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Abstract - Electroencephalography (EEG) is essential for observing brain activity. It offers non-invasive, high-resolution 

insights into neural dynamics. Despite its clinical and research applications, EEG signals are prone to noise from powerline 

interference, muscle artifacts and environmental sources. This study evaluates adaptive filtering techniques—LMS, NLMS, 

PNLMS and IPNLMS—for denoising EEG signals. A dataset of 23 EEG recordings contaminated with noise was used. 

Accelerometer signals served as reference inputs. The algorithms were assessed using Mean Squared Error (MSE) Signal-to-

Noise Ratio (SNR) and Pearson Correlation Coefficient. PNLMS was found to be the most effective. It achieved the lowest MSE 

(0.9193), highest SNR (1.0768) and highest correlation (46.9025%). While PNLMS excels in noise reduction it has 

computational demands that may limit its use in wearable devices. NLMS offers a practical balance. It balances performance 

and efficiency. Future work includes hybrid algorithms. Real-time implementations will be addressed. Adaptive parameter 

tuning will also be covered. These aim to enhance EEG signal processing and its applications in clinical and research 

environments. 

Keywords - EEG signal, LMS filtering, Motion artifact, NLMS, PNLMS, IPNLMS. 

1. Introduction  
Electroencephalography (EEG) is a significant method 

for brain activity observation and analysis, giving insights into 

neural dynamics in the highest time resolution without any 

invasion. Voltage changes are measured by placing electrodes 

on the scalp, which indicate how ionic currents flow through 

nerve cells. In neurological diagnosis, cognitive process 

understanding, and brain computer interface design, among 

others, this approach is irreplaceable [1]. Clinically, EEG is 

largely employed to diagnose epilepsy, which is a 

neurological disorder that causes recurrent seizures. This can 

be seen by analyzing an EEG to identify definite wave types, 

such as spikes and sharp waves that suggest epileptic activity 

[2]. Besides epilepsy, sleep studies often utilize EEG to allow 

the detection of different sleep stages and as a diagnostic tool 

for insomnia and sleep apnea [3]. Cognitive neuroscience 

forms one of the research areas where EEG finds use in 

studying brain functions related to perception, attention, 

memory even language processing with real-time data on how 

the brain reacts to stimuli variation [4]. 

Despite this, measuring the electrical impulses of the 

brain using EEG is a very noisy process which can leave them 

hidden under different varieties of noise. Powerline artifacts, 

muscle artifacts and environmental noise are the main EEG 

contaminants. Electrical power grids introduce their own 50 

Hz or 60 Hz interference to the system, causing severe 

artefacts in EEG recordings [5]. Electromyographic (EMG) 

artifacts, also known as muscle artifacts, are generated by the 

contraction of skeletal muscles near the electrodes and are 

superimposed onto brain signals, hence leading to difficulties 

in the analyses and interpretation of EEG data [6]. Moreover, 

the environmental noise introduced by different external 

electromagnetic sources could negatively affect the signal 

quality. 

Due to these challenges, various adaptive filtering 

techniques have been designed and implemented to improve 

the EEG signal quality by minimizing noise. Of all these 

techniques, the LMS algorithm and its derivatives, including 

the Normalized LMS (NLMS), Proportionate Normalized 

LMS (PNLMS), and Improved Proportionate Normalized 

LMS (IPNLMS), are preferred owing to their merits regarding 

ease of implementation as well as efficiency [7][8]. These 

algorithms modify the filter coefficients in real-time, enabling 

them to reduce noise in real-time from EEG data while at the 
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same time reducing the mean squared error between the 

desired signal and the output [9]. 

The LMS algorithm was proposed by Widrow and Hoff 

in 1960 and it is one of the key algorithms of adaptive filtering. 

It adjusts the filter coefficients in such a way that the 

difference between the filter output and the desired signal is 

minimized. However, the LMS algorithm may converge 

slowly under some conditions and there developed NLMS that 

normalises the step size to enhance convergence speed and 

stability [10]. The PNLMS algorithm, which adapts a set of 

filter coefficients with different step sizes depending on their 

magnitude, improves performance in sparse environments 

where only a few coefficients are nonzero [11]. The IPNLMS 

algorithm improves this approach by adding more constraints 

for the optimization of convergence speed and steady-state 

error [12].  
 

The goal of this research is to assess and analyze different 

LMS-based filtering techniques, including LMS, NLMS, 

PNLMS, and IPNLMS, to remove noise from EEG signals. By 

using accelerometer signals as reference inputs, we will 

evaluate the algorithms’ ability to minimize motion artifacts, 

which is a common source of noise in wearable EEG 

monitoring systems. The efficiency of these algorithms will be 

evaluated with the help of indicators such as Signal-to-Noise 

Ratio (SNR), Mean Squared Error (MSE), and the Pearson 

Correlation Coefficient. By conducting this research, we aim 

to provide insights into the best filtering method for EEG 

signals so as to enhance the field of EEG signal processing and 

its usefulness in the medical field and research studies. 

2. Adaptive Filtering  
Adaptive filtering plays an essential role in many signal 

processing applications, such as noise suppression, echo 

removal, and enhancement of the EEG signals. Adaptive 

filtering is built on the principle that filter coefficients are 

adjusted constantly with the aim of reducing the error between 

the desired signal and the output of the filter.  

The LMS (Least Mean Squares) algorithm is considered 

to be at the base of many adaptive filtering techniques, mainly 

because of its simplicity and efficiency. LMS and its 

variations introduced in this section can also be applied to 

other forms of adaptive filtering not restricted to EEG signals. 

They are also widely used in other biosignals like 

Electrocardiogram (ECG) and Electromyogram (EMG).  

Adaptive filters play an important role in ECG, and they 

assist in the reduction of noises like powerline interferences 

and motion interferences which helps in giving accurate 

diagnosis of heart conditions [13]. Also, in EMG, adaptive 

filtering helps to filter the disturbing noise from muscle 

signals which is useful for investigating muscle activity and 

control [15]. A classic structure for adaptive filtering is shown 

in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 A classic representation of an adaptive filter 

2.1. LMS Algorithm  

The LMS algorithm iteratively updates the filter 

coefficients to minimize the mean squared error. The 

mathematical formulation is shown in Equation (1): 

e(n) = d(n) − w𝑇(n)x(n)                      (1) 

Where: 

• e(n) is the error signal at iteration 𝑛.  

• d(n) is the desired signal. 

• w(n) is the weight vector at iteration 𝑛. 

• x(n) is the input vector at iteration 𝑛. 

 

And the weight update is in Equation (2): 

w(n + 1) = w(n) + 2μe(n)x(n)                      (2) 

 

Constant Mu (μ) controls the convergence speed and 

stability. 

2.2. Normalized LMS (NLMS) Algorithm 

NLMS enhances the LMS algorithm by normalizing the 

step size, which improves convergence stability, especially in 

scenarios where the input signal power varies significantly. 

The normalized step size is given in Equation (3): 
 

𝜇𝑛 =
𝜇

‖𝑥(𝑛)‖2 + 𝜖
                 (3) 

 

𝜖 is a small value to avoid dividing by zero; the weight 

update is given by Equation (4): 
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w(n + 1) = w(n) + 𝜇𝑛e(n)x(n)                   (4) 

2.3. Proportionate Normalized LMS (PNLMS) Algorithm 

PNLMS further refines NLMS by assigning different step 

sizes to each filter coefficient, which is beneficial for sparse 

systems where only a few coefficients are significant. The 

mathematical expression for PNLMS is given by Equation (5): 

𝜇𝑛,𝑖 =
𝜇(|𝑤𝑖(𝑛)| + 𝜖)

∑ (|𝑤𝑗(𝑛)| + 𝜖)𝑀
𝑗=1

                     (5) 

Where i and j denote the indices of the filter coefficients, 

the weight update is given by Equation (6): 

      𝑤𝑖(𝑛 + 1) = 𝑤𝑖(𝑛) + 𝜇𝑛,𝑖𝑒(𝑛)𝑥𝑖(𝑛)                     (6)       

2.4. Improved Proportionate Normalized LMS (IPNLMS) 

Algorithm 

IPNLMS incorporates additional constraints to balance 

the convergence speed and steady-state error, making it 

suitable for various signal processing applications. The 

improved step size y given by Equation (7), the weight update 

remains the same as PNLMS: 

𝜇𝑛,𝑖 =
𝜇(|𝑤𝑖(𝑛)| + 𝜖)𝛼

∑ (|𝑤𝑗(𝑛)| + 𝜖)𝛼𝑀
𝑗=1

                        (7) 

Where alpha (𝛼) is a parameter that adjusts the 

proportionate effect.  

3. Methodology 
The dataset used in this study consists of EEG signals 

contaminated with noise and their corresponding clean EEG 

signals. Additionally, accelerometer signals were recorded 

simultaneously to provide reference data for noise 

suppression. This dataset was contributed to physionet by 

Kevin Sweeney. The dataset includes 23 recordings, where 

each recording features a pair of similar physiological signals 

captured from transducers placed near each other. For each 

recording, one transducer remains undisturbed, while the other 

is subjected to manipulation to create motion artifacts with 

varying durations within every 2 minutes.  

The movement of the manipulated transducer and the 

stability of the other transducer are recorded using 3-axis 

accelerometers attached to both transducers. [15,16]. The 

EEG data sampling rate was 2048Hz, and the Accelerometer 

data sampling rate was 200Hz. To match the EEG signals, the 

Accelerometer data was digitally resampled. The 

methodology is shown in Figure 2. The contaminated EEG 

signal is filtered using every LMS derivative, then the 

resultant signal is evaluated using Mean Squared Error (MSE), 
Signal-to-Noise Ratio (SNR) and Pearson Correlation 

Coefficient. This process was made for each recording, a total 

of 23 times.  

      
Fig. 2 Methodology diagram 

The mathematical definition of the indicators is given by: 

•  Mean Squared Error (MSE) 

MSE =
1

𝑁
෍(𝑆𝑖 − 𝑆̂𝑖)

2

𝑁

𝑖=1

                 (8) 

• Signal-to-Noise Ratio (SNR) 

𝑆𝑁𝑅 = 10𝑙𝑜𝑔10 (
∑ 𝑆𝑖

2

∑(𝑆𝑖 − 𝑆̂𝑖)
2

 
)  𝑑𝑏                 (9) 

• Pearson Correlation Coefficient 

𝑟 =
∑(𝑆𝑖 − 𝑆̅)(𝑆̂𝑖 − 𝑆̂̅)

√∑(𝑆𝑖 − 𝑆̅)2 ∑(𝑆̂𝑖 − 𝑆̂̅)

                (10) 

Where 𝑆̅ and 𝑆̂̅ are the means of the clean and filtered 

signals, respectively. 
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4. Results and Discussion 

In Figure 3, a segmented signal is shown. From the 

records, in every signal, the initial rise represents the start of 

the recording session, and the final fall is the ending of the 

session. For that reason, the signals were segmented to do the 

filtering task. 

 

4.1. MSE Results 

The results using MSE are shown in Tables 1 and 2. The 

results show that the LMS algorithm has an average MSE of 

0.9817, which is higher than the other algorithms. NLMS 

shows a lower average MSE of 0.9318, while PNLMS has the 

lowest MSE at 0.9193. IPNLMS has an average MSE of 

0.9506. These results indicate that PNLMS is the most 

effective in minimizing the error between the clean and 

filtered signals, making it the superior choice for noise 

reduction. 

 

4.2. SNR Results 

For SNR, a higher value indicates better signal quality. 

LMS shows an average SNR of 0.5323, NLMS improves this 

to 0.6453, and PNLMS achieves the highest SNR at 1.0768. 

IPNLMS has an SNR of 0.8757. These results reinforce that 

PNLMS significantly enhances the signal-to-noise ratio, thus 

providing the clearest EEG signals among the algorithms 

tested. 

 

4.3. Pearson Correlation Coefficient 

The Pearson Correlation Coefficient results show that 

LMS achieves an average correlation of 1.85%, while NLMS 

improves this to 39.44%. PNLMS has the highest correlation 

at 46.9025%, with IPNLMS close behind at 45.1815%. These 

correlations indicate how well the filtered signals match the 

clean signals, with PNLMS again proving to be the most 

effective. 

 

However, indeed, if we think about the application of 

these algorithms to wearable devices, the issues of complexity, 

energy consumption and memory are key. The LMS method 

is the least complex in terms of computation. It can be used in 

devices with low computational power but provides the lowest 

noise suppression capability among the three methods. In 

comparison to LMS, NLMS has a better stability and 

convergence rate but a slightly higher computational 

complexity. The proposed algorithm, PNLMS, has the lowest 

MSE, highest SNR, and correlation coefficient, with the 

drawback of high computational complexity due to the 

variable step size calculation. While the convergence speed 

and steady-state error of the algorithm are jointly optimized, 

the IPNLMS is still less efficient in terms of computational 

complexity than NLMS or LMS. Even though the PNLMS 

algorithm has a higher computational complexity as compared 

to the other algorithms it offers the best solution for 

reconstructing the quality of the EEG signals. This makes it 

suitable for use in fields where precise determination of the 

signals is necessary, as in the case of health diagnose and 

research. However, the computational complexities that arise 

can reduce its application in restricted wearables such as smart 

wristbands. Thus, NLMS has good potential in many practical 

applications, as it provides good performance while keeping 

the amount of computations within reasonable levels. In 

Figure 4, a comparative view of all the LMS derivatives is 

shown. Individually, the graphs por each LMS derivative are 

shown in Figures 5, 6,7 and 8.

 

 
Fig. 3 Segmented EEG signal 

 

 
Fig. 4 Comparative view of the results for each LMS-derivative 
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Fig. 5 Result using LMS 

 

 
Fig. 6 Result using NLMS 

 

 
Fig. 7 Result using PNLMS 

 

 
Fig. 8 Result using IPNLMS 
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5. Conclusion  
In this study, the use of LMS and its derivatives also 

proved to be effective on EEG signals in addition to the tests 

already performed on ECG signals [17]. The PNLMS has been 

found to be the best suitable for improving the EEG signal 

quality equal to or better than LMS, NLMS, and IPNLMS for 

all tested parameters. However, it has a higher computational 

complexity compared to the other methods analyzed above. 

However, the overall results in terms of MSE, SNR, and 

Pearson Correlation Coefficient suggest that this method can 

indeed be useful in applications requiring high signal fidelity. 

Therefore, in order to have a practical implementation of such 

underlining computational algorithms into wearable devices, 

there is a need to seek for an optimization between 

performance and resource usage. As such, NLMS is shown to 

present a practical solution that has more than reasonable 

learning performance to computational load ratio.  

Further research could expand the study of adaptive 

filtering algorithms in a number of directions toward 

enhancing the performance’s applicability in the analysis of 

EEG signals. There are also trends in combining the above 

algorithms, for example, the creation of PNLMS and IPNLMS 

structures when new algorithms will select the best features of 

these algorithms and provide increased speed and an even 

greater level of noise suppression. Further, precise 

implementations of the proposed algorithms in the real-time 

environment of wearable devices should be designed and 

implemented in order to assess the possible real-life 

characteristics of such algorithms, their computational cost, 

and power requirements. As mentioned above, some 

successful approaches to the noise environment, which can be 

utilized in tuning algorithm parameters according to the 

characteristics of incoming signals, can be considered for 

enhancing adaptability.  

One possible direction to bring improvements to the 

filtering step is to use huge databases along with advanced 

types of machine learning to forecast and prevent noise traces 

in EEG signals. Some of the possibilities for future work 

consist of the enhancement of these adaptative filtering 

techniques to other biosignals, including the ECG and the 

EMG, with the aim of comparing their performances in 

various physiological environments. There is a need for long-

term longitudinal investigations that will determine the AL 

stability and its durability, more particularly considering its 

applicability in situations where motion related disturbances 

dominate, such as in ambulatory monitoring. In the 

subsequent research, more efforts can be made to improve the 

reliability and applicability of adaptive filtering methods, 

making a solid foundation for further developed biosignals 

processing in clinic and Internet use health preservation 

sphere. 
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Appendix 
Table 1. First 12 MSE results 

  

Trial 

1 
Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 

Trial 

10 

Trial 

11 

Trial 

12 

LMS 0.8417 1.1217 2.0493 0.8581 1.0748 0.8968 1.0343 1.1503 1.1535 0.8877 0.7122 0.9352 

NLMS 0.7924 1.4608 1.5497 0.7825 1.0530 0.7920 0.9114 1.1401 1.2058 0.9557 0.6037 0.8452 

PNLMS 0.7446 1.8987 2.0151 0.5649 0.9980 0.6041 0.7528 1.1710 1.1552 0.9717 0.6850 0.7335 

IPNLM

S 0.7598 1.8743 2.0029 0.5758 1.0313 0.6053 0.7731 1.2000 1.1884 1.0427 0.7393 0.8183 

 

 
Table 2. Last 11 MSE results 

  

Trial 

13 
Trial 14 Trial 15 Trial 16 Trial 17 Trial 18 Trial 19 Trial 20 Trial 21 Trial 22 Trial 23 

LMS 1.1512 1.3310 0.8615 0.4212 0.2607 0.5928 1.8214 1.6044 0.9622 1.2627 1.2696 

NLMS 0.8324 1.2248 0.5782 0.4029 0.3734 0.3316 1.6384 1.0002 0.9212 1.0905 0.9467 

PNLMS 0.7738 1.0029 0.5281 0.1585 0.2652 0.2328 1.9087 1.2149 0.7867 1.1741 0.8042 

IPNLMS 0.8288 1.0015 0.5867 0.1787 0.2749 0.2756 1.9437 1.2361 0.8275 1.3046 0.7937 

 

 
Table 3. First 12 SNR results 

  

Trial 

1 
Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 

Trial 

10 

Trial 

11 

Trial 

12 

LMS 0.5630 0.7534 0.4790 0.7615 0.6211 0.7220 0.3317, 0.7904 0.3617 0.4153 0.3071 0.4751 

NLMS 1.0104 -1.6461 -1.9025 1.0651 -0.2243 1.0124 0.4029 -0.5696 -0.8127 0.1966 2.1920 0.7304 

PNLMS 1.2808 -2.7846 -3.0431 2.4801 0.0086 2.1885 1.2329 -0.6858 -0.6266 0.1246 1.6429 1.3461 

IPNLM

S 1.1930 -2.7285 -3.0166 2.3970 -0.1338 2.1800 1.1174 -0.7920 -0.7496 -0.1818 1.3115 0.8706 

 

 
Table 4. Last 11 SNR results 

  

Trial 

13 
Trial 14 Trial 15 Trial 16 Trial 17 Trial 18 Trial 19 Trial 20 Trial 21 Trial 22 Trial 23 

LMS 0.6505 0.3390 0.3309 0.5773 0.3991 0.3561 0.3258 0.6079 0.4810 0.6818 0.9122 

NLMS 0.7967 -0.8806 2.3788 3.9484 4.2787 4.7934 -2.1443 -0.0011 0.3566 -0.3765 0.2376 

PNLMS 1.1133 -0.0129 2.7731 7.9985 5.7639 6.3292 -2.8075 -0.8455 1.0416 -0.6971 0.9465 

IPNLMS 0.8153 -0.0067 2.3155 7.4797 5.6075 5.5973 -2.8863 -0.9207 0.8223 -1.1548 1.0035 
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Table 5. First 12 Pearson results 

 Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 
Trial 

10 

Trial 

11 

Trial 

12 

LMS 2.9113 0.8220 0.2247 0.1998 0.1622 0.0954 0.1652 0.0711 0.4948 38.2196 0.1136 0.0040 

NLMS 48.5158 15.6567 4.9012 56.9916 6.1885 49.8048 37.0514 22.2416 32.3234 35.3301 67.8858 50.4164 

PNLM

S 55.9935 11.8004 -5.2813 71.9275 20.0666 64.8368 54.1016 26.6618 40.9684 39.3597 65.4666 62.6967 

IPNL

MS 54.6440 14.5047 -4.2343 71.5969 15.1869 64.8634 52.6756 24.6112 37.0223 34.5845 63.4285 59.4907 

 

Table 6. Last 11 Pearson results 

  Trial 13 Trial 14 Trial 15 Trial 16 Trial 17 Trial 18 Trial 19 Trial 20 Trial 21 Trial 22 Trial 23 

LMS 0.3102 0.3037 1.8000 0.4280 5.6170 0.1837 0.0341 0.0054 0.3630 0.0060 3.1047 

NLMS 51.8084 6.7013 68.4057 77.6688 80.0986 83.5446 8.9517 19.5878 36.8437 23.0263 23.2001 

PNLMS 57.8589 32.7083 73.4841 91.7586 86.4511 88.7678 0.7690 11.3287 51.4588 31.0110 44.5629 

IPNLMS 55.0711 32.5913 70.9420 90.6645 85.9431 86.9081 0.9886 9.6112 48.4875 23.7143 45.8777 

 


