 

of diseases like Alzheimer's and tumors. Therefore, to 

automate the diagnosis of various brain illnesses from MRI 

images, an AI-based model is necessary. The Shearlet 

Subband Energy Feature-Based Individual Network utilizes 

Structural Magnetic Resonance Imaging (sMRI) to identify 

Alzheimer's Disease (AD) [1]. This method employs the 

automated anatomical labelling atlas to create 90 Regions of 

Interest (ROIs) from the sMRI image, constructing the 

network. Directional subband-based energy feature vectors 

represent each ROI. 

Over the past decade, significant advancements in 

Machine Learning and Artificial Intelligence have captivated 

financial institutions, businesses, and academia. This progress 

is largely driven by deep artificial neural networks, also 

known as deep learning. Siamese networks have been shown 

to function similarly to research using whole-brain MR 

images, with the added benefits of reduced computing 

complexity and time [2]. In the realm of medical imaging 

analysis, deep learning-enabled algorithms are delivering 

remarkable results and are seen as essential for future 

applications. These algorithms can process medical imaging 

data sets to provide accurate and efficient diagnoses. In 
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medical imaging analytics, deep learning is critical for tasks 

such as image segmentation, registration, and disease 

diagnosis. However, some models construct a brain network 

using only spatial domain-based features, overlooking the 

frequency domain-based features of the Regions of Interest 

(ROIs) [1]. 

The novel AI-based fusion model introduced in this work 

enhances the efficiency of automatic MRI image-based 

diagnosis for brain illnesses such as Alzheimer's, brain 

tumors, atrophy, ischemia, and White Matter Intensity (WMI). 

This deep learning model assists specialists by reducing their 

workload and the tedious process of analyzing and interpreting 

radiological images. Despite their impressive capabilities, AI 

models have several drawbacks, including their susceptibility 

to dataset heterogeneity. The data used for training AI systems 

is crucial for generating accurate predictions or classifications. 

Consequently, when the training dataset differs significantly 

from real-world data, a dataset bias or dataset shift occurs, 

potentially compromising the AI model's performance. The 

ADNI and BIOCARD datasets were used to evaluate the 

effectiveness of the Siamese network approach; however, it 

remains uncertain whether these results are applicable to other 

datasets or populations [2]. 

Despite advances in medical imaging technology, 

interpreting brain scans remains challenging. A major obstacle 

is the variability in brain architecture and diseases among 

individuals. Human brains differ significantly in size, shape, 

and structure, making it difficult to develop universally 

applicable diagnostic algorithms. This can lead to inflated 

performance metrics during evaluation but poor performance 

in real-world applications. Additionally, not all healthcare 

facilities possess the expertise needed to identify subtle 

anomalies in brain scans. These challenges underscore the 

need for reliable and adaptable AI models to support accurate 

and efficient interpretation of brain imaging data. However, 

feature ranking and classification error techniques may 

inadvertently select features or parameters that perform well 

on the training data but fail to generalize to new, unseen data 

[3]. Therefore, it is crucial to leverage the benefits of cross-

validation. 

The main objectives are listed as follows: 

• Extract deep features and handcrafted features using pre-

trained and local texture descriptors. 

• Classify the MRI images using the most significant and 

frequently used classifiers. 

• Horizontal concatenation of feature vectors extracted by 

the pre-trained and handcrafted feature extractors that got 

high accuracy. 

• Select the best features using Entropy and Rank 

Correlation. 

• Use a voting classifier to detect the presence of brain 

disease. 

2. Related Works 
The paper by Zeng A et al. [4] initially performed a 

systematic and critical review of the state-of-the-art methods 

for classifying Alzheimer's disease using convolutional neural 

networks and T1-weighted MRI. They then introduced an 

open-source framework for reproducible evaluation of 

classification approaches. In this study, a fivefold cross-

validation procedure was rigorously followed and repeated ten 

times for each binary experiment, namely AD vs. HC, MCIc 

vs. HC, and MCIc vs. MCInc. 

In the methodology used by Venugopalan et al. [5], 

intermediate features generated from different imaging 

modalities are integrated using a concatenation layer, 

followed by a classification layer to predict the stage of 

Alzheimer's disease. The study explores various classifiers for 

the classification layer, including K-Nearest Neighbors 

(KNN), decision trees, random forests, and Support Vector 

Machines (SVM). 

The study also employs deep learning models like auto-

encoders and deep-belief networks for fusing PET and MRI 

image data, resulting in improved predictions. To address the 

challenge of small sample sizes, the study proposes strategies 

such as transfer learning and domain adaptation. 

The study by Xin Bi et al. [6] employed two deep learning 

methods for brain network classification: a convolutional 

learning method to learn deep regional-connectivity features 

and a recurrent learning method to learn deep adjacent 

positional features. Additionally, an ELM-boosted structure 

was implemented to enhance the models' learning ability. The 

number of hidden nodes in the ELM varied from 0 to 300, with 

performance metrics such as accuracy, recall, and AUC being 

measured. Considering both performance and training time, 

the final ELM was set to have 150 hidden nodes. 

Guo and Zhang [7] proposed an Improved Deep Learning 

Algorithm (IDLA) for the early detection of Alzheimer's 

disease, utilizing a specialized network of autoencoders to 

differentiate between natural aging and disease progression. 

The study used resting-state functional MRI data to measure 

connectivity in brain regions and assess brain function.  

The IDLA approach integrates effectively biased neural 

network functionality, enhancing the reliability of Alzheimer's 

disease recognition. Compared to conventional classifiers, the 

proposed deep learning algorithm demonstrated significant 

improvement, reducing the standard deviation by 45% and 

indicating a more reliable and efficient forecasting model. 

The study by Siar et al. [8] employed a Convolutional 

Neural Network (CNN) for detecting brain tumors using MRI 

images. The CNN achieved an accuracy of 98.67% with the 

Softmax Fully Connected layer for image classification. 

Additionally, the study utilized the Radial Basis Function 
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(RBF) classifier and the Decision Tree (DT) classifier 

alongside the CNN. The CNN with the RBF classifier reached 

an accuracy of 97.34%, while the CNN with the DT classifier 

achieved 94.24%. The study introduced a novel method that 

integrates feature extraction techniques with CNN for tumor 

detection, achieving an accuracy of 99.12% on the test data. 

The paper by Ramzan et al. [9] utilized Residual Neural 

Networks (ResNet-18 architecture) for feature extraction and 

classification across multiple stages of Alzheimer's disease. 

The study investigated the effectiveness of using resting-state 

functional magnetic resonance imaging (rs-fMRI) for multi-

class classification of Alzheimer's Disease (AD) and its stages, 

offering a potential tool for early diagnosis.  

The models were trained from scratch using single-

channel input, and transfer learning was applied both with and 

without fine-tuning using an extended network architecture. 

The model achieved state-of-the-art results, with average 

accuracies of 97.92% for off-the-shelf models and 97.88% for 

fine-tuned models. 

The paper by Duc et al. [10] utilized resting-state 

functional Magnetic Resonance Imaging (rs-fMRI) scans 

from 331 participants to generate functional 3-Dimensional 

(3-D) independent component spatial maps for classification 

and regression tasks. They developed a 3-D Convolutional 

Neural Network (CNN) architecture for the classification task.  

To enhance MMSE regression performance, feature 

optimization methods such as least absolute shrinkage and 

selection operator and Support Vector Machine-based 

Recursive Feature Elimination (SVM-RFE) were applied. A 

permutation test was conducted to evaluate the statistical 

significance of the 3-D CNN classifier's performance. 

In the paper by Zhu et al. [11], a hybrid model architecture 

was developed to leverage both types of clinical data. This 

model integrates transfer learning-based convolutional neural 

networks for MRI scans with a fully connected deep learning 

neural network for symptom data. Three models were created: 

one based solely on symptoms, one based solely on MRI 

scans, and a hybrid model combining both data sources. 

The symptoms-based model employed a fully connected 

deep learning neural network, while both the MRI scans-only 

and hybrid models utilized transfer learning-based 

convolutional neural networks. Among these, the hybrid 

model, which integrated both symptom data and MRI scans, 

achieved the highest accuracy of 0.94, demonstrating its 

effectiveness in accurately diagnosing Parkinson's disease. 

The paper by Wutao Yin et al. [12] employs deep learning 

techniques, specifically Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs), to analyze 

fMRI data for diagnosing brain disorders. The fMRI data is 

treated as images, time series, or image series, with various 

deep learning models developed to process the data for 

different tasks. The study highlights the successful application 

of these deep learning methods for diagnosing brain disorders 

based on fMRI images. 

The paper by Tian Bai et al. [13] introduces a novel three-

component adversarial network-based method for Alzheimer's 

Disease (AD) detection called BSGAN-ADD. This method 

combines Generative Adversarial Network (GAN)-based 

Brain Slice Image Enhancement with Deep Convolutional 

Neural Network (CNN)-based AD detection.  

During the training phase, the generator in BSGAN-ADD 

incorporates disease category feedback from the classifier to 

improve 2D brain slice image reconstruction, with constraints 

provided by the discriminator. In the prediction phase, stacked 

CNN layers in the generator are used to extract high-level 

brain features from the enhanced 2D brain slice images, which 

are then used by the classifier to determine the posterior 

probabilities of different disease states (Normal, AD, and 

MCI). 

In [14], the authors fused Computed Tomography (CT) 

and MRI scans to create new synthetic images with enriched 

information, which could enhance diagnostic accuracy. Image 

segmentation techniques were used to improve tumor 

identification. Building on this, [15] introduced a novel model 

based on Generative Adversarial Networks (GANs) for 

enhanced segmentation.  

Additionally, [16] proposed a Convolutional Neural 

Network (CNN)-based model for normalized segmentation to 

identify tumor regions. A review by the authors in [17] 

examined both supervised and unsupervised deep learning 

techniques for tumor identification. Furthermore, [18] 

analyzed tumor growth using various machine learning 

algorithms for segmenting multiparametric MRI (mpMRI) 

images. 

Rajnikanth et al. [19] developed a Computer-Aided 

Diagnosis and Detection (CADD) system that utilizes 

Convolutional Neural Network (CNN)-supported 

segmentation and classification to identify glioblastoma and 

glioma-class brain tumors in 2D MRI slices. The effectiveness 

of the CADD system was validated through testing on 

benchmark and real clinical brain MRI slices, with a 

comparison of various well-known classifiers. They found 

that the SVM-Cubic classifier achieved the highest accuracy, 

exceeding 98%. These results highlight that CNN-assisted 

segmentation and classification can significantly enhance 

disease detection accuracy. 

Numerous promising machine learning applications have 

utilized MRI for Alzheimer's Disease (AD) prediction [20]. 

These applications include methods such as Random Forests 

(RF) [21], Support Vector Machines (SVM) [22], and 

boosting algorithms [23]. In recent years, numerous studies 
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have utilized CNN-based tumor identification algorithms and 

deep learning fusion models in medical imaging to improve 

the accuracy of diagnosing complex brain disorders such as 

Alzheimer's disease. By integrating MRI and fMRI data into 

their analyses, researchers have achieved significant 

advancements in identifying these conditions, demonstrating 

considerable progress in the field of neuroimaging. 

3. Proposed Methodology  
This paper introduces an innovative AI-driven fusion 

model that significantly improves the effectiveness of 

automating the diagnosis of various brain disorders, including 

but not limited to Alzheimer's disease, brain tumors, atrophy, 

ischemia, and White Matter Intensity (WMI). By leveraging 

advanced artificial intelligence techniques, this model 

streamlines the process of interpreting MRI images, allowing 

for more accurate and timely identification of crucial brain 

abnormalities that could greatly benefit patient outcomes and 

medical decision-making. 

The objectives of this study are as follows: 

• To extract deep and handcrafted features from pre-trained 

models and local texture descriptors. 

• To classify the images using frequently utilized 

classifiers. 

• To select the best features using Entropy and Rank 

Correlation-based feature selector. 

• To detect the presence of brain illness using a voting 

classifier. 

To accomplish the above specified objectives, an AI-

based fusion model to detect the presence of brain diseases 

like Atrophy, Ischemia, White Matter Intensity (WMI), Brain 

Tumors and Alzheimer’s is proposed. For developing this 

model, a Brain MRI image Dataset from various sources is 

acquired.  To enhance the quality of the images, preprocessing 

on the given data set is performed. The features are extracted 

using pre-trained and handcrafted feature extractors.  

The pre-trained and handcrafted extracted features are 

used for classification. To improve the accuracy, the optimal 

features are identified from both types of extractors mentioned 

earlier and the corresponding feature vectors are concatenated 

horizontally. Based on Entropy and Rank correlation, the best 

features are selected. Finally, the resulting optimized features 

are trained using a voting classifier to detect the brain disease. 

Figure 1 depicts the overall process of the model. 

3.1. Preprocessing 

Preprocessing is done through sharpening and cropping 

the brain MRI images. Sharpening is done by adding the 

original image and the image after the edge detection to 

produce a new image where the edges are enhanced, making 

it look sharper. Medical images can benefit from sharpening 

procedures that improve the edges and small details, making 

subtle abnormalities more noticeable and detectable. 

Sharpening can increase the visibility of appropriate 

characteristics in brain imaging, where the identification of 

minute lesions or anomalies is essential for diagnosis. This 

increases the precision of disease detection algorithms. 

Cropping is done by removing unwanted parts of the 

sharpened image to focus on the most relevant features. It is 

necessary to provide consistency among datasets, standardise 

the size and orientation of medical images, and enable 

automated analysis. Preprocessing can help reduce computing 

overhead during future processing steps by removing 

unnecessary information from images and cropping them to 

focus on the region of interest, such as the brain.  

By increasing the visibility of significant anatomical 

structures and disease characteristics, preprocessing 

procedures like sharpening and cropping can improve the 

interpretability of medical images. Finally, only the brain is 

stripped from the original image. The process is represented 

in Figure 2.  

 
Fig. 1 Proposed system design for brain tumor classification 
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   Original Image         Sharpened Image       Cropped Image 

Fig. 2 Transition from original to preprocessed images 

3.2. Deep Feature Extraction 

Eight well-known pre-trained CNN models, AlexNet, 

DenseNet201, GoogleNet, VGG16, MobileNetV2, ResNet50, 

ResNet101, and SqueezeNet, were used for this purpose, and 

their features were taken without any fine-tuning. From every 

pre-trained CNN model, a total of 8435 × 1000-sized features 

were extracted, with 1000 features extracted for every 

preprocessed MRI image.  

The features that were taken out of every pretrained CNN 

model were then assessed using 10-fold cross-validation on 

traditional classifiers. TFrom low-level features like edges and 

textures to high-level semantic characteristics like object 

categories, these pre-trained algorithms have learned to 

extract hierarchical information from images fed. The 

algorithm represented in Algorithm 1 shows from which layer 

the features are extracted from the respective pre-trained 

feature extractor. 

Algorithm 1:  Pseudocode for Feature Extraction Using Pre-

Trained Models 

 

Output : PF8 ← Extracted Features  

Input  : ψ(i, j, k)← Input Images 

 

PF1 ← Extract_Features (‘AlexNet’, ‘FC8’, ?) 

PF2 ← Extract_Features (‘DenseNet201’, ‘FC1000’, ?) 

PF3 ← Extract_Features (‘GoogleNet’, ‘Loss3-Classifier’, ?) 

PF4 ← Extract_Features (‘VGG16’, ‘FC8’, ?) 

PF5 ← Extract_Features (‘MobileNetV2’, ‘Logits’, ?) 

PF6 ← Extract_Features (‘ResNet50’, ‘FC1000’, ?) 

PF7 ← Extract_Features (‘ResNet101’, ‘FC1000’, ?) 

PF8 ← Extract_Features (‘SqueezeNet’, ‘Pool10’, ?) 

3.3. Handcrafted Feature Extraction 

Using a variety of local texture descriptors, handcrafted 

features were extracted in order to compare with deep features 

and build an accurate ensemble model. Eight well-known 

local texture descriptors Local Binary Pattern (LBP), 

Frequency Decoded Local Binary Pattern (FDLBP), Pyramid 

Histogram of Oriented Gradients (PHOG), Binary Gabor 

Pattern (BGP), Census Transform Histogram (CENTRIST), 

Binarized Statistical Image Features (BSIF), Quaternionic 

Local Ranking Binary Pattern (QLRBP), and Local Phase 

Quantization (LPQ) were utilized for this purpose. The 

extracted characteristics were assessed by a 10-fold cross-

validation technique using traditional classifiers. The 

algorithm is represented in Algorithm 2 shows from which 

local texture descriptors the features are extracted and in 

which variables they are stored. 

Algorithm 2:  Pseudocode for Feature Extraction Using Pre-

Trained Models 

 

Output : HF8 ← Extracted Features  

Input : ? (i, j, k)← Input Images 

 

HF1 ← Extract_Features (‘LBP’, ?) 

HF2 ← Extract_Features (‘FDLBP’, ?) 

HF3 ← Extract_Features (‘PHOG’, ?) 

HF4 ← Extract_Features (‘BGP’, ?) 

HF5 ← Extract_Features (‘CENTRIST’, ?) 

HF6 ← Extract_Features (‘BSIF’, ?) 

HF7 ← Extract_Features (‘QLRBP’, ?) 

HF8 ← Extract_Features (‘LPQ’, ?) 

Because LBP, FDLBP, and LPQ are resistant to 

variations in illumination, they operate consistently, even 

under a variety of lighting scenarios that are frequently 

encountered in medical imaging. Rotation-invariant texture 

patterns are captured by PHOG, QLRBP, and LPQ, 

guaranteeing that significant features associated with brain 

structures can be identified regardless of the orientation of the 

pictures.  

Fuzzy logic and interpretable feature representations are 

incorporated by FDLBP and CENTRIST, respectively, to 

improve the derived features' discriminative ability and enable 

more precise brain illness categorization. By combining local 

data into global representations, BGP and BSIF are resistant 

to spatial variability and deformations found in brain images, 

which variations in imaging techniques or patient placement 

may bring on. 

3.4. Classification 

The deep features and handcrafted features undergo 

classification using seven prominent classifiers known as 

Cubic SVM, Gaussian SVM, Fine KNN, Weighted KNN, 

Bagged Tree, Boosted Tree, and Subspace KNN. These 

classifiers are specifically chosen for their ability to capture 

complex correlations present in brain imaging data 

effectively. They encompass a diverse set of modeling 

strategies, including subspace-based, ensemble methods like 

Bagged Tree and Boosted Tree, non-linear techniques such as 

KNN, and linear algorithms like SVM.  

Noteworthy among these classifiers are Boosted Tree, 

Bagged Tree, and Gaussian SVM, which excel in detecting 

subtle irregularities and intricate patterns that are indicative of 



M. Chengathir Selvi et al. / IJECE, 11(8), 42-54, 2024 

 

47 

various brain disorders. This capability plays a crucial role in 

facilitating the process of diagnosis and treatment planning for 

healthcare professionals. 

Furthermore, ensemble classifiers like Boosted Tree and 

Bagged Tree leverage the combined knowledge of multiple 

models to combat overfitting, enhance generalization 

performance, and fortify the reliability of brain disease 

detection models. Moreover, Subspace-based classifiers such 

as Subspace KNN mitigate issues related to high 

dimensionality by employing feature subspace selection 

techniques, thereby optimizing nearest neighbor searches 

through a focus on the most relevant features in the data. 

3.5. Feature Concatenation 

The feature vectors extracted by the best pre-trained 

model and the best handcrafted model are concatenated 

horizontally, effectively augmenting the dimensionality of the 

resulting feature vectors. This strategic concatenation 

approach merges diverse types of features originating from 

various regions or modalities within brain MRI images by 

seamlessly integrating high-level semantic features from pre-

trained models with fine-grained textural details derived 

through handcrafted approaches, a synergistic depiction 

unfolds, offering a holistic view of brain pathology.  

This comprehensive framework captures intricate 

nuances of brain morphology, surface textures, and functional 

connectivity patterns. Consequently, this fusion of detailed 

insights enables a nuanced understanding of brain anatomy 

and pathology, covering a spectrum of attributes ranging from 

overarching structural characteristics to subtle textural cues. 

The amalgamation of these distinctive feature types facilitates 

a robust characterisation of brain structures and abnormalities, 

enriching the analysis with a blend of semantic richness and 

granular detail, thereby advancing the capacity for in-depth 

brain assessment and diagnosis. 

Masterfully crafted feature extractors are designed with 

the precise intention of identifying and isolating distinctive 

patterns and characteristics that are specific to a given domain, 

particularly in the realm of brain imaging. Through the 

strategic utilization of horizontal concatenation, domain-

specific information is effectively harnessed by merging these 

extracted features with the knowledge acquired by pre-trained 

models from more general image datasets. This strategic 

amalgamation serves to enhance the discriminatory power of 

the feature representation, which is particularly beneficial for 

tasks that involve the detection and diagnosis of various brain-

related ailments.  

Handcrafted feature extractors focus on diligently 

capturing intricate textural motifs and essential structural 

elements, while pre-trained deep learning algorithms are 

proficient in learning complex hierarchical representations of 

visual data. By amalgamating insights from these 

complementary sources, horizontal concatenation operates at 

its peak potential, amplifying the depth and diversity of the 

feature space while bolstering the overall robustness and 

generalizability of the classification model. In essence, 

leveraging both these methods not only enriches the feature 

space but also reinforces the model's ability to classify with 

accuracy across different brain imaging scenarios. 

Horizontal concatenation, which involves intentionally 

combining features acquired through diverse methods, serves 

to maintain the clarity and comprehension of each feature 

element. By uniting these varied features, one can gain 

valuable insights into the foundational attributes that impact 

the process of classification.  

This insight into the discriminative capabilities of 

different types of features promotes collaboration between 

machine learning experts and specialists in the realm of brain 

disease research. Through this transparency, the task of 

comprehending and harnessing the diverse potentials of 

various feature categories becomes more accessible, 

facilitating effective cooperation and knowledge sharing 

among practitioners and experts in the field. 

3.6. Feature Selection 

A variety of classification techniques, including cubic 

SVM, gaussian SVM, fine KNN, weighted KNN, bagged tree, 

boosted tree, and subspace KNN, are applied to classify the 

features derived from both handcrafted and pre-trained feature 

extractors. The feature vectors of the two highly accurate 

feature extractors are chosen: one from the pre-trained set and 

the other from the handcrafted feature extractors. The two 

chosen feature extractors' feature vectors are fused 

horizontally. 

Following the fusion process, the combined feature 

vectors undergo a selection process using entropy measures 

and rank correlation techniques. A method that considers both 

rank correlation and the entropy values of the fused vector is 

employed to refine the selection of the feature vectors. This 

innovative approach enhances the accuracy and robustness of 

the classification process by leveraging the complementary 

information captured through the fusion and selection steps. 

The recommended approach consists of three basic steps:  

• Figuring out the fused features' entropy value, 

• Calculating the correlation between them 

• Selecting the features with the lowest entropy-correlation 

values.  

After computing the entropy value of the fused feature 

and multiplying it by the rank correlation, the subsequent step 

involves applying a threshold function to ascertain which 

features exhibit the lowest entropy correlation value. This 

meticulous process of entropy-based feature selection proves 

invaluable as it allows for the identification of features with 

strong discriminatory capabilities, ones that are resilient to 

interference from noise or irrelevant data components.  
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Additionally, the utilization of the rank correlation 

methodology serves to pinpoint those features that exhibit a 

pronounced correlation with the target variable, thereby 

enhancing their relevance in the final classification. Once 

these meticulously selected features have undergone 

assessment and refinement, they are subsequently channeled 

into the voting classifier for the conclusive stage of 

classification. This systematic approach ensures that the 

classification process is underpinned by a robust framework, 

leading to more accurate and reliable outcomes. 

It is given that extracted fused features f1, f2, ...fn are 

ranked from 1 to n. Find out the correlation between the rank 

of given features. The rank correlation is defined as: 

𝑅𝑓 = 
𝑛𝛴𝑓1𝑓2−𝛴𝑓1𝑓2

√𝑛∑𝑓1
2−(𝛴𝑓1)2(𝑛∑𝑓2

2−(𝛴𝑓2)2)

  (1) 

Where, f1 and f2 represent the fused feature vector. On 

simplifications (1) becomes: 

𝑅𝑓 = 1 − (
6∑𝑑2

𝑛3−𝑛
) (2) 

Where  ∑𝑑2 =  𝛴(𝑓)1
2  + ∑(𝑓2)

2 −  2𝛴𝑓1𝑓2. Then, 

calculate the entropy value of the fused feature vector and 

multiply it with the correlation. The obtained value is 

compared with each feature of the fused vector, and the 

features are based on the final threshold function as follows: 

EC (fi) = Entropy × 1 − (
6∑𝑑2

𝑛3−𝑛
) (3) 

𝐹(𝑉𝑒𝐶)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = {
𝑅𝑒𝑚𝑜𝑣𝑒𝑖𝑓ⅈ > 𝐸𝐶(𝑓ⅈ)

𝑆𝑒𝑙𝑒𝑐𝑡𝑖 𝑓𝑖 ≤ 𝐸𝐶(𝑓𝑖)
 (4) 

Resultant vector 𝐹(𝑉𝑒𝐶)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is utilized for final classification. 

Algorithm 3:  Pseudocode for Entropy and Rank Correlation 

based Feature Selection 

 

Output : 𝐹(𝑉𝑒𝐶)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ← Selected Features 

Input : Pretrained Features 8, Handcrafted Features 8 

 

FV1=0 

FV2=0 

For (j: 1 to 8) 

V1 ← Pretrained Features(j) 

If (acc(V1) > FV1) 

         FV1= V1 

End For 

 

For (j: 1 to 8) 

V2 ← Handcrafted Features(j) 

If (acc(V2)>FV2) 

       FV2= V2 

End For 

Fused(Fv)← [ FV1 , FV2] 

Calculate the Entropy of Fused(Fv)  

For (m: 1 to no_of_features)  

Rank Correlation (RC) ← 1 − (
6∑𝑑2

𝑛3−𝑛
)  

EC = Entropy × RC 

If ( Fv(i) <= EC ) 

         𝐹(𝑉𝑒𝐶)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  ← [𝐹(𝑉𝑒𝐶)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, Fv(i) ] 

End For  

 

The suggested approach involves carefully identifying the 

most effective features to enhance the classification process. 

This entails computing the entropy and rank-based correlation 

scores of the fused features during the feature selection phase. 

By considering both entropy and rank-based correlation, the 

technique aims to eliminate feature redundancy and prioritize 

the selection of the most relevant features for accurate 

classification. Algorithm 3 outlines the detailed procedure for 

this feature selection process, underscoring the methodical 

approach taken to ensure the best feature subset is chosen for 

precise classification outcomes. Such a methodical process 

not only improves the accuracy of the classification but also 

streamlines the model for better performance in handling 

complex datasets. 

Initially, two variables, FV1 and FV2, are set to 0 and 

designated to hold the features extracted from both the 

pretrained and handcrafted feature extractors, respectively. 

The process begins by iterating through the pretrained features 

to identify and store the feature with the highest accuracy (acc) 

in the variable FV1. Similarly, the algorithm then proceeds to 

iterate through the handcrafted features, preserving the feature 

with the highest accuracy (acc) in the variable FV2. Following 

this selection process, the algorithm merges the chosen 

features, FV1 and FV2, together into a unified set named 

Fused(Fv) by combining them through horizontal 

concatenation. This combined set is then subjected to an 

entropy calculation, aiming to quantify the level of uncertainty 

or disorder inherent within the amalgamated selected features, 

Fused(Fv). 

Moving forward, for each specific feature within the 

fused set, the algorithm proceeds to assess its Rank 

Correlation (RC) before calculating the product of Entropy 

and one minus rank Correlation (EC). By comparing this 

product against the feature's value, the algorithm determines 

whether the feature should be included in the final output of 

selected features if its value is less than or equal to EC. This 

meticulous selection process ensures that only the most 

relevant and impactful features are retained for further 

analysis and utilization. 

3.7. Voting Classification 

The exemplary study exhaustively utilized a 

distinguished set of seven classifiers for the in-depth analysis: 

Cubic Support Vector Machine (SVM), Gaussian SVM, Fine 
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K-Nearest Neighbors (KNN), Weighted KNN, Bagged Tree, 

Boosted Tree, and Subspace KNN. These diverse classifiers 

were thoughtfully employed to meticulously examine and 

compare the impact of both the intricately extracted deep 

features and the manually crafted features, all in pursuit of 

achieving a thorough and all-encompassing classification 

outcome. Through a diligent and detailed evaluation 

procedure, the most precise and effective classifiers were 

carefully pinpointed to form an integral part of the ensemble 

technique known as the voting classifier.  

This deliberate fusion of the most accurate classifiers 

notably enhanced the overall system's operational efficiency 

and trustworthiness, thereby spotlighting the critical role of a 

well-planned and meticulously executed selection process in 

steering classification results to higher levels of excellence 

and dependability. 

4. Expermental Results 
The study extensively employed seven notable classifiers 

for the analysis: Cubic SVM, Gaussian SVM, Fine KNN, 

Weighted KNN, Bagged Tree, Boosted Tree, and Subspace 

KNN. These classifiers were thoughtfully applied to scrutinize 

both the deep features and handcrafted features in order to 

achieve a comprehensive classification.  

Following a meticulous evaluation process, the most 

accurate classifiers were deliberately selected to contribute to 

the ensemble method known as the voting classifier. This 

strategic integration of superior classifiers notably boosted the 

system's overall performance and reliability, showcasing the 

effectiveness of a well-thought-out selection process in 

enhancing classification outcomes. 

4.1. Dataset Collection 

The datasets utilized in this study consist of a total of 444 

T2-W MRI images in JPG format. Specifically, there are 100 

images for atrophy, 92 for WMI, 102 for ischemia, and 150 

for the normal class. For the brain tumor dataset, there are a 

total of 2870 training images, with 395 images representing 

'No tumor' and 2475 images depicting 'Tumor', along with 394 

testing images, split as 105 'No tumor' and 289 'Tumor'. In the 

case of the Alzheimer’s dataset, a total of 5121 images are 

designated for training purposes and 1279 images for testing. 

Each class is visually illustrated using the raw MRI images, as 

shown in Figure 3, with additional detailed information 

provided in Table 1 regarding the dataset. 

Table 1. Databases, number of files, classes, colors, and format 

Database Files Classes Color Format 

Tumor 3264 3 Grayscale jpg 

Alzheimer’s 6400 3 Grayscale jpg 

Atrophy, 

Ischemia 
444 4 Grayscale jpg 

 

       
     Normal               Atrophy             Ischemia            

        
       WMI                 Tumor             Alzheimer’s 

Fig. 3 MRI images 

4.2. Deep Feature Extraction 

The classification results of pre-trained models are shown 

in Table 2. DenseNet consistently earns the greatest average 

accuracy (81.24%) among all pre-trained models, with 

MobileNetV2 coming in a close second (81.08%). This 

suggests that these pre-trained models are efficient at 

accurately classifying brain illnesses by extracting relevant 

data from brain MRI images. Given the great performance of 

pre-trained models such as DenseNet and MobileNetV2, it 

appears that brain disease diagnosis can benefit from transfer 

learning.  

Pre-trained models are effective in medical imaging tasks; 

these models have learnt generic properties related to brain 

image classification. When using the same classifiers with 

various pre-trained models, there is variation in performance. 

For example, among most classifiers, DenseNet gets the 

maximum accuracy, but in certain situations, models like 

ResNet50 and ResNet101 perform marginally worse. This 

implies that the pre-trained model selection can affect the total 

classification accuracy, emphasising how crucial it is to 

choose the right model for the given task. 

Furthermore, it seems that KNN-based classifiers 

(Weighted KNN and Fine KNN) perform on par with, and 

sometimes even better than, tree-based ensemble techniques 

(Bagged Tree and Boosted Tree). For instance, Fine KNN 

outperforms Bagged Tree (62.0%) and Boosted Tree (63.3%) 

in terms of accuracy when applied to the DenseNet pre-trained 

model.  

Similarly, Fine KNN outperforms Bagged Tree (59.5%) 

and Boosted Tree (72.3%) with an accuracy of 93.7% using 

the MobileNetV2 pre-trained model. This suggests that KNN-

based classifiers can indeed offer competitive or even better 

performance than tree-based ensemble approaches in the 

context of brain illness detection using the features derived 

from pre-trained deep learning models. 
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4.3. Handcrafted Feature Extraction 

For the purpose of extracting distinguishing 

characteristics from brain MRI pictures, local texture 

descriptors are essential. The classification results of 

handcrafted feature extractors are shown in Table 3. The goal 

of these descriptors, which include PHOG, CENTRIST, 

FDLBP, and LBP, is to describe the texture patterns found in 

the MRI images, which can reveal information about 

underlying brain diseases and architecture. Different local 

texture descriptors function differently from one another. 

Certain descriptors are successful in capturing relevant 

textural information for the identification of brain diseases, as 

evidenced by their consistently high accuracies across 

classifiers. PHOG and FDLBP, for instance, perform well 

across a range of classifiers, indicating their resilience and 

discriminating ability. 

Table 2. Accuracy scores were obtained using conventional classifiers with features extracted from various pretrained models 

Pretrained 

Model  

Cubic 

SVM 

Gaussian 

SVM 
Fine KNN 

Weighted 

KNN 

Bagged 

Tree 

Boosted 

Tree 

Subspace 

KNN 

PHOG 94 75.2 93.8 90 63.8 57.7 94.21 

CENTRIST 65.8 55.9 62.2 65.7 57.3 64.7 81.9 

FDLBP 92.2 83.3 96.8 93 61.44 73 97 

LBP 91.5 80.8 95 91.8 59.8 72.3 94.7 

BGP 95.4 68.9 78 85.5 60.8 78 93.4 

LPQ 95.5 70.2 93 86 62.4 76.9 93 

BSIF 95.6 68.8 91.1 87.3 63.6 72.9 92.1 

QLRBP 89.7 69 92.5 88.8 57.1 77.7 92.7 

 
Table 3. Accuracy scores were obtained using conventional classifiers with features extracted from various handcrafted models 

Pretrained 

Model  

Cubic 

SVM 

Gaussian 

SVM 

Fine 

KNN 

Weighted 

KNN 

Bagged 

Tree 

Boosted 

Tree 

Subspace 

KNN 

Alexnet 91.7 67.4 93.02 88.6 66.03 60.9 92.6 

Googlenet 86.7 66.3 88.7 83.11 59.22 60.8 88.3 

DenseNet 93.3 71.3 94.4 89.9 62 63.3 94.5 

MobileNetV2 90.5 70.4 93.7 87.5 59.5 72.3 93.7 

SqueezeNet 91.4 67.8 91.7 86.6 59.8 73 91.6 

ResNet50 91.5 69.1 92.2 85.9 61 73.6 92.3 

ResNet101 91.6 68.7 92.4 86.7 60.3 72.9 92.1 

VGG16 88.7 66.7 91.3 85.5 59.7 71.7 91.1 

 

The classifier selection strongly influences the 

performance of local texture descriptors. Certain descriptors 

exhibit classifier sensitivity, whilst others function well across 

a range of classifiers. As an example, CENTRIST 

performance varies throughout classifiers, suggesting that the 

classifier's capacity to utilize the extracted texture 

characteristics may be a determining factor in the success of 

the model. Certain combinations of classifiers and local 

texture descriptors perform better than others every time. 

When combined with KNN models like Subspace KNN and 

Fine KNN, descriptors like FDLBP and LBP continually yield 

excellent accuracies, demonstrating the resilience and efficacy 

of these combinations for the identification of brain diseases. 

4.4. Evaluation Metrics 

A confusion matrix is a table that helps us understand how 

well a machine learning model is performing. It is used to 

evaluate classification models, which are used to categorize 

data into different classes based on certain features or 

characteristics. The table has four components: true positives, 

false positives, true negatives, and false negatives. 

True Positives (TP) are the cases where the model 

correctly identifies a positive outcome. For example, in a spam 

email filter, a true positive is an email that was correctly 

identified as spam. False Positives (FP) are the cases where 

the model incorrectly identifies a positive outcome. In a spam 

email filter example, a false positive is an email that was 
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incorrectly identified as spam. True Negatives (TN) are the 

cases where the model correctly identifies a negative outcome. 

For instance, in a medical diagnosis model, a true negative is 

a healthy patient who was correctly identified as healthy. 

Finally, False Negatives (FN) are the cases where the model 

incorrectly identifies a negative outcome. In the disease 

diagnosis model, a false negative is a diseased brain which 

was wrongly identified as healthy.  

Figures 4, 5, 6 and 7 display the confusion matrix of the 

topmost classifier as well as the topmost pertained model and 

local feature extractors, i.e., DenseNet and FDLBP for the 

combined dataset. The diagonal cells (blue-backed and 

highlighted) in Figure 4 display the number of accurate 

predictions for each class. For instance, Atrophy was predicted 

by the model 96 times, Ischemia 93 times, MildDemented 713 

times, and so forth. For every class, these are referred to as 

true positives.  

 
Fig. 4 Confusion matrix of DenseNet of classifier Subspace KNN 

 
Fig. 5 Confusion matrix of DenseNet of classifier Fine KNN 

 
Fig. 6 Confusion matrix of FDLBP of classifier Subspace KNN 

The number of inaccurate predictions, i.e., predictions 

made by the model that deviates from the actual class, is 

displayed in the off-diagonal cells. For example, the model 

predicted 13 images of Normal as Atrophy and 9 images of 

Ischemia as Atrophy. 

In Figure 5, for instance, Atrophy was predicted by the 

model 96 times, Ischemia 93 times, MildDemented 711 times, 

and so forth. The model predicted 12 images of Normal as 

Atrophy and 9 images of “Ischemia” as “Atrophy”. Similarly, 

in Figure 6, for instance, Atrophy was predicted by the model 

92 times, Ischemia 93 times, MildDemented 717 times, and so 

forth. The model predicted 5 images of Normal as Atrophy 

and 9 images of Ischemia as Atrophy. In the same way in 

Figure 7, for instance, Atrophy was predicted by the model 94 

times, Ischemia 93 times, MildDemented 717 times, and so 

forth. The model predicted 5 images of Normal as Atrophy 

and 9 images of Ischemia as Atrophy. 

 
Fig. 7 Confusion matrix of FDLBP of classifier Fine KNN 



M. Chengathir Selvi et al. / IJECE, 11(8), 42-54, 2024 

 

52 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 AUC curve for Subspace KNN of FDLBP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 AUC curve for Fine KNN of FDLBP 

When assessing the effectiveness of classification models 

in medical imaging tasks like categorizing brain MRI pictures 

into distinct disorders, one typical statistic to utilize is the Area 

under the Curve (AUC). Plotting the true positive rate 

(sensitivity) versus the false positive rate (1-specificity) at 

different threshold settings is the AUC curve, additionally 

referred to as the Receiver Operating Characteristic (ROC) 

curve. The AUC quantifies the overall performance of the 

classification model. A higher AUC value (closer to 1) 

indicates better discrimination ability, meaning the model is 

better at distinguishing between positive and negative cases. 

An AUC of 0.5 suggests random classification, while an AUC 

of 1 indicates perfect classification. 

5. Conclusion 
Since MRI can give great contrast to soft tissues, it is 

frequently used to examine the human brain and discover 

problems. However, the process of studying and interpreting 

MRI scans is arduous and time-consuming for specialists. In 

addition, misinterpretations may arise from time constraints in 

cases where professionals are overworked. Artificial 

intelligence is developing at a rapid pace, especially in deep 

learning, which has produced creative answers to these 

problems. In this study, a novel deep learning model for 

classifying brain MRI images according to brain illnesses is 

presented. For feature extraction, the suggested model uses 

one local texture descriptor, FDLBP, together with one deep 

model, DenseNet. The combined deep and hand-crafted 

features are then sent into the suggested feature selection 

method.  

The model's high accuracy scores suggest that it can be 

used as a clinical adjunct tool to help specialists accurately 

classify brain MRI images based on brain diseases. It 

automatically selects the best-performing feature subset and 

nearest neighbor value. It also uses cubic SVM, Fine KNN, 

and Subspace KNN to classify the most important features that 

were selected. Using the ADNI, Atropy, Ischemia, WMI and 

brain tumor datasets, the model achieved an accuracy of 

89.87%. 
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