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Abstract - Stroke is the traumatic condition of nerve cells that block down the physical activity of the victims within a short span 

of time. It is the leading reason for disability and mortality among the older population. A timely diagnosis is a crucial step in 

case of stroke treatment. Contemporary diagnostic techniques, including Magnetic Resonance Imaging (MRI) and Computer-

Aided Tomography (CT), have wide applications in detecting stroke lesions. This paper introduces a novel approach for 

addressing the critical task of accurately segmenting stroke lesions from medical images, which is vital for precise diagnosis 

and effective treatment planning. The proposed approach integrates DenseNet-201 and Capsule Network architectures to 

develop a hybrid deep learning model. DenseNet-201 serves as a feature extractor, facilitating enhanced feature propagation 

and gradient flow throughout the network. Meanwhile, Capsule Network introduces capsules to handle hierarchical 

relationships, improving the model’s ability to capture intricate spatial hierarchies in the data. The dataset used for training 

and evaluation consists of brain CT images sourced from the Kaggle Repository, including both normal and stroke brain CT 

images. Through preprocessing and augmentation techniques, the dataset’s quality and diversity are enhanced to ensure 

effective model training. Experiment results show how effective the suggested hybrid model is, achieving an accuracy of 93.45%, 

precision of 92.18%, recall of 92.56%, and F1-Score 92.36%. When compared to other approaches currently in use, the 

suggested method performs better in terms of robustness and segmentation accuracy. Overall, this hybrid deep learning model 

offers a promising solution to the challenges of stroke lesion detection and classification, with implications for improving patient 

care and treatment outcomes in clinical settings.  

Keywords - Stroke lesions, CT imaging, Deep Learning models, Detection, Classification, Capsule network. 

1. Introduction 
The nervous system’s central processing unit, the human 

brain, controls a number of body processes. It comprises four 

main functional regions known as lobes: frontal, temporal, 

parietal, and occipital, each responsible for specific functions 

such as memory, sensory perception, emotions, speech, 

coordination, intelligence, muscular control, and 

consciousness. Brain stroke, a potentially life-threatening 

medical condition, occurs due to traumatic brain injury or 

blockage of blood vessels, leading to a lack of oxygen and 

subsequent cell death. Strokes disrupt blood flow to affected 

brain regions, resulting in loss of motor control, memory, and 

other functions. This condition has profound social, physical, 

and emotional implications for patients and their family 

members. Symptoms of stroke may manifest after its onset, 

including epileptic seizures, which can render individuals 

bedridden or paralyzed [1]. Transient Ischemic Attack (TIA) 

stroke is a temporary condition lasting less than one or two 

hours. Timely intervention is crucial in stroke treatment to 

prevent lasting tissue damage or death, with medical 

practitioners facing pressure to act swiftly. Effective stroke 

prevention programs targeting hypertension, hyperlipidemia, 

and tobacco use can help reduce mortality rates.  

The accumulation of fatty deposits in the arteries 

providing blood to the brain is the main cause of strokes, as it 

reduces oxygen and blood flow to the brain. Additionally, 

blood clots originating elsewhere in the body can travel 

through the bloodstream, blocking crucial arteries and further 

denying nutrition and oxygen to the brain [2]. Figure 1 

illustrates the brain stroke.Stroke, referred to as a cerebral 

vascular injury, is one of the main reasons of death worldwide, 

affecting over 20 million individuals, of whom 5 million will 

eventually pass away. Based on the degree of tissue damage, 

stroke cases are divided into two classes: reversible stroke and 

irreversible stroke. The CT and MRI imaging modalities are 

used to determine the tissue damage in the brain. In a healthy 

brain, blood passes through the thin walls of the arteries to 

supply neurons with oxygen and nutrients. Normal brain 

function is significantly impacted by a stroke [3]. 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1 Brain stroke 

Haemorrhagic and ischemic strokes are the two forms that 

exist, as shown in Figure 2. Ischemic stroke is the most 

prevalent kind, resulting from brain cell death due to oxygen 

and nutrient deprivation, primarily caused by artery blockage. 

It constitutes 87% of all strokes and leads to brain tissue 

malfunction. Haemorrhagic stroke, less common but more 

severe, occurs when bleeding into the brain from a ruptured 

blood vessel disrupts neuronal function. About 12% of strokes 

are haemorrhagic, with high blood pressure often being the 

underlying cause. Intracerebral haemorrhage involves blood 

flow into brain tissue, while subarachnoid haemorrhage 

involves bleeding into the brain’s surrounding space. Both 

types of strokes pose significant health risks and require 

prompt medical attention [4]. 

 
Fig. 2 Ischemic stroke and haemorrhagic stroke 

Segmentation plays a crucial role in stroke diagnosis by 

making it easier to recognize and define the affected areas. 

MRI and CT are two often used modalities in the field of 

stroke segmentation. Both CT and MRI offer benefits and 

drawbacks, and the choice between the two relies on a variety 

of factors, including the state of the patient, accessibility, and 

certain clinical standards for stroke segmentation study. 

Artificial Intelligence (AI) has given medical imaging much 

attention, particularly with the rapid advancement of Deep 

Learning (DL) technology [5]. AI has gained prominence in 

the processing of medical imaging and has become a focus 

area.  

The suggested work’s notable contribution includes: 

• A DL based intelligent system for the identification and 

categorization of stroke lesions. 

• Improving the system’s performance evaluation 

parameters. 

• Evaluating the suggested system’s performance in 

comparison to the current approaches.  

The study is organized into several sections to ensure 

clarity and coherence when presenting the research findings. 

In Section 2, a thorough literature review is provided, offering 

insights into existing studies and methodologies related to the 

topic under investigation.  

Section 3 elaborates on the proposed methodology, 

including experimental settings and procedural details to 

facilitate reproducibility and understanding. The results 

obtained through the implementation of the proposed model 

are discussed and compared with the present approaches in 

Section 4, enabling a comprehensive analysis of the model’s 

efficiency. Finally, Section 5 serves as the conclusion of the 

study. 

2. Related Works 
Clerigues et al. [6] introduced a resilient DL approach for 

separating stroke lesions into acute and sub-acute categories 

using multimodal MRI data. Utilizing a UNet-based CNN 

architecture, the approach tackled class imbalance issues, 

incorporated a balanced sampling strategy for training 

patches, and implemented a dynamically weighted loss 

function. By leveraging pre-processing techniques based on 

brain hemisphere symmetry, the method enhanced feature 

extraction.  
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Evaluation of the 2015 ISLES challenge demonstrated 

superior performance, ranking first in online subtasks with 

DSC of 0.59 ± 0.31 and 0.84 ± 0.10 for SISS and SPES, 

respectively. The method exhibited generalizability to diverse 

tasks and imaging modalities, emphasizing broader clinical 

applicability.  

Kumar et al. [7] introduced the Classifier-Segmentor 

Network (CSNet) to automate acute stroke lesion 

segmentation. When self-similar fractal networks were 

combined with U-Net architecture, CSNet addressed 

challenges like diverse lesion appearance, limited datasets, 

and the need for multiple MRI modalities. The hybrid training 

strategy enhanced parameter sharing and efficiency. The 

cascaded architecture refined accuracy through spatial and 

semantic information integration and a voting mechanism 

improved overall segmentation accuracy. Evaluation in the 

MICCAI (ISLES) challenge demonstrated CSNet’s 

superiority in Accuracy, Dice-Coefficient, Recall, and 

Precision.  

Nazari et al. [8] introduced a completely automated 

system designed for the localization and Acute Ischemic 

Stroke (AIS) segmentation. The technique compared images 

of stroke patients with those of healthy controls based on the 

Crawford-Howell t-test. Post-lesion segmentation, a classifier 

was developed to categorize the images into groups of non-

strokes and strokes. The results demonstrated the system’s 

significant potential to enhance the efficiency and accuracy in 

lesion segmentation of AIS in daily clinical practice. Notably, 

its seamless integration into the diagnostic workflow and 

minimal computational resource requirements further 

underscored its practicality. 

Tomita et al. [9] employed deep residual neural networks 

for automatic segmentation of post-stroke lesions from T1-

weighted MRI scans. Targeting accurate volumetric 

segmentation in chronic stroke patients, the analysis used 3D 

residual learning-based deep convolutional segmentation 

models. Analyzing 239 T1-weighted MRI scans, the model 

was evaluated against manual lesion tracing, achieving 

notable metrics such as DSC of 0.64 and median of 0.78, along 

with 20.4mm of Harsdorf Distance (HD) and 3.6 mm of 

average symmetric surface distance. This approach 

demonstrated segmentation accuracy and robustness, 

contributing to advancements in segmenting chronic ischemic 

stroke lesions in 3D. 

Cui et al. [10] introduced DeepSym-3D-CNN, a 

symmetric 3D CNN for automated diagnosis of AIS utilizing 

images of DWI. Using images from 190 subjects, separating 

the right and left hemispheres from 3D DWI brain scans, the 

model was achieved, employing L2 normalization and feature 

subtraction. Comparative models were also constructed. The 

broad clinical applicability is suggested by the method’s 

automatic identification of AIS from images of DWI and its 

capacity for extension to illnesses showing asymmetric 

lesions. 

Wei et al. [11] employed DL models for AIS lesion 

segmentation, classification, and mapping using MRI images. 

They introduced a Semantic Segmentation Guided Detector 

Network, consisting of dual models for DWI segmentation 

and binary classification of lesion size and circulatory 

territory. The updated SGD-Net Plus recognized and 

registered AIS lesions in T1-weighted images, brain atlases, 

and DWI images automatically. The study emphasized the 

value of subject knowledge-oriented design in applications of 

AI, improving the usage of MRI in patient care and improving 

learning of patients’ illnesses.  

To predict the ultimate size and location of infarcts in 

acute stroke patients, Nazari et al. [12] developed a DCNN 

that was only trained with DWI. This approach eliminated the 

requirement for perfusion-weighted imaging. The Attention-

Gated (AG) DCNN managed to compute volumes of infarcts 

3–7 days following a stroke with a degree of accuracy that was 

comparable to the frameworks considering both PWI and DWI 

by utilizing DWI and apparent diffusion coefficient maps. 

This implied that a DWI-trained DCNN could reduce 

complexity and cost in acute stroke diagnostic procedures, 

eliminate the requirement for PWI, and streamline treatment 

decisions with shorter stroke imaging protocols. 

Praveen et al. [13] proposed an autonomous advanced 

learning method for segmenting ischemic stroke lesions with 

a framework of layered sparse autoencoders. Unlike current 

techniques relying on manually created features, this approach 

utilized unsupervised learning. Sparse Auto Encoder (SAE) 

layers built a deep architecture, and a Support Vector Machine 

(SVM) classified patches as normal or lesions. Tested on the 

ISLES 2015 dataset, the method achieved high precision 

(0.908), average dice’s coefficient (0.903), recall (0.904), and 

accuracy (0.904). Compared to advanced techniques, the 

proposed strategy performed significantly better in precision, 

dice coefficient, and recall, with improvements of 25.71%, 

36.67%, and 16.96%, respectively. The SSAE framework’s 

ability to learn unsupervised features allowed for effective 

training on large datasets, surpassing hand-crafted features. 

Zhang et al. [14] proposed an automatic technique for 

extracting AIS from DWIs using deep 3D CNNs. Their 

approach utilized 3D contextual data, allowing for efficient 

detection of discernible characteristics. To address the class 

imbalance, they employed a Dice objective function during 

model training. Tested on a dataset of 242 participants, their 

model outperformed other CNN techniques significantly, 

achieving high precision (90.67%), dice similarity coefficient 

(79.13%), and F1 lesion-wise score (89.25%). Generalization 

tests on the ISLES2015-SSIS dataset also yielded extremely 

competitive results, showcasing the method’s potential for 

quick and accurate application in clinical practices. 
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Zhang et al. [15] presented a framework for AIS lesion 

segmentation in DW MRI. Their Detection and Segmentation 

Network (DSN) used a triple-branch design to extract separate 

plane features in order to address data imbalances. With a 

significant 62.2% dice coefficient and 71.7% sensitivity, the 

Multi-Plane Fusion Network (MPFN) improved segmentation 

accuracy and showed supremacy on the ISLES2015 SSIS 

DWI sequence dataset.  

Clerigues et al. [16] addressed challenges in detecting 

ischemic stroke in acute CT images by introducing an 

automated DL solution for segmenting lesions. Their 

approach included improvements like symmetric modality 

enhancement and filtering of uncertainty, as well as a more 

regularized network training strategy. It was tested on the 

ISLES 2018 dataset. In blind testing, the suggested approach 

outperformed other cutting-edge techniques, achieving a Dice 

similarity coefficient of 49%. This tool had clinical potential 

for estimating lesion core size and location, eliminating the 

need for time-consuming magnetic resonance imaging.  

Soltanpour et al. [17] introduced a prediction algorithm 

for the efficient identification of Computed Tomography 

Perfusion (CTP) scans exhibiting ischemic stroke lesions. The 

algorithm utilized a sophisticated model with four parallel 2D 

U-Nets, each dedicated to extracting information from 

different CTP maps. This multichannel approach captured 

diverse lesion characteristics more accurately than simple 

predefined features. The algorithm combined probability 

maps from parallel U-Nets, utilizing pixel-level and 

neighbourhood information. Analysis using the ISLES 2018 

dataset revealed improved results with a DSC of 71.3%, 

Recall of 73.6%, and Volume Similarity (VS) of 82.1%.  

Shi and Liu [18] enhanced ischemic stroke lesion 

segmentation by modifying the U-Net architecture, addressing 

the challenges of training data scarcity and overfitting. Using 

the ISLES 2018 dataset, their modified U-Net incorporated 

shortcut connections as residual blocks and employed element 

wise-sum and concatenation techniques to mitigate 

overfitting. Evaluation based on the dice coefficient and 

Jaccard index showed a significant improvement over the 

standard U-Net, achieving a dice coefficient of approximately 

0.77 for ischemic stroke segmentation.  

Omarov et al. [19] addressed challenges in ischemic 

stroke segmentation using machine learning, proposing a 

modified 3D UNet architecture for improved performance on 

3D CT images. Leveraging the 2018 ISLES dataset, their 

model achieved a Dice/F1 score similarity coefficient of 58%, 

surpassing the standard 3D UNet. Efficient averaging, data 

augmentation, and regularization techniques prevented 

overfitting in the limited dataset. The application of the loss 

function for intersection over union added value to zone 

recognition shapes. Object extraction was emphasized for 

increased segmentation accuracy. 

Brain stroke detection and classification are critical due 

to the time-sensitive nature of treatment, where delays can 

severely impact efficacy. Diagnostic delays stem from various 

factors, including the skill of medical personnel, accessibility 

and quality of imaging technologies, and the variability in 

symptoms among patients. Stroke symptoms can vary widely 

depending on location and severity, complicating accurate 

diagnosis and classification. Limited accessibility to imaging 

tools like CT and MRI scans, particularly in resource-

constrained settings, further exacerbates diagnostic 

challenges. Additionally, these tests lack sensitivity to detect 

milder strokes, leading to misdiagnosis or delayed treatment. 

This is especially problematic for younger individual’s typical 

stroke symptoms. Furthermore, selecting the appropriate 

kernel function is crucial for SVM performance, as choosing 

incorrectly can lead to overfitting or subpar outcomes. Space 

complexity also poses challenges, particularly in 

distinguishing between mine stroke and actual stroke. 

 

 

 

 

 

 

 

 

 

Fig. 3 Schematic block diagram of the proposed methodology 
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3. Materials and Methods  
The detection and classification of stroke lesions is 

crucial. So, in this research, a deep learning based intelligent 

framework is developed for stroke lesion detection. Figure 3 

shows the block diagram representation of the proposed 

methodology. 

3.1. Brain CT Image Dataset 

The brain CT images have been collected from the 

Kaggle, https://www.kaggle.com/code/rounakislamraisa/brai 

n-stroke-prediction/input. The dataset consists of both normal 

and stroke brain CT images, as shown in Figure 4. 

 
Fig. 4 Sample images in the dataset 

3.2. Data Pre-processing and Augmentation 

In the proposed study, pre-processing involves several 

steps aimed at standardizing and optimizing the input data to 

ensure effective model training and performance. Initially, 

pre-processing likely includes image normalization to correct 

for variations in brightness, contrast, and resolution among the 

brain CT images collected from different sources. This 

normalization process ensures consistency in image 

characteristics, thereby facilitating more accurate feature 

extraction during model training. Additionally, techniques 

like image resizing are performed to achieve uniform 

dimensions across the dataset, which streamlines 

computational processes and improves model efficiency. 

Furthermore, data augmentation techniques are employed 

to augment the dataset’s diversity and robustness, thereby 

enhancing the model’s ability to generalize to unseen data and 

variations in input images. Data augmentation encompasses a 

variety of transformations applied to the original images, 

including rotation, translation, scaling, flipping, and adding 

noise. These transformations generate new synthetic samples 

from existing data, effectively increasing the dataset size and 

introducing variability in image appearance. For brain stroke 

detection, specific augmentation strategies are tailored to 

mimic potential variations in stroke lesions, such as altering 

lesion size, shape, and location, as well as simulating different 

imaging conditions and artefacts commonly encountered in 

clinical settings. By augmenting the dataset with diverse 

samples representing various stroke manifestations, the model 

becomes more robust and adaptable, ultimately improving its 

performance in accurately detecting stroke lesions in unseen 

medical images. Together, these pre-processing and 

augmentation techniques contribute to the development of a 

more effective and reliable deep learning model for accurately 

detecting and classifying stroke lesions in brain CT images, 

thus advancing diagnostic capabilities. 

3.3. Proposed Model Architecture 

3.3.1. DenseNet 201 

DenseNet-201 is an extension of the DenseNet 

architecture, which stands for Densely Connected 

Convolutional Networks, which is a deep learning 

architecture. It differs from traditional Convolutional Neural 

Networks (CNNs) by establishing dense connections between 

layers, enabling enhanced feature propagation and gradient 

flow throughout the network. DenseNet is particularly 

efficient in terms of parameter usage and alleviates the 

vanishing gradient problem. Specifically, DenseNet-201 

comprises 201 layers, which include activation, batch 

normalization, pooling, and convolutional layers, as shown in 

Figure 5.  

The input layer receives the image data input, which is 

usually represented by pixel values. Multiple dense blocks, 

each with numerous convolutional layers, constitute 

DenseNet-201. Every layer in a dense block gets input from 

every layer that came before it, and every layer that comes 

after it gets its feature maps as input. By promoting feature 

reuse and facilitating gradient flow, this dense connectivity 

structure enhances information flow across the network. 

Transition layers use pooling and convolutional processes to 

lower the dimensionality of feature maps. A global average 

pooling layer is deployed at the network’s end to minimize the 

feature maps’ spatial dimensions to a vector of features [20]. 

The input feature maps of layer l are denoted byx_l. In a 

DenseNet, the output of each layer is concatenated with the 

feature maps of all subsequent layers, as given in Equation (1). 

x_l=H_l ([x_0,x_1,....x_(l-1) ])        (1) 

Where H_l represents the non-linear transformation 

applied by the l-th layer, and [.] denotes concatenation. By 

enabling direct access to all previous layers’ feature maps, this 

concatenation technique encourages feature reuse and speeds 

up the learning process for each layer. The DenseNet 

architecture is typically organized into dense blocks and 

transition layers. The architecture comprises dense blocks, 

transition layers, global average pooling, and a fully connected 

layer for classification. The layered architecture of DenseNet 

201 is shown in Figure 6.
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Fig. 5 Basic DenseNet architecture 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Layered DenseNet 201 architecture 
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A dense block consists of multiple convolutional layers, 

each with a fixed number of output feature maps. Within a 

dense block, the output of each layer is concatenated with the 

feature maps of all preceding layers. The number of 

convolutional layers in a dense block is L, and the growth rate, 

which determines the number of feature maps produced by 

each convolutional layer within the dense block, as 𝑘. The 

output of the 𝑙𝑡ℎlayer in a dense block is calculated as 

Equation (2). 

𝑥𝑙 = 𝐻𝑙([𝑥0, 𝑥1, . . . , 𝑥𝑙−1]) = 𝐻𝑙([𝑥𝑙−1, 𝐹𝑙(𝑥𝑙−1)])  (2) 

Where, Fl represents the composite function implemented 

by the 𝑙𝑡ℎ convolutional layer, and 𝐹𝑙(𝑥𝑙−1) produces k feature 

maps. Thus, the output dimension of each layer within the 

dense block is 𝑘 × 𝑙, where l represents the layer index within 

the dense block. Transition layers, composed of batch 

normalization, 1 × 1 convolutional, and pooling layers, 

reduce spatial dimensions and regulate feature map numbers 

between dense blocks in DenseNet.  

3.3.2. Capsule Network 

Inspired by the organizing principles of organic neural 

structures, a capsule neural network, or CapsNet, is a type of 

Artificial Neural Network (ANN) used in machine learning 

that mimics hierarchical relationships. CapsNets aim to 

imitate the hierarchical structure of biological brain circuits.  

CapsNets introduce capsules as fundamental components 

known as digit capsules, each representing a different class to 

address the limitations of conventional neural networks. 

Unlike standard neurons, capsules are adept at handling 

hierarchical structures and pose variations by encapsulating 

activation information and spatial relationships.  

Each capsule outputs pose parameters alongside 

activation, representing specific entities or object parts. 

Through dynamic routing, the architecture of the capsule 

network consists of various elements, such as the encoder and 

decoder network. The encoder network of the capsule is 

shown in Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7 Encoder network of CapsNet 

CapsNets iteratively refine coupling coefficients based on 

pose parameter agreement, enabling better recognition of 

intricate data patterns and capturing complex spatial 

hierarchies, ultimately enhancing generalization capabilities. 

Image inputs are converted into vectors by the CapsNet 

architecture, which contains parameterization parameters that 

are essential for producing the image. An encoder is 

employed, which consists of a convolutional layer and further 

layers such as PrimaryCaps and DigitCaps.  

The convolutional layer extracts low-level features from 

the input images to start the process. In order to capture 

important patterns, the PrimaryCaps layer uses clustering of 

neurons called capsules. Each capsule reflects an instantiation 

characteristic, such as posture. The DigitCaps layer is the 

foundation of CapsNets. A capsule represents a particular 

entity type, such as a class of digits, and encodes the chance 

that the entity exists, as well as its instantiation parameters. In 

the end, a reconstruction loss is used to encapsulate the 

instantiation parameters [21]. This involves computing the 

loss of each training example for each output class by 

Equation (3). 

𝐿𝑘 = 𝑇𝑘𝑚𝑎𝑥(0, 𝑚+ − ‖𝑣𝑘‖)2 + 𝜆(1 − 𝑇𝑘)𝑚𝑎𝑥(0, ‖𝑣𝑘‖ −
𝑚−)2                                                                  (3) 

Where margin loss for the 𝑘𝑡ℎ digit capsule is denoted by 

𝐿𝑘, indicator 𝑇𝑘 is binary, the 𝑘𝑡ℎdigit capsule’s activity vector 

is denoted as 𝑣𝑘 .The activity vector’s length is denoted by 

‖𝑣𝑘‖. The positive and negative margin represents as 𝑚+ 

and 𝑚−. A down-weighting factor for the loss resulting from 

erroneous digit capsules is represented by 𝜆. Capsule networks 

utilize dynamic routing by agreement to update the coupling 

coefficients between lower-level and higher-level capsules. 

The routing mechanism aims to increase the agreement 

between predictions of lower-level capsules and the input 
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vectors of higher-level capsules. The coupling coefficients are 

iteratively updated by Equation (4). 

𝑐𝑖𝑗 =
𝑒𝑥𝑝(𝑏𝑖𝑗)

∑ 𝑒𝑥𝑝(𝑏𝑖𝑘)𝑘
                                 (4) 

Where 𝑏𝑖𝑗  represents the log prior probabilities of the 

coupling coefficients. In Capsule Networks, the Decoder 

Network is crucial for reconstructing input images from the 

data stored in the DigitCapsules. Utilizing the instantiation 

properties of selected DigitCapsules, such as pose and 

viewpoint, the decoder rebuilds the input data following the 

dynamic routing process. Fully-connected layers within the 

decoder facilitate this reconstruction, converting instantiation 

parameters back to the original input space to ensure accurate 

image recovery. Typically, reconstruction loss is computed 

using Euclidean distance between the reconstructed image and 

the original input to promote faithful image reconstruction. 

This reconstruction process not only enhances classification 

accuracy but also contributes to meaningful image 

reconstruction, aligning with the overall training objective of 

Capsule Networks. The decoder network is shown in Figure 

8. 

 

 

 

 

 

 

 

 

 

Fig. 8 Decoder network of CapsNet 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 Proposed network architecture 
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filters, the DenseNet model’s output is then subjected to a 

ReLU activation function.  

When input to the Capsule Network, this extra 

convolutional layer aids in additional feature extraction and 

refining. The prior layer output has spatial dimensions of 

7 × 7 with 64 feature maps, as indicated by the CapsNet 

architecture’s definition of an input form of 7 × 7 feature 

maps with 64 channels. The 32 capsules in the CapsNet are set 

up with an 8-dimensionality each.  

The objective of CapsNet is to ascertain the spatial 

arrangements and hierarchical relationships among the items 

in the input images. The CapsNet output is then transmitted 

via a dense layer, which consists of a single neuron and a 

sigmoid activation function. This layer maps the outputs of the 

capsules to a binary classification decision, generating a 

probability that indicates the chance that the input image 

belongs to a particular class. The proposed model architecture 

is given in Figure 9. 

3.4. Hardware and Software Setup 

Thecomputational setup for this research utilized a 

machine with robust specifications featuring an Intel Core i7 

processor. 32GB of RAM, and the formidable NVIDIA 

GeForce GTX 1080Ti GPU. Model implementation was 

seamlessly carried out through the Keras library, functioning 

as a prototype built upon the Tensorflow framework and 

executed using the versatile Python language. Keras, known 

for its user-friendly interface and powerful capabilities, 

proved instrumental in crafting intricate Neural Network 

architectures.  

This framework ensures efficient utilization of computing 

resources, seamlessly accommodating CPU, GPU, and TPU 

environments. To leverage extensive computational 

capabilities and streamline model training, the deployment 

was orchestrated on Google Colab. This cloud-based Python 

notebook environment not only provides complimentary 

access to robust computational resources but also facilitates 

collaborative development, making it an optimal choice for 

training models. 

    Hyperparameters are essential configuration settings 

that define the behaviour and characteristics of a machine 

learning framework throughout the training process. Unlike 

the parameters of the model, which are learned from the data 

itself, hyperparameters are set by the user before training 

begins. The neural network model uses the Adam optimizer. 

The binary cross-entropy loss function guides the training 

process. During training, the model processes input data in 

batches of 32 samples per iteration.  

The training is carried out over 20 epochs, signifying the 

number of times the model processes the entire training 

dataset. These hyperparameter choices, such as the optimizer, 

loss function, batch size, and number of epochs, collectively 

define the configuration for training the neural network model, 

aiming to optimize its performance on the proposed stroke 

detection. The model configuration of the suggested approach 

is tabulated in Table 1. 

Table 1. Model configurations 

Hyperparameter Values 

Optimizer Adam 

Loss Function Binary Cross Entropy 

No. of Epochs 20 

Batch Size 32 

Activation Function ReLu, Sigmoid 

 

4. Results and Discussion 
The accuracy and loss plots play a vital role in 

understanding the performance and learning patterns of the 

proposed model. The accuracy plot provides a visual 

representation of how accurately the model predicts the labels 

of the data during training iterations on both the training and 

validation datasets.  

It tracks the alignment between the model’s predictions 

and the actual labels, serving as a key indicator of the model’s 

performance throughout the training process. 

 
Fig. 10 Accuracy plot 

The accuracy plot illustrates the model’s effectiveness in 

distinguishing between CT images with and without signs of 

stroke over the course of training. Ideally, in the initial epochs, 

both training and validation accuracies increase concurrently, 

indicating the model’s capability to generalize its knowledge 

beyond the training dataset.  

This trend, depicted in Figure 10, suggests that the model 

is learning underlying patterns rather than simply memorizing 

the examples provided in the training set. 
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Fig. 11 Loss plot 

 
Fig. 12 Confusion matrix 

The disparity between the predicted results and the true 

labels of the dataset is quantified numerically as the model’s 

loss, which is visualized in the loss plot. Throughout the 

training process, the goal is for the loss to diminish 

progressively, indicating that the model is refining its 

predictions and minimizing errors over successive iterations, 

as illustrated in Figure 11. 

A valuable method for evaluating the effectiveness of the 

proposed model in detecting stroke from CT images is through 

the utilization of a confusion matrix. This matrix provides a 

structured overview of the model’s performance by comparing 

its predictions with the actual labels across different classes.  

Essentially, it organizes the outcomes into a table format, 

where the rows represent the true labels and the columns 

represent the predicted labels, as shown in Figure 12. Each cell 

within the matrix contains the count of instances where the 

model’s predictions align with the true labels or diverge from 

them. The confusion matrix is divided into four quadrants, 

with the diagonal components indicating accurate predictions 

and the off-diagonal elements indicating instances of 

misclassification. Through this visual representation, the 

effectiveness of the proposed model in accurately identifying 

stroke cases can be thoroughly assessed. 

Performance metrics derived from the confusion matrix 

offer a thorough evaluation of the proposed model’s efficacy 

in detecting stroke. In order to thoroughly evaluate the 

efficacy and operational efficiency of the proposed model, the 

F1-score, accuracy, precision, and recall are the four primary 

metrics utilized.  

These measures, which are based on the concepts of False 

Positive (FP), False Negative (FN), True Negative (TN), and 

True Positive (TP), are essential for assessing the model’s 

performance. These performance parameters have 

mathematical formulations that are shown in Equations (5) - 

(8). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                 (5) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                           (6) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                (7) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                  (8) 

 
Fig. 13 Performance metrics 

Figure 13 highlights the model’s impressive performance, 

with an overall accuracy of 93.45%, indicating its ability to 

classify the majority of cases within the dataset effectively. 

Moreover, the precision and recall scores of 92.18% and 

92.56%, respectively, underscore the model’s proficiency in 

identifying positive cases while minimizing false positives.  

Accuracy, 

93.45%

Precision, 

92.18%

Recall, 

92.56% F1-score, 

92.36%

91.50%

92.00%

92.50%

93.00%

93.50%

94.00%

Accuracy Precision Recall F1-score

Performance Metrics
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Fig. 14 ROC curve of the proposed method 

These metrics highlight the model’s reliability in 

accurately distinguishing between stroke and non-stroke 

cases. Furthermore, the F1-score, which combines recall and 

precision, reinforces the model’s robustness with a value of 

92.36%. Overall, these results affirm the efficacy of the model 

in accurately detecting and categorizing stroke lesions in brain 

CT images, showcasing its potential for enhancing diagnostic 

accuracy and patient care in clinical settings. 

The Receiver Operating Characteristic (ROC) curve is a 

widely used graphical tool for evaluating the performance of 

classification models in binary classification tasks. It 

illustrates the trade-off between the true positive rate and the 

false positive rate across different threshold values. By 

plotting these rates against each other, the ROC curve provides 

insight into the classifier’s ability to distinguish between 

positive and negative instances.  

A key metric derived from the ROC curve is the Area 

Under the Curve (AUC-ROC), which quantifies the overall 

performance of the classifier. The AUC-ROC value ranges 

from 0 to 1, with higher values indicating superior 

discrimination ability. Figure 14 visualizes the ROC curve, 

offering a clear representation of the classifier’s performance 

across various threshold levels. 

Grad-CAM, short for Gradient-weighted Class Activation 

Mapping, stands as a pivotal visualization technique utilized 

to unravel the decision-making mechanisms of the proposed 

model in the realm of stroke detection. This technique adeptly 

illuminates the key regions within an input image that wields 

the most influence over the network’s predictive outcome. By 

generating a heat map, Grad-CAM accentuates the spatial 

zones within the input image that bear the utmost relevance to 

the predicted stroke classification.  

In essence, Grad-CAM serves as a potent tool offering 

profound insights into the intricate decision-making processes 

of the model, thereby facilitating model interpretation and 

aiding in the debugging process. Figure 15, presented below, 

showcases a vivid illustration of the Grad-CAM Heat map 

Visualization, illuminating the areas of utmost significance 

within the input image for stroke detection. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15 Visualization using Grad- CAM approach 

Original Image Predicted Class: Stroke Grad-CAM Heatmap Affected Part 

Original Image Predicted Class: Stroke Grad-CAM Heatmap Affected Part 
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Table 2. Comparison of the proposed hybrid method with existing methods 

Author Methodology Dataset Results 

Clèrigues et 

al. [6] 
UNet-based CNN architecture, 

2015 ISLES 

challenge 

DSC: 0.59 ± 0.31 for SISS, 0.84 ± 0.10 for 

SPES 

Tomita et al. 

[9] 
Deep residual neural networks 

239 T1-weighted 

MRI scans 

DSC: 0.64, Median: 0.78, HD: 20.4mm, 

Average symmetric surface distance: 3.6mm 

Praveen et 

al. [13] 
Layered sparse autoencoders, 

ISLES 2015 

dataset 

precision (0.968), average dice coefficient 

(0.948), recall (0.924), accuracy (0.904) 

Zhang et al. 

[14] 
Deep 3D CNNs 

Dataset of 242 

participants 

Precision (92.67%), dice similarity coefficient 

(79.13%), F1 lesion-wise score (89.25%) 

Soltanpour 

et al. [17] 

Prediction algorithm for identifying 

CTP scans with ischemic stroke 

lesions, four parallel 2D U-Nets 

ISLES 2018 

dataset 

DSC: 71.3%, Recall: 73.6%, Volume 

Similarity (VS): 82.1% 

Shi and Liu 

[18] 
Modified U-Net architecture 

ISLES 2018 

dataset 

Dice coefficient: ~0.77 for ischemic stroke 

segmentation 

Omarov et 

al. [19] 
Modified 3D UNet architecture 

ISLES 2018 

dataset 
Dice/F1 score similarity coefficient: 58% 

Proposed 

method 

Hybrid deep learning model: 

DenseNet and Capsule Network 

Brain CT 

images 

Accuracy 93.45%, precision 92.18%, recall 

92.56%, and F1-Score 92.36%. 

The performance evaluation of the proposed hybrid 

network, in contrast to existing methods predominantly reliant 

on machine learning and deep learning, constitutes a crucial 

aspect of the study. Table 2 presents a comparative analysis, 

showcasing the efficacy of the hybrid model through a 

meticulous assessment of outcomes garnered from established 

approaches. This evaluation scrutinizes various metrics and 

parameters to gauge the effectiveness and robustness of the 

proposed method against conventional methodologies utilized 

in stroke detection. 

5. Conclusion 
The proposed study introduced a novel hybrid deep 

learning approach by combining DenseNet-201 and Capsule 

Network (CapsNet) to enhance stroke lesion detection and 

classification. The primary goal is to elevate key performance 

metrics such as F1-score, recall, accuracy, and precision, 

which are crucial for accurate stroke diagnosis. Utilizing a 

dataset sourced from the Kaggle repository containing brain 

CT images of both normal and stroke patients, extensive data 

pre-processing and augmentation were conducted to ensure 

dataset quality and diversity, thus facilitating robust model 

training. The hybrid model architecture capitalizes on the 

strengths of both DenseNet-201 and CapsNet: DenseNet-201 

facilitates effective gradient flow and feature propagation, 

while CapsNet excels in capturing intricate spatial hierarchies 

within the data. Experimental results demonstrate the efficacy 

of the proposed hybrid model, achieving impressive 

performance metrics, including an accuracy of 93.45%, 

precision of 92.18%, recall of 92.56%, and F1-Score of 

92.36%. Comprehensive visualization techniques such as 

ROC curves, Grad-CAM heat maps, confusion matrices, and 

accuracy-loss plots provide insights into the model’s 

robustness and interpretability. Comparative analysis against 

existing approaches substantiates the superiority of the hybrid 

model, positioning it as a promising tool for enhancing stroke 

diagnosis and treatment outcomes. In conclusion, the 

proposed framework presents a significant advancement in 

stroke detection accuracy, thereby contributing to the 

progression of medical imaging and AI applications in 

healthcare. 
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