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Abstract - Agriculture plays a significant role in a country's development like India, where most of the population’s livelihood 

is based on agriculture. The production of apples plays a vital role in the agricultural sector by contributing to the economy 

through domestic consumption and export. However, different diseases exhibit similar visual symptoms on apple leaves, such as 

spots or discolorations, leading to misclassification. This research proposes the Modified Convolutional Block Attention 

Mechanism-VGG16 (MCBAM-VGG16) to classify apple plant leaf disease accurately. Global Average Pooling (GAP) layer and 

CBAM are added after the first convolutional layer which minimizes the number of parameters and helps to avoid underfitting 

issues during training. Initially, images are obtained from the plant village dataset to evaluate the proposed approach. Then, 

data augmentation is used to transform images, which helps MCBAM-VGG16 attain better tolerance and generalization ability. 

Then, W-Net is employed to segment images that capture both global context and fine-grained information within the leaf images. 

At last, MCBAM-VGG16 classifies apple plant leaf disease accurately. When compared to the existing techniques like Deep 

Convolutional Neural Networks with three convolutional layers (Conv-3 DCNN), the improved DCNN and Random Sample 

Consensus (RANSAC), MCBAM-VGG16 achieves a superior accuracy of 0.998. 

Keywords - Agriculture, Apple plant leaf disease, Data augmentation, Modified convolutional block attention mechanism-

VGG16, W-Net. 

1. Introduction 
Agriculture is the primary foundation for ensuring global 

food security and holds a significant share of the world’s 

economy. Moreover, plant disease infections have increased 

recently due to the continuous deterioration of the 

environment. The agriculture industry faces a significant 

impact each year due to plant disease infection, with a recent 

focus on their effects on various fruit diseases [1]. Many 

researchers have introduced various approaches for 

identifying and classifying fruit diseases [2].  

Apples are one of the primary fruits worldwide and one 

of the most commonly planted and consumed fruits worldwide 

[3]. Faced with a complex and ever-changing natural 

environment, the growth of apples is affected by numerous 

diseases that greatly impact their quality and yield [4]. Hence, 

enhancing the ability to manage apple leaf disease 

significantly improves yield and quality [5, 6]. Numerous 

fungal and bacterial diseases primarily manifest themselves on 

leaf and fruit area surfaces [7]. Lesions caused by pests exhibit 

complex patterns, which make them challenging to understand 

[8]. More than 100 kinds of apple diseases exist, with primary 

diseases like Apple Scab, Black Rot, Cedar Apple Rust, and 

so on, found in orchards and fruit-growing regions worldwide 

[9]. 

Accurately and quickly identifying and classifying these 

diseases, along with efficient analysis and management, can 

assist the rational use of agricultural resources like fertilizers, 

pesticides, and water for apple cultivation [10, 11]. The smart 

agriculture system depends on automatic crop disease 

classification and monitoring to increase agriculture's overall 

protectivity and maintenance [12]. 

With the establishment of Artificial Intelligence (AI) and 

computer vision, Deep Learning (DL) has received increasing 

attention in the image processing field due to its wide 

application range in agriculture [13]. Neural networks have 

also contributed extremely to monitoring systems that attain 

high accuracy and faster efficacy in different agricultural 
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http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:pooja@gecg28.ac.in


Pooja Chandrakantbhai Gajjar et al. / IJECE, 11(8), 62-71, 2024 

63 

fields [14, 15]. Moreover, a significant difficulty arises from 

overlapping visual symptoms between different diseases, like 

similar discolorations and spots, resulting in misclassification 

in the apple plant leaf disease classification field. To address 

this gap, this research proposes MCBAM-VGG16 for 

accurately classifying apple plant leaf disease by 

incorporating the GAP layer and CBAM. The GAP layer 

assists in minimizing parameter numbers, which helps to 

avoid underfitting issues during training, whereas CBAM 

enhances feature representation by concentrating on 

appropriate regions of input images. This approach provides a 

robust solution for classifying apple plant leaf disease by 

leveraging advanced methods to accurately manage the 

complexities of disease symptoms. The primary contributions 

of this research are described as follows: 

• Data augmentation is employed to transform images, 

which assists the model in attaining better tolerance and 

generalization ability through exposure to various 

transformations of leaf images. 

• W-Net segments the augmented images effectively by 

leveraging two interconnected U-Net. The first U-Net 

generates a coarse segmentation, which the second U-Net 

refines for higher accuracy. This approach enhances the 

segmentation quality by iteratively refining the results in 

apple leaf disease. 

• The MCBAM-VGG16 classifies the apple plant leaf 

disease accurately by adding a GAP layer and CBAM 

after the first convolutional layer. This minimizes the 

number of parameters and helps avoid underfitting and 

overfitting issues during training. By performing this 

process, the MCBAM-VGG16 achieves superior 

classification accuracy in apple plant leaf disease.  

The research is explained as follows: Section 2 describes 

a literature survey of the existing methods. Section 3 explains 

the proposed methodology in detail, Section 4 evaluates the 

results of existing techniques and the proposed methods, and 

Section 5 summarizes the paper's overall conclusion. 

2. Literature Survey 
The related works about apple leaf disease classification 

and their benefits and limitations are discussed in this section. 

Vishnoi et al. [16] suggested a Deep Convolutional 

Neural Network with three convolutional layers (Conv-3 

DCNN) for apple leaf disease detection and classification. The 

CNN approach involved a smaller number of layers, which led 

to a smaller computational burden. The hyperparameters were 

tuned by a random search approach, which assisted in 

selecting the most appropriate ones. The augmentation 

techniques like shear, shift, zoom, scaling, and flipping were 

employed to produce additional samples that enhanced the 

training set without capturing more images. However, Conv-

3 DCNN did not capture complex patterns due to shallow 

architecture, which minimized the classification accuracy. 

The overall analysis of [16] achieved minimized 

computational burden and enhanced efficiency but faced 

challenges with capturing complex patterns, which causes less 

classification accuracy. 

Mahato et al. [17] presented an improved DCNN to detect 

and classify apple plant leaf disease. The chosen dataset had a 

class imbalance issue managed by employing class weight 

approaches. After managing class imbalance issues, the 

improved DCNN was performed to classify apple leaf disease. 

The presented approach employed image data augmentation 

and annotation methods, increasing the accuracy. 

Nonetheless, improved DCNN faced difficulty in generalizing 

across various environmental conditions and variances in leaf 

images, which further affected the classification performance 

due to inconsistent leaf appearance. In an overall examination 

of [17], increased accuracy via augmentation but faces 

struggled with a generalization which affects the performance 

of classification 

Kurmi and Gangwar [18] introduced a Random Sample 

Consensus (RANSAC) to classify different plant leaf diseases. 

Further, image enhancement and histogram equalization were 

utilized in the pre-processing stage to enhance the image and 

provide better discrimination among objects and backgrounds. 

The RANSAC utilized Region of Interest (RoI) localization 

followed by feature extraction and classification. A mean and 

variance for Gaussian distribution were utilized for energy 

fitting functions, generating enhanced performance. 

Nevertheless, RANSAC struggled with highly complex or 

overlapping leaf disease patterns due to its dependence on 

fitting models to a subset of data that did not accurately 

represent all complex patterns. In the overall analysis of [18], 

enhanced performance was achieved but struggles with 

overlapping patterns, which causes model performances. 

Hosny et al. [19] developed a lightweight Deep 

Convolutional Neural Network (DCNN) to classify plant leaf 

disease. The traditional convolutional layers were replaced by 

deeper separable convolutions that minimized the amount of 

iteration time and model parameters. A combined approach 

was employed by concatenating deep features and handcrafted 

Local Binary Pattern (LBP) features. This approach 

effectively captured the local spatial texture data determined 

in plant leaf images. However, Lightweight DCNNs have 

limited capacity to capture complex features because of 

simplified architectures, leading to decreased classification 

accuracy. The overall investigation of [19] achieved enhanced 

efficiency, but the model accuracy was decreased due to 

limited capability. 

Zhang et al. [20] implemented integrating Capsule 

Networks (CapsNet) and Residual Networks (ResNet) for 

classifying plant leaf disease images. Initially, by refining and 

optimizing the traditional ResNet, the ResNet’s initial 

convolutional layer was improved by replacing its kernel with 
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small convolutional kernels, which effectively extracted plant 

leaf lesion features. Then, a channel attention approach was 

developed into ResNet to enhance the model’s focus on 

significant features. At last, improved ResNet was integrated 

effectively with CapsNet. The implemented approach 

maintained stable performance while the image changed 

significant rotation angles and increased the model's 

robustness. Nevertheless, the implemented approach struggled 

with constrained training data due to their deep architectures, 

which resulted in overfitting or generalization issues with 

insufficient data. In the overall analysis of [20] improved 

model performance and robustness under rotation but 

struggled with overfitting issues.  

From the overall evaluation of [16] to [20], it is seen that 

the existing techniques have limitations, such as not capturing 

complex patterns due to shallow architecture, difficulty in 

generalizing across various environmental conditions, 

overfitting issues, generalization, and variances in leaf images 

due to inconsistent leaf appearance, and visual symptoms on 

apple leaves like spots or discolorations. The MCBAM-

VGG16 is proposed to accurately classify apple plant leaf 

disease by adding a GAP layer and CBAM in VGG16 to 

overcome these issues. This approach minimizes the number 

of parameters and avoids overfitting and underfitting issues 

during training by concentrating on appropriate regions of 

input images. 

3. Proposed Methodology 
The MCBAM-VGG16 is proposed to classify the apple 

plant leaf disease accurately. Images are gathered from the 

plant village dataset to evaluate the proposed approach, and 

data augmentation is utilized to transform the images. W-Net 

is employed to segment the augmented images, and then 

MCBAM-VGG16 accurately classifies the apple plant leaf 

diseases. Figure 1 demonstrates a block diagram for the 

MCBAM-VGG16 method. 

 

 

 

 
Fig. 1 Block diagram for the MCBAM-VGG16 

3.1. Dataset 

In this research, apple leaf images are collected from the 

benchmark dataset of PlantVillage [21], which is available on 

the PlantVillage project. The dataset has 2536 apple leaf 

images and is split into 4 classes. Figure 2 shows a sample of 

apple leaf images. The 3 classes are associated with 3 apple 

diseases: scab, black rot, and apple cedar rust. The remaining 

1 class indicates healthy leaf images and has a 256 x 256 size 

in apple leaf images for all 4 classes captured with simple 

backgrounds at different stages. A collected image is 

transferred into a pre-processing stage for further processing. 

 

 

 
 

 
 

 
Fig. 2 Samples for apple leaf images 

3.2. Pre-processing 

After gathering images, data augmentation [22] is utilized 

in a pre-processing stage because the original image data is 

inadequate for effective training. Certain transformation 

techniques like zoom and scaling are utilized for transforming 

images. These transformations produce minor variations in 

images, which assist in creating variety in the training set. It 

helps minimize overfitting and assists in attaining enhanced 

tolerance and generalization through exposure to various 

transformations.  

Augmented images assist the model in learning more 

invariant and discriminative data, leading to improved 

accuracy. Then, the augmented images are passed to segment 

the apple leaf disease images using W-net. These 

transformations enhance the robustness of segmentation 

models by augmenting the training data with variations in 

perspective, position, and scale, improving their ability to 

generalize images. 

3.3. Segmentation 

The segmentation technique uses W-net [23] after the 

images are augmented. W-net’s multi-resolution architecture 

facilitates skip connections at various scales, enabling the 

model to capture both global context and fine-grained 

information within the leaf images. This increases the 

segmentation accuracy by effectively delineating disease-

affected regions from healthy images. W-net contains a two-

stage U-Net with refined and coarse structures derived at each 

stage, which is reorganized into 8 layers: 5 deep features as 

structure features and 3 shallow layers as texture features. This 

depends on insight, which is a shallow skip connection that 

synthesizes textures and deep sampling layers to produce 

structures.  

The initial part provides a feature map concatenation from 

the encoder path to associated feature maps from the decoder. 

It assists in recovering data lost during max pooling and 

convolutional operations. This 2nd part is identical to the prior; 

however, the max-pooling layer output is concatenated with 

the prior U-Net part. Moreover, the final layer is a 1 x 1 

convolutional layer that matches feature maps to appropriate 

classes and employs a softmax activation function. For the 

training stage, W-Net requires a supervised learning approach 

and hence, input-target (𝑥, 𝑦) is determined. The objective 

function depends on Intersection over Union (IoU) in error 

back-propagation, expressed in equation (1). 

Dataset 

 (Plant village) 

Pre-processing 

(Data 

augmentation) 

Segmentation 

 (W-Net) 

Classification 

(MCBAM-

VGG16) 

(a) Black rot (b) Apple Scab (c) Cedar Apple 

Rust 
(d) Healthy Leaf 
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𝐼𝑜𝑈 =
𝐼

𝑈
=

𝑦⋂𝑦̂

𝑦⋃𝑦̂
                       (1) 

Where 𝐼 and 𝑈 represent IoU, 𝑦 and 𝑦̂ indicate reference 

map and predicted one, respectively. Also, IoU is represented 

as False Positive (FP), True Positive (TP), and False Negative 

(FN), which is formulated in Equation (2). 

𝐼

𝑈
=

𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
        (2) 

IoU loss is calculated based on objective function by 

averaging mini batch sample at every learning procedure’s 

updating step, expressed in Equation (3). 

ℒ𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 = 1 −
1

𝑁
∑

𝑦𝑛⋂𝑦̂𝑛

𝑦𝑛⋃𝑦̂𝑛

𝑁
𝑛=1            (3) 

Where 𝑁 represents the batch size, 𝑦𝑛 indicates 𝑛 − 𝑡ℎ 

target and 𝑦̂𝑛 denotes 𝑛 − 𝑡ℎ predicted map. Then, the IoU 

loss into the objective function is considered, represented in 

Equation (4). 

𝑎𝑟𝑔𝑚𝑖𝑛𝑤 = 1 − 𝐼𝑜𝑈            (4) 

Where, 𝑤 shows the convolutional layer weight. W-Net 

performs superior in distinguishing healthy and diseased 

regions, making it significant for agricultural applications. 

Figure 3 represents samples for the segmented apple leaf 

images. Then, the segmented images are fed into apple plant 

leaf disease classification.  

 

 

 

 

 

Fig. 3 Samples for the segmented apple leaf images 

3.4. Classification 

After segmenting the images, the MCBAM-VGG16 is 

employed to classify plant leaf disease. The segmented input 

is passed to the VGG16 [24], a Convolutional Neural Network 

(CNN) based model that captures more complex features in 

the input images. CBAM provides a channel size and spatial 

operation in the CNN network with 2 modules: SAM and 

CAM.  

The CAM is established by employing the feature 

relations between channels, focusing on the significance of the 

given input. Initially, the spatial data available in feature maps 

is required for the process of average and maximum pooling 

to attain the values of FCmax and Fcavg. Then, these values 

are passed into the McRc x 1 x 1 network with 1 hidden layer. 

Channel attention is acquired and expressed in Equations (5) 

and (6). 

𝑀𝑐(𝐹) = (𝑀𝐿𝑃(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹)) + 𝑀𝐿𝑃(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹))) (5) 

𝑀𝑐(𝐹) = (𝑊1(𝑊0(𝐹𝑐𝑎𝑣𝑔)) + 𝑊1(𝑊0(𝐹𝑐𝑚𝑎𝑥)))    (6) 

Where 𝑐 represents the channel number, 𝑊0 and 𝑊1 

indicate a value of weight, and 𝑀𝐿𝑃 denotes the Multi-Layer 

Perceptron. SAM employs property relationships between 

spaces to establish a spatial attention map. It focuses on where 

significant data is generated in input.  

To achieve spatial attention maps, average and maximum 

pooling operations are utilized. Acquired values are 

integrated, and convolution like Ms(F)RH x W is performed. 

The spatial data is mathematically obtained in Equations (7) 

and (8). 

𝑀𝑠(𝐹) = (𝑓7𝑥7([𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹); 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹)]))   (7) 

𝑀𝑠(𝐹) = (𝑓7𝑥7([𝐹𝑠𝑎𝑣𝑔; 𝐹𝑠𝑚𝑎𝑥]))  (8) 

Where 𝑓7𝑥7 represents the 7𝑥7 convolution process, the 

attention mechanism enhances the model power 

representation, focusing on significant features and removing 

unwanted ones. The CBAM generates significant features 

with spatial and channel axes. Both max-pooled and average-

pooled features are employed simultaneously, enhancing 

model representation rather than utilizing each independently 

in the channel attention approach.  

Initially, the operation of average and max-pooling are 

applied with the channel axis and integrated into producing an 

effective feature descriptor. Then, a convolution is employed 

to provide a spatial attention map which encodes to suppress 

or emphasize. The sequential arrangement generates an 

improved outcome than the parallel arrangement. Figure 4 

represents a modified VGG16 architecture. 

After each initial layer of the convolution block, the GAP 

layer is added, which minimizes parameter numbers by 

minimizing network depth. During training, it helps to avoid 

underfitting and overfitting issues. The GAP layer is a 

downsampling approach, and it is primarily utilized to 

increase the network’s anti-distortion ability for images when 

retaining a sample’s primary features, which minimizes 

parameter number. GAP layers of every convolutional block 

are connected after the CBAM approach, which is utilized to 

refine the feature maps.  

Finally, the CBAM block’s output is concatenated and 

passed into the Feed Forward Neural Network (FFNN). 

CBAM allows for superior discrimination among healthy and 

diseased leaves, which improves classification accuracy. 

Using MCBAM -VGG16, the model demonstrates enhanced 

feature refinement and attention, capturing complex patterns 

and disease-related anomalies in apple plant leaf images. 

Figure 5 indicates a flow chart for the proposed approach. 

(a) Black rot (b) Apple Scab (c) Cedar Apple 

Rust 
(d) Healthy Leaf 
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Fig. 4 Modified VGG16 architecture 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Flowchart for the proposed approach 

4. Results 
The proposed MCBAM-VGG16 is simulated using 

MATLAB environment with 128 GB RAM, an i5 intel 

processor, and Windows 10 operating system. The 

performance measures like accuracy, f1-score, recall, 

precision, Intersection Over Union (IoU), Mean IoU (MIoU), 

and Dice Score Coefficient (DSC) are used to evaluate the 

proposed approach, which is formulated in Equations (9) to 

(15). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100          (9) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2×𝑇𝑃

2×𝑇𝑃+𝐹𝑃+𝐹𝑁
× 100              (10) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                          (11) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                     (12) 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
                         (13) 

𝑀𝐼𝑂𝑈 =
1

𝑘+1
∑

𝑇𝑃

𝐹𝑁+𝐹𝑃+𝑇𝑃

𝑘
𝑖=0             (14) 

𝐷𝑆𝐶 =
2×𝑇𝑃

(𝑇𝑃+𝐹𝑃)+(𝑇𝑃+𝐹𝑁)
                   (15) 

Where 𝐹𝑁 is the False Negative, 𝐹𝑃 is the False Positive, 

𝑇𝑃 is the True Positive, 𝑇𝑁 is the True Negative. 

5. Performance Analysis 
The proposed MCBAM-VGG16 presents the 

performance analysis in Figures 6 to 8. Table 1 represents a 

performance analysis of different segmentation methods. 

Figure 6 indicates a graphical representation of different 

segmentation methods using the plant village dataset. The 

existing methods like Segnet, U-Net, and V-Net are compared 

with the W-Net. When compared with these existing methods, 

the W-Net achieves an enhanced DSC of 0.9233, as it 

leverages both encoder-decoder paths to refine segmentation 
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by progressively capturing and reconstructing fine details. 

This method effectively reduces the loss of spatial 

information, leading to superior segmentation performance. 

Table 1. Performance analysis of different segmentation methods 

Metrics Segnet U-Net V-Net W-Net 

IoU 0.8057 0.8257 0.8634 0.8957 

MIoU 0.8226 0.8468 0.8712 0.9026 

DSC 0.8367 0.8536 0.8963 0.9233 

 
Fig. 6 Graphical representation of different segmentation methods 

Table 2 indicates a performance analysis of different 

classification methods. Figure 7 demonstrates a graphical 

representation of different classification methods using the 

plant village dataset. Existing methods like ResNet, VGG16, 

and CBAM-VGG16 are compared with those of MCBAM-

VGG16. The proposed approach achieves a better accuracy of 

0.99 compared to the existing techniques due to its enhanced 

attention mechanism, which selectively focuses on significant 

features while suppressing unnecessary information. 

Additionally, GAP minimizes the number of parameters that 

help to avoid underfitting and overfitting issues during 

training. 

Table 2. Performance analysis of different classification methods 

Metrics ResNet VGG16 
CBAM-

VGG16 

MCBAM

-VGG16 

Accuracy 0.935 0.958 0.973 0.998 

F1-score 0.913 0.925 0.958 0.996 

Recall 0.922 0.956 0.982 0.996 

Precision 0.916 0.936 0.958 0.997 

AUC 0.927 0.943 0.966 0.996 

 
Fig. 7 Graphical representation of different classification methods 

Table 3 displays the performance analysis of different 

classes. The four classes determined are Apple scab, Black rot, 

Healthy leaf, and Cedar apple rust. Figure 8 indicates a 

graphical representation of different classes. The black rot 

achieves 0.998 average accuracy because of its enhanced 

attention mechanism, which selectively focuses on significant 

features when suppressing unnecessary information. 

Table 3. Performance analysis of different classes 

Classes Accuracy 
F1-

score 
Recall Precision AUC 

Black Rot 0.999 0.997 0.997 0.998 0.997 

Apple Scab 0.998 0.997 0.997 0.997 0.997 

Cedar 

apple rust 
0.999 0.994 0.994 0.996 0.994 

Healthy 0.998 0.996 0.996 0.997 0.996 

Average 0.998 0.996 0.996 0.997 0.996 

Fig. 8 Graphical representation of different classes 
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Table 4 denotes a performance analysis of K-fold 

validation. Figure 9 indicates a graphical representation of the 

K-fold analysis. It exhibits a greater performance of 0.998 

accuracy when K=5 fold cross-validation because of its 

balanced trade-off between variance and bias. The data is split 

into smaller pieces with more representation subsets for 

training and validation, with 5 folds. This makes effective 

performance in apple plant leaf disease by reducing 

variability. 

Table 4. Performance analysis of K-fold validation 

K 

Fold 
Accuracy 

F1-

score 
Recall Precision AUC 

3.00 0.925 0.914 0.897 0.906 0.931 

5.00 0.998 0.996 0.996 0.997 0.996 

7.00 0.948 0.936 0.947 0.968 0.926 

9.00 0.907 0.897 0.861 0.847 0.893 

 
Fig. 9 Graphical representation of K-fold analysis 

Figure 10 indicates a training loss vs validation loss over 

10 epochs for classifying apple plant leaf disease. The rapid 

decrease in training loss in the initial few epochs represents 

that the proposed MCBAM-VGG16 approach quickly learns 

the patterns in training data. Also, the validation loss is 

minimized, showing that the model is enhanced to generalize 

unseen data. The validation and training loss convergence near 

the end of the epochs represents that the proposed approach 

achieved better performance on both validation and training 

data. 

Figure 11 represents the proposed approach's training and 

validation accuracy over 10 epochs. Initially, the training 

accuracy rapidly increases by the 2nd epoch, whereas 

validation accuracy rises over 0.998. Both accuracies remain 

stable and high, representing that the model is efficiently 

learning to categorize diseases in apple plant leaves and 

perform effectively in validation data. 

 
Fig. 10 Training loss vs validation loss for MCBAM-VGG16 

 
Fig. 11 Training accuracy vs validation accuracy for MCBAM-VGG16 

 

Figure 12 demonstrates the ROC curve for classifying 

apple leaf disease using the proposed approach. The curve 

indicates True Positive Rate (TPR) vs False Positive Rate 

(FPR) at different threshold settings. The area under ROC 

represents 0.996, representing better model performance and 

is greatly efficient at classifying healthy and diseased apple 

plant leaves. 

 
Fig. 12 ROC curve for proposed MCBAM-VGG16 
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Figures 13 and 15 present the training and validation loss 

for existing CBAM-VGG and VGG. Figures 14 and 16 

indicate training and validation accuracy for existing CBAM-

VGG and VGG. When compared to existing approaches, the 

proposed approach achieves a better performance. 

 
Fig. 13 Training loss vs validation loss for existing CBAM-VGG 

 

 
Fig. 14 Training accuracy vs validation accuracy for existing CBAM-

VGG 

 
Fig. 15 Training loss vs validation loss for existing VGG 

 
Fig. 16 Training accuracy vs validation accuracy for existing VGG 

Figure 17 illustrates a confusion matrix for four classes 

for the proposed approach. The predicted labels are 

represented on the x-axis, and true labels are indicated on the 

y-axis. The diagonal elements indicate correct predictions for 

each class with values of 55 for cedar apple rust, 126 for black 

rot, 32 for healthy leaf, and 124 for apple scab. The proposed 

MCBAM-VGG16 effectively performs with high accuracy for 

every class, representing minimal off-diagonal values. 

 
Fig. 17 Confusion matric for four classes  

6. Comparative Analysis 
Table 5 displays a comparative analysis of existing 

techniques using the plant village dataset. The existing 

techniques like Conv-3 DCNN [16], improved DCNN [17], 

RANSAC [18], and Deep feature +LTP [19] are compared 

with the proposed approach. The accuracy value of the 

existing method [19], 98.80%, is converted into decimal point 

0.988 according to the proposed approach performance. In 

relation to these existing techniques, the proposed approach 

attains 0.998 accuracy as it optimizes the network’s ability to 

capture complex patterns, improving overall performance and 

generalization. 
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Table 5. Comparative analysis of existing techniques using plant village dataset  

Methods Accuracy F1-score Recall Precision AUC 

Conv-3 DCNN [16] 0.98 0.97 0.97 0.98 0.99 

Improved DCNN [17] 0.993 0.99 0.993 0.99 N/A 

RANSAC [18] 0.932 N/A N/A N/A 0.903 

Deep Feature +LBP [19] 0.988 N/A N/A N/A N/A 

MCBAM-VGG16 0.998 0.996 0.996 0.997 0.996 

7. Discussion 
The advantages of the proposed MCBAM-VGG16 and 

the limitations of existing techniques are discussed in this 

section. The limitation of existing techniques like Conv-3 

DCNN [16] is that it does not capture complex patterns due to 

shallow architecture, which minimizes classification 

accuracy. On the other hand, the Improved DCNN [17] has 

difficulty generalizing across various environmental 

conditions and variances in leaf images, which affect 

classification performance due to inconsistent leaf 

appearance. RANSAC [18] struggles with highly complex or 

overlapping leaf disease patterns as it depends on fitting 

models to a subset of data, which does not accurately indicate 

the entirety of complex patterns, resulting in misclassification.  

Lightweight DCNNs [19] have a limited capacity to 

capture complex features because of simplified architectures, 

leading to decreased classification accuracy. CapsNet and 

ResNet [20] struggled with constrained training data due to 

their deep architectures, which resulted in overfitting or 

generalization issues with insufficient data.  

The proposed MCBAM-VGG16 overcomes the 

limitations of the existing methods by adding GAP and 

CBAM after the first convolutional layer, which minimizes 

the number of parameters and enables it to be computationally 

efficient. CBAM enhances feature representation by focusing 

on significant features through the channel and spatial 

attention mechanisms. These modifications assist in balancing 

the model’s complexity, reducing overfitting and underfitting 

issues during training, consequently giving rise to 

commendable generalization ability in apple plant leaf 

disease. In contrast, MCBAM-VGG16 enables more accurate 

attention to appropriate features by adding GAP and CBAM, 

which improves the model’s ability to classify subtle disease 

symptoms in plant leaves compared to existing techniques like 

[16-19]. This enhances robustness and classification accuracy 

in classifying different plant leaf diseases. 

8. Conclusion 
The MCBAM-VGG16 is proposed to classify the apple 

plant leaf disease accurately. In VGG16, the GAP layer and 

CBAM are added after the first convolutional layer, which 

minimizes the number of parameters and helps avoid 

underfitting and overfitting issues during training. W-Net 

segments the augmented images efficiently by applying two 

interconnected U-Net. The initial U-Net provides a coarse 

segmentation, which the second U-Net then refines for higher 

accuracy.  

This approach enhances the segmentation quality by 

iteratively refining the results in apple leaf disease. By 

performing this process, the MCBAM-VGG16 accomplishes 

better classification accuracy in apple plant leaf disease. The 

MCBAM-VGG16 accomplishes a commendable accuracy of 

0.998, as opposed to the existing techniques like Conv-3 

DCNN, improved DCNN, and RANSAC. In the future, a 

different fruit leaf disease classification will be considered to 

improve disease diagnosis's effectiveness across various 

crops. 
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